

 Corresponding author: Anbarivan Nalapathy Leninsengathir.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Visual learning model for behavioral cloning in gaming: Towards human-like ai
systems

Anbarivan Nalapathy Leninsengathir *, Jamiyandorj Batzorig and Naga Kiran Viswadhanapalli

iAgent Corporation, 171 Water Street, Vancouver, BC V6B 1A7, Canada.

International Journal of Science and Research Archive, 2025, 14(02), 010-024

Publication history: Received on 22 December 2024; revised on 29 January 2025; accepted on 01 February 2025

Article DOI: https://doi.org/10.30574/ijsra.2025.14.2.0322

Abstract

Behavioral cloning is a transformative paradigm in artificial intelligence, enabling systems to emulate human behaviors
in complex domains such as gaming, robotics, and autonomous systems. This whitepaper presents a novel visual
learning model designed to learn strategic and dynamic behaviors by analyzing gameplay footage. By employing
sequential data processing and advanced temporal modeling, the architecture bridges human actions with actionable
artificial intelligence (AI) strategies. The paper delves into the intricacies of model architecture, training methodologies,
and evaluation metrics, offering a robust framework for real-time, context-aware decision-making. Key applications
span gaming bots, collaborative artificial intelligence (AI) in robotics, and task automation systems. The proposed
framework addresses critical challenges in synchronization, resource management, and adaptability, paving the way
for generalized AI systems.

Keywords: Visual Learning Model (VLM); Behavioral Cloning; Artificial Intelligence (AI); AI agents

1. Introduction

The field of artificial intelligence (AI) has witnessed significant advancements in replicating human behaviour,
particularly through imitation learning. Video games provide an ideal testbed for such systems due to their dynamic,
rule-based environments that mimic real-world decision-making scenarios. Despite recent successes in reinforcement
learning and imitation learning, replicating human-like behaviour in multiplayer games remains a formidable challenge
due to:

• The complexity of sequential decision-making.
• The requirement to generalize across varied and unpredictable gameplay contexts.
• Real-time computational constraints for decision-making.

This paper proposes a visual learning model that leverages behavioural cloning techniques to learn human gameplay
patterns and mimic strategic decisions in real time. Foundational work such as Bagnell (2015) on imitation learning [4]
and Ross et al. (2011) on the DAgger algorithm [18] highlight the significance of addressing challenges like distribution
shift. Additionally, deep reinforcement learning approaches by Mnih et al. (2015) [7] and the reinforcement learning
framework of AlphaZero (Silver et al., 2018) [8] demonstrate the potential for combining imitation learning with
reinforcement strategies in competitive and dynamic environments.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://ijsra.net/
https://doi.org/10.30574/ijsra.2025.14.2.0322
https://crossmark.crossref.org/dialog/?doi=10.30574/ijsra.2025.14.2.0322&domain=pdf

International Journal of Science and Research Archive, 2025, 14(02), 010-024

11

2. Background and Related Work

2.1. Evolution of Behavioral Cloning in Gaming and AI

Behavioral cloning (BC) represents one of the foundational methodologies for enabling machines to learn human-like
behavior. It operates by mapping observed states to expert actions using supervised learning techniques. Historically,
its implementation spans diverse domains such as autonomous driving, robotic manipulation, and gaming [3]. For
instance, in autonomous driving, BC was instrumental in early work such as NVIDIA's self-driving car model, which used
convolutional neural networks (CNNs) to process raw video frames and predict steering angles [3].

In gaming, BC models have demonstrated substantial potential in replicating human strategies. Early attempts relied
heavily on heuristic-based approaches, where pre-programmed rules dictated agent behavior. The advent of deep
learning revolutionized this field by enabling systems to learn nuanced patterns directly from gameplay footage.
Foundational studies such as Mnih et al. (2015) [7] and recent advancements in hierarchical reinforcement learning by
Zhang et al. (2022) [18] underscore the evolution of BC into more sophisticated models. Reinforcement learning, often
combined with imitation learning, has also made strides in competitive gaming environments, as demonstrated by
OpenAI Five [1] and Alpha Star [8].

2.2. Advancements in Neural Architectures for Sequential Learning

Modern BC systems leverage advanced neural architectures, such as Recurrent Neural Networks (RNNs), Long Short-
Term Memory (LSTM) networks, and Transformers, to handle sequential data [7]. These models excel at capturing
temporal dependencies, crucial for predicting actions based on the evolving context of gameplay. Techniques like Time
Distributed layers allow for efficient frame-by-frame processing while maintaining the sequential integrity of input data.
Vaswani et al. (2017) [7] introduced the Transformer architecture, which has since become a cornerstone in sequential
data modelling, including gaming contexts. Recent work by Dosovitskiy et al. (2021) [6] on Vision Transformers further
demonstrates their effectiveness in high-dimensional tasks requiring complex spatiotemporal understanding.

2.3. Integration of Attention Mechanisms

Attention mechanisms have been pivotal in improving BC systems' performance, particularly in high-dimensional
environments like gaming [10]. By dynamically focusing on relevant parts of the input (e.g., enemy locations, player
health), these mechanisms enhance the model's ability to make context-aware decisions. Attention has been
successfully applied in action recognition and tactical decision-making, providing state-of-the-art results in tasks
involving complex spatiotemporal dependencies. For example, the work of Lample and Chaplot (2017) [13] in FPS
games highlights the impact of attention in decision-making under dynamic conditions.

2.4. Limitations of Traditional Behavioral Cloning

Despite its successes, behavioral cloning faces critical challenges:

• Data Distribution Shift: The model often encounters states during deployment that are not present in the
training data, leading to compounding errors. Ross et al. (2011) proposed solutions like DAgger [18] to address
this issue.

• Causal Confusion: Models can erroneously attribute outcomes to irrelevant features due to spurious
correlations in the dataset (De Haan et al., 2019) [4].

• Lack of Adaptability: Traditional BC systems struggle with dynamic environments where strategies evolve
over time.

2.5. Related Applications in Real-World Scenarios

Beyond gaming, the principles of behavioral cloning extend to various real-world applications

• Robotics: Teaching robots to execute tasks such as assembly line operations or warehouse navigation by
observing human demonstrations [5].

• Healthcare: Replicating surgical procedures in robotic systems to enhance precision and consistency [9].
• Autonomous Vehicles: Driving models that learn to emulate expert drivers' behaviour while navigating

complex traffic scenarios [17].

International Journal of Science and Research Archive, 2025, 14(02), 010-024

12

2.6. Related Work in Gaming AI

Numerous studies have focused on creating AI systems capable of human-like gameplay. For instance

• GameBot Frameworks: Platforms like GameBots and Pogamut have provided environments for developing
and testing AI in first-person shooters [26].

• Behavior Metrics: Metrics like path entropy, exploration factor, and kill-to-death ratios have been proposed
to quantitatively evaluate the realism of AI agents in games (Hingston, 2009) [15].

• Competitions: Events such as the BotPrize challenge have benchmarked AI systems on their ability to mimic
human behaviour convincingly [16].

3. Core Architecture

The core architecture of the proposed model is engineered to replicate human-like decision-making through a robust
combination of behavioral cloning, imitation learning, and advanced spatiotemporal modeling. This design focuses on
learning the intricate nuances of human behavior in dynamic environments, particularly gaming, while ensuring
computational efficiency and interpretability. By incorporating cutting-edge methodologies like tensor standardization,
conditional computation, causal modeling, and knowledge extraction, the architecture bridges the gap between expert
human actions and actionable AI predictions.

At its heart, the architecture leverages sequential data from gameplay footage, allowing it to identify patterns, extract
critical features, and predict context-aware actions. The following sections delve into the architectural components and
their interactions, ensuring a seamless integration of inputs, temporal dynamics, decision-making, and validation.

3.1. Input Representation and Tensor Standardization

The first step in this architecture involves processing raw gameplay footage and auxiliary data such as player health,
inventory, and positional coordinates. These inputs are consolidated into a tensor representation,

𝑋 ∈ 𝑅 𝑇 × 𝐻 × 𝑊 × 𝐶

where T represents the time steps, H and W denote spatial dimensions, and C indicates the channels (e.g., RGB values)
[10].

To ensure consistency and prevent bias caused by varying scales and distributions across different channels, tensor
standardization is applied. Each channel is normalized to have zero mean and unit variance [11]:

𝑠𝑡𝑑𝑡,ℎ,𝑤,𝑐 =
𝑋𝑡,ℎ,𝑤,𝑐 − 𝜇𝑐

𝜎𝑐

Where 𝜇𝑐 and 𝜎𝑐 . are the mean and standard deviation computed for each channel. This standardization not only
stabilizes training but also enhances the extraction of meaningful spatial and temporal features.

By standardizing inputs, the architecture eliminates inconsistencies that could arise from the inherent variability in
gameplay data [14]. This preprocessing step establishes a strong foundation for the subsequent feature extraction and
modeling processes.

3.2. Feature Extraction

The architecture employs a convolutional neural network (CNN) to extract spatial features from the standardized input
tensor. A ResNet-34 model is chosen for its balance between computational efficiency and feature representation
quality [15]. The extracted features for each frame,𝐹𝑡 ∈ 𝑅𝑑 encode critical spatial patterns, such as the locations of
enemies, objects, and obstacles.

To ensure that the extracted features focus on the most relevant regions of the frame, the model integrates an attention
mechanism. Attention weights, 𝛼𝑡 ,dynamically prioritize areas that are crucial for decision-making [13]:

𝛼𝑡 =
∑ ⬚𝑇

𝑘=1 𝑒𝑥𝑝(𝑒𝑘)

𝑒𝑥𝑝(𝑒𝑡)

International Journal of Science and Research Archive, 2025, 14(02), 010-024

13

𝑒𝑡 = 𝑣⊤𝑡𝑎𝑛ℎ(𝑊𝑎𝐻𝑡 + 𝑏𝑎)

This mechanism highlights critical gameplay elements such as enemy movements or impending threats, providing a
more nuanced understanding of the environment.

Additionally, dropout and batch normalization are applied to mitigate overfitting and improve generalization. These
techniques ensure that the extracted features are robust and reliable for downstream processing. [14]

3.3. Temporal Encoding

Capturing the temporal dynamics of gameplay is essential for understanding sequential decision-making, such as
dodging an attack or aiming at a moving target. The architecture uses a Long Short-Term Memory (LSTM) network,
wrapped in a Time Distributed module, to model these temporal dependencies [16]. The LSTM processes the sequence
of extracted features,{𝐹𝑡}and generates hidden states, 𝐻𝑡 ∈ 𝑅𝐻 , for each time step:

ℎ𝑡 = 𝐿𝑆𝑇𝑀(ℎ𝑡−1, 𝐹𝑡)

where H represents the size of the hidden state.

The recurrence mechanism in the LSTM captures both short-term and long-term dependencies [17]:

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝐹𝑡 + 𝑏)

Where 𝑊ℎ , 𝑊𝑥 and 𝑏 are trainable parameters. This enables the model to predict complex sequences of actions, such as
switching weapons or positioning strategically based on observed patterns [16].

By leveraging temporal encoding, the architecture creates a coherent understanding of how gameplay evolves over time,
laying the groundwork for accurate and context-aware decision-making.

3.4. Decision-Making Module

The decision-making module integrates the spatial and temporal features to predict the optimal actions at each time
step. This module is designed to handle multiple tasks simultaneously, reflecting the diverse range of decisions a player
makes during a game [17]. Outputs are categorized into

• Binary Predictions: Actions such as firing or jumping.
• Categorical Predictions: Decisions like selecting a weapon or navigating a strategy.
• Continuous Outputs: Fine-grained controls such as aiming coordinates or movement vectors.

The fully connected layers for each task are expressed as:

𝑦𝑘 = 𝑊𝑘ℎ𝑡 + 𝑏𝑘

Where 𝑊𝑘 and 𝑏𝑘 are trainable parameters specific to task 𝑘.

A multi-objective loss function combines the task-specific losses:

𝐿 = ∑ ⬚

𝐾

𝑘=1

𝜆𝑘𝐿𝑘

where the weights 𝜆𝑘 are dynamically learned to balance the contributions of different tasks:

International Journal of Science and Research Archive, 2025, 14(02), 010-024

14

𝜆𝑘
𝑛𝑜𝑟𝑚 = ∑ ⬚

𝐾

𝑗=1

𝜆𝑗𝜆𝑘

This adaptive weighting mechanism ensures that the model effectively prioritizes tasks based on their complexity and
importance. [18]

3.5. Causal Robustness

To improve robustness against distributional shifts, the architecture integrates causal reasoning. By modeling
functional causal relationships, the model avoids spurious correlations that could degrade its performance [19]. Using
Functional Causal Models (FCMs), the relationship between causes and effects is formalized as:

𝑌𝑖 = 𝑓𝑖(𝑌𝑃𝑎(𝑖;𝐺), 𝐸𝑖; 𝜃)

where 𝑌𝑃𝑎(𝑖;𝐺) represents the parent variables (true causes) of 𝑌𝑖 , and 𝐸𝑖 denotes stochastic noise. This ensures that the

model’s decisions are based on true causal relationships, making it resilient to changes in the input distribution [20].

3.6. Conditional Computation

Conditional computation is employed to optimize computational efficiency. By dynamically activating specific
computational branches based on input relevance, the model minimizes unnecessary overhead [21]. A gating
mechanism determines whether a branch 𝑓𝑘 is activated:

𝑔𝑘 = 𝜎(𝑤𝑘
⊤ℎ𝑡 + 𝑏𝑘)

Branch Output: 𝑜𝑘 = 𝑔𝑘𝑓𝑘(ℎ𝑡)

Branches with gating values 𝑔𝑘 below a threshold T are skipped, allowing the model to focus its resources on critical
computations [21].

3.7. Knowledge Extraction and Validation

To ensure interpretability, the architecture incorporates knowledge extraction mechanisms. Saliency maps highlight
the key features influencing decisions [22]:

𝑆𝑡 = ∑ ⬚

𝑁

𝑖=1

𝛼𝑡,𝑖𝐹𝑡,𝑖

Policy distillation further simplifies the learned policy into a decision tree, enabling human-understandable insights:

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =
1

𝑁
∑ ⬚

𝑁

𝑖=1

∥ 𝜋𝜃(𝑠𝑖) − 𝑇(𝑠𝑖) ∥2
2

Behavioral validation is conducted by comparing the AI’s actions to those of expert players. Metrics such as path entropy
and exploration factor quantify the alignment [23]:

𝑃𝑎𝑡ℎ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ⬚𝑁
𝑖=1 𝑝𝑖𝑙𝑜𝑔(𝑝𝑖) , 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =

𝐴𝑡𝑜𝑡𝑎𝑙

𝐴𝑣𝑖𝑠𝑖𝑡𝑒𝑑

International Journal of Science and Research Archive, 2025, 14(02), 010-024

15

Figure 1 Core architecture diagram

International Journal of Science and Research Archive, 2025, 14(02), 010-024

16

4. Problem Formulation: Player Data Extraction and Integration Framework

To achieve seamless extraction of player data and effective integration with the core AI, our custom executable leverages
a robust architecture capable of capturing and interpreting the player’s state, map details, game actions, and
environmental dynamics in real time. This integration with Steam and Windows APIs ensures smooth interaction
between the AI and the game environment, enabling adaptive and context-aware decision-making [23].

4.1. Player State Extraction

The player state refers to the real-time information that encapsulates the actions, resources, and positional data of the
player. The custom executable collects this information directly from the game environment [26].

4.1.1. Key Player State Variables

Position 𝑃𝑡: Captures the player’s 3D position at time 𝑡 [25]:

𝑃𝑡 = (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡)

Here, 𝑥𝑡 , 𝑦𝑡 , and 𝑧𝑡 denote spatial coordinates.

Health 𝐻𝑡: Represents the player's current health status, normalized between 0 and 1 [26]:

𝐻𝑡 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ℎ𝑒𝑎𝑙𝑡ℎ

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ℎ𝑒𝑎𝑙𝑡ℎ

Inventory 𝐼𝑡: Tracks items held by the player, represented as a binary vector [26]:

𝐼𝑡 = [𝑖1, 𝑖2, … , 𝑖𝑛]

where 𝑖1= 1, if item 𝑘 is present, otherwise 𝑖𝑘= 0.

Action State 𝐴𝑡: Encodes the player's current actions (e.g., running, jumping, shooting) as a categorical variable.

4.2. Map State

The map state provides critical context for decision-making, including spatial layouts, objects, and enemy positions.
Our system dynamically extracts and encodes map information [25].

4.2.1. Key Map State Variables

Map Layout 𝑀𝑡: A grid-based representation of the map at time 𝑡 [25]:

𝑀𝑡 = [𝑚𝑖𝑗]

where 𝑚𝑖𝑗 is a binary variable indicating whether grid cell (i,j) is occupied.

Enemy Positions 𝐸𝑡: Captures visible enemy locations [25]:

𝐸𝑡 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑘, 𝑦𝑘)}

where 𝑥𝑘, 𝑦𝑘 denotes the position of the 𝑘-th enemy.

Interactive Objects 𝑂𝑡: Identifies items like health packs and weapons, encoded as a set [26]:

𝑂𝑡 = {𝑜1, 𝑜2, … , 𝑜𝑛}

International Journal of Science and Research Archive, 2025, 14(02), 010-024

17

4.3. Game Actions and Environment

The game actions are commands issued by the AI, while the environment provides feedback in terms of state
transitions and rewards [26].

4.3.1. Game Action Representation

Action Vector 𝐴𝑡
⬚: Encodes discrete and continuous actions [26]:

• Discrete Actions (e.g., jump, fire):

𝐴𝑡
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑘
𝑝𝑘

• Continuous Actions (e.g., aiming):

𝐴𝑡
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 = (𝑑𝑥, 𝑑𝑦)

where 𝑑𝑥 and 𝑑𝑦 are the aiming adjustments.

Reward Function 𝑅𝑡: Evaluates the success of actions [26]:

𝑅𝑡 = 𝑓(𝐻𝑡 , 𝑃𝑡 , 𝑂𝑡, 𝐸𝑡)

4.3.2. Environmental Dynamics

The environment updates its state based on the player's actions and interactions with objects or enemies.

4.4. Integration with Steam and Windows APIs

To extract real-time game data and interact with the AI, the custom executable integrates seamlessly with Steam and
Windows APIs.

4.4.1. Steam Integration

• Game Data Access: Utilizes Steam’s SDK to fetch player stats, game events, and telemetry data [26].
• Authentication: Ensures secure and authenticated access to the player’s game profile and data [26].

4.4.2. Windows API Integration

Key Features:
• Screen capture for gameplay footage analysis.
• Memory reading for direct access to in-game variables.
• Event hooks for capturing player inputs.

Game Process Monitoring:

Uses APIs like CreateToolhelp32Snapshot and ReadProcessMemory to extract in-memory game states.

4.5. Interaction with Core AI

The captured data is fed into the AI system as preprocessed tensors. The API integration ensures:

o Low latency for real-time decision-making.
o Scalability to handle data from multiple games or players.

International Journal of Science and Research Archive, 2025, 14(02), 010-024

18

5. Evaluation Methodology

The evaluation of the proposed architecture focuses on its ability to replicate human behavior, predict actions
accurately, and perform in dynamic gameplay environments. Various experimental setups and metrics were employed
to measure performance and validate the model.

5.1. Experimental Framework

The architecture was trained on a curated dataset of 100 hours of annotated gameplay footage [24], spanning diverse
gaming strategies and scenarios. Training was conducted with supervised learning for imitation tasks, followed by
reinforcement learning refinements in simulated environments.

5.1.1. Dataset Composition

The dataset includes gameplay videos, player action logs, and positional data.

5.1.2. Training Details:

• Optimizer: Adam with a learning rate of 10−410^{-4}10−4.
• Loss Function: A composite of Cross-Entropy Loss (for categorical actions) and Mean Squared Error (for

continuous actions).
• Hardware: Training was performed on NVIDIA H100 GPUs for accelerated computation.

5.2. Human-Likeness Evaluation

5.2.1. Human Observational Study

A panel of experienced gamers assessed the AI's gameplay footage to evaluate its human-likeness [25]. The assessment
was conducted using a blind comparison of AI and human gameplay, focusing on decision-making, strategic planning,
and movement fluidity.

Criteria

• Naturalness of movement (e.g., strafing, weapon selection).
• Strategic alignment with gameplay context.
• Reaction to in-game events (e.g., enemy attacks, grenades).

Key Insight

The AI achieved an average human-likeness score of 89.5%, surpassing benchmark models by 12%.

5.3. Quantitative Analysis in Self-Play

The AI's performance was validated through self-play experiments in simulated environments [26]. In these tests, the
model was pitted against:

• Human players of varying skill levels.
• Other AI models, including traditional rule-based bots.

5.3.1. Performance Metrics:

• Accuracy: Percentage of correctly predicted actions during gameplay.
• Reaction Time: Average latency in milliseconds for decision-making.
• Outcome Success Rate: Win/loss ratio in self-play matches.

5.3.2. Findings:

• The model achieved 93.2% action accuracy, demonstrating superior predictive capabilities.
• Average reaction time was 2.1 ms, enabling real-time performance in high-speed gaming scenarios.

International Journal of Science and Research Archive, 2025, 14(02), 010-024

19

Figure 2 Line chart showing accuracy improvements over training epochs

Figure 3 Gameplay analysis results comparing AI versions and a human player across different scenarios

International Journal of Science and Research Archive, 2025, 14(02), 010-024

20

Figure 4 Comparison of performance metrics between human players and AI agents

5.4. Behavioral Distribution and Positional Awareness

To measure positional awareness, the distribution of player positions and movement trajectories was analyzed. The
AI's behavior was compared against human players to identify patterns.

Figure 5 Heatmaps illustrating movement distributions for AI agents and human players in the Dust2 and Inferno
maps

5.4.1. Insights:

• The AI displayed realistic positional behavior, navigating toward advantageous positions and avoiding
predictable paths.

• Movement heatmaps closely resembled those of experienced players.

International Journal of Science and Research Archive, 2025, 14(02), 010-024

21

5.5. Common Error Analysis and Mitigation

5.5.1. Avoiding Tactical Mistakes

The AI was evaluated for its ability to avoid common tactical errors, such as overcommitting to aggressive moves or

failing to utilize cover effectively.

5.5.2. Evaluation:

• Error frequency was reduced by integrating causal modeling, enabling the AI to focus on action-critical
variables.

• Fine-tuning with reinforcement learning further minimized decision-making inconsistencies.

Figure 6 Error recovery time comparison between human players and AI agents

5.5.3. Examples of Corrected Errors:

• Recognizing threats and retreating when low on resources (e.g., health, ammunition).
• Efficient grenade usage to disrupt enemy positions.

5.6. Self-Play Insights and Strategy Validation

In self-play simulations, the AI showcased emergent behaviors indicative of strategic planning:

• Adopting defensive stances in unfavorable conditions.
• Collaborative strategies in multi-agent scenarios.

The AI's decision-making was validated by comparing its strategies to those of expert human players. A confidence
score metric was introduced, measuring the similarity of the AI's decisions to human expert decisions, with an average
score of 91.7%.

International Journal of Science and Research Archive, 2025, 14(02), 010-024

22

Figure 7 Graph comparing the human-likeness scores of the proposed model with benchmarks

Figure 8 Comparative analysis of movement speed, angular velocity, and aim precision over time for human players
and AI agents. The shaded regions represent variability, and the solid lines indicate mean performance

6. Conclusion

The development of the Visual Learning Model for Behavioral Cloning in Gaming signifies a pivotal step toward creating
AI systems capable of human-like decision-making in complex, dynamic environments. This research integrates
advanced concepts such as behavioral cloning, imitation learning, and temporal modeling to replicate and enhance
strategic behaviors observed in expert gameplay. By leveraging spatiotemporal data and embedding causal reasoning
[4], the architecture addresses critical challenges like distributional shift, causal misidentification, and real-time
adaptability.

The proposed system demonstrates versatility, excelling in action prediction, movement realism, and strategic
alignment with human behavior [1,8]. Through rigorous evaluation, including human observational studies and self-
play experiments, the model consistently outperformed benchmarks in human-likeness scores and decision accuracy.
Its seamless integration with tools like Steam and Windows APIs further enables robust data extraction and interaction,
making it a scalable solution for a wide range of applications.

This work lays the groundwork for future innovations in gaming AI, robotics, and autonomous systems, where
replicating human-like behavior is critical. The model's adaptability and efficiency suggest potential expansions into

International Journal of Science and Research Archive, 2025, 14(02), 010-024

23

multi-agent learning, collaborative AI systems, and real-world applications such as healthcare and autonomous
navigation. By bridging the gap between human expertise and AI, this research contributes to the evolution of
generalized AI systems that are context-aware, resource-efficient, and capable of operating effectively in real-world
scenarios.

The findings underscore the potential of behavioral cloning and visual learning as transformative tools in AI, providing
a solid foundation for building systems that learn and adapt like humans, unlocking new possibilities in both virtual and
real-world domains.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[1] Berner, C., Brockman, G., Chan, B., et al. (2019). Dota 2 with large-scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680.

[2] Bargteil, A. W., Shinar, T., & Kry, P. G. (2020). An introduction to physics-based animation. SIGGRAPH Asia 2020
Courses, 1–57.

[3] Codevilla, F., Santana, E., López, A. M., & Gaidon, A. (2019). Exploring the limitations of behavior cloning for
autonomous driving. Proceedings of the IEEE/CVF International Conference on Computer Vision, 9329–9338.

[4] De Haan, P., Jayaraman, D., & Levine, S. (2019). Causal confusion in imitation learning. Advances in Neural
Information Processing Systems, 32.

[5] Aydemir, G., Akan, A. K., & Güney, F. (2023). Adapt: Efficient multi-agent trajectory prediction with adaptation.
Proceedings of the IEEE/CVF International Conference on Computer Vision, 8295–8305.

[6] Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. SIGGRAPH Comput. Graph.,
21(4), 25–34.

[7] Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30.

[8] Silver, D., Hubert, T., Schrittwieser, J., et al. (2018). A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144.

[9] Charalambous, P., Pettre, J., & Vassiliades, V. (2023). GREIL-Crowds: Crowd Simulation with Deep Reinforcement
Learning and Examples. ACM Transactions on Graphics, 42(4), 1–15.

[10] Pearce, T., & Zhu, J. (2022). Counter-strike deathmatch with large-scale behavioural cloning. 2022 IEEE
Conference on Games (CoG), 104–111.

[11] Berner, C., Brockman, G., & Chan, B. (2020). Multi-agent reinforcement learning in video games. arXiv preprint
arXiv:2002.03032.

[12] Jaderberg, M., Czarnecki, W. M., Dunning, I., et al. (2019). Human-level performance in 3D multiplayer games with
population-based reinforcement learning. Science, 364(6443), 859–865.

[13] Lample, G., & Chaplot, D. S. (2017). Playing FPS games with deep reinforcement learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 31(1).

[14] Critic, FPS. (2024). PureSkill.gg Data Science Documentation. Retrieved from https://www.pureskill.gg

[15] Hingston, P. (2009). A Turing test for computer game bots. IEEE Transactions on Computational Intelligence and
AI in Games, 1(3), 169–186.

[16] Justesen, N. (2022). AI Summit: Buffing Bots with Imitation Learning. Game Developers Conference.

[17] Zhan, W., Sun, L., Wang, D., et al. (2019). Scalability in perception for autonomous driving: Waymo Open Dataset.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9352–9361.

International Journal of Science and Research Archive, 2025, 14(02), 010-024

24

[18] Seo, S., Hwang, H., Yang, H., & Kim, K. E. (2023). Regularized Behavior Cloning for Blocking the Leakage of Past
Action Information. Proceedings of NeurIPS 2023.

[19] Guss, W. H., Houghton, B., Topin, N., et al. (2019). MineRL: A large-scale dataset of Minecraft demonstrations.
Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2442–2448.

[20] Isla, D. (2005). Handling complexity in Halo 2 AI. GDC Proceedings.

[21] Lample, G., & Chaplot, D. S. (2017). Playing FPS games with deep reinforcement learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 31(1).

[22] Nvidia Corporation. (2020). NVIDIA GPUs for AI Retrieved from https://www.nvidia.com

[23] Moravec, H. P. (1988). Sensor fusion in certainty grids for mobile robots. AI Magazine, 9(2), 61–61.

[24] Silver, D., Schrittwieser, J., Simonyan, K., et al. (2017). Mastering the game of Go without human knowledge.
Nature, 550(7676).

[25] Hingston, P. (2005). Handling complexity in Halo 2 AI. GDC Proceedings.

[26] Adobbati, R., et al. Gamebots: 3D Virtual-Test-Bed Multi-Agent AI. Retrieved from https://www.gamebots.org

