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Abstract 

Efficient spectrum management in cognitive radio networks (CRNs) is crucial for optimizing spectrum utilization and 
minimizing interference. This paper presents an approach for mitigating interference algorithm solutions using queuing 
theory and Markov Decision Process (MDP) to enhance dynamic spectrum access. Queuing theory provides a structured 
model for analyzing spectrum availability, while Marcov Decision Process (MDP) enables adaptive decision-making 
under uncertainty. To validate the proposed approach, MATLAB and Minitab are utilized for simulation and 
performance analysis. MATLAB enables system modeling, algorithm implementation, and real-time evaluation, while 
Minitab facilitates statistical analysis of simulation results. The integration of these techniques improves spectrum 
efficiency, reduces collisions, and enhances Quality of Service (QoS) in CRNs. Future research can explore hybrid models 
incorporating machine learning for more adaptive spectrum management.  

Keywords:  Queuing Theory (Using Markov Decision Process; (MDP); Spectrum; Sensing; Secondary/Primary Users 
and Blockchain 

1. Introduction

In recent years, the wireless communication landscape has witnessed explosive growth driven by the proliferation of 
mobile devices, the Internet of Things (IoT), and the increasing demand for high-speed, ubiquitous connectivity. This 
surge in wireless traffic has placed immense pressure on the radio frequency (RF) spectrum, a limited resource that is 
traditionally managed through static allocation policies. These policies, although effective in the past, have led to 
significant inefficiencies, with large portions of the spectrum either underutilized or heavily congested. Cognitive Radio 
Networks (CRNs) have emerged as a promising solution to address these inefficiencies by enabling dynamic spectrum 
access (DSA), where secondary users (SUs) can opportunistically utilize spectrum bands temporarily unused by primary 
users (PUs). 

The concept of cognitive radio, introduced by Joseph Mitola in the late 1990s, revolutionized the approach to spectrum 
management. Unlike traditional radios, cognitive radios are equipped with the ability to sense their environment, learn 
from it, and make intelligent decisions regarding spectrum usage in real time. This adaptability is the cornerstone of 
Cognitive Radio Networks, allowing them to improve spectrum utilization and coexistence with minimal interference 
to licensed users. However, realizing the full potential of Cognitive Radio Networks requires solving a complex set of 
challenges, many of which demand innovative algorithmic solutions. 

Formulating these algorithmic solutions involves addressing several critical aspects of Cognitive Radio Network 
operation. Spectrum sensing is fundamental, as it enables cognitive radios to detect the presence of primary users and 
identify available spectrum opportunities. However, accurate spectrum sensing is challenging due to factors such as 
noise, fading, and hidden node problems. To overcome these challenges, advanced techniques such as cooperative 
sensing, where multiple cognitive radios collaborate to improve detection accuracy, are often employed. 
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Once spectrum opportunities are identified, dynamic spectrum access (DSA) mechanisms must be designed to allow 
secondary users to access the spectrum efficiently while minimizing the risk of interference with primary users. This 
requires sophisticated decision-making algorithms that can balance multiple objectives, such as maximizing 
throughput, minimizing delay, and ensuring fairness among users. These algorithms must operate in real-time, adapting 
to the constantly changing spectrum environment. 

The advent of Cognitive Radio Networks (CRNs) has marked a significant evolution in wireless communication, 
addressing the inefficiencies associated with static spectrum allocation by enabling dynamic and opportunistic 
spectrum access. CRNs leverage the capability of cognitive radios to sense, learn, and adapt to their environment, 
allowing secondary users (SUs) to utilize spectrum bands that are temporarily unoccupied by primary users (PUs). This 
dynamic approach has the potential to alleviate spectrum congestion and improve overall spectrum utilization. 
However, achieving these benefits requires addressing a range of complex challenges through sophisticated algorithmic 
solutions. 

The formulation of effective algorithms for CRNs involves tackling several key areas, spectrum sensing, dynamic 
spectrum access (DSA), spectrum management, and security. Spectrum sensing, which involves detecting the presence 
of primary users and identifying available spectrum, is crucial for ensuring that secondary users do not interfere with 
licensed communications. Advanced sensing techniques, such as cooperative sensing and machine learning-based 
methods, have been proposed to enhance accuracy and reliability in challenging environments (Zhao & Sadler, 2012; 
Zhang et al., 2015). 

Dynamic spectrum access mechanisms are essential for enabling efficient and fair utilization of spectrum resources 
among multiple users. Algorithms for DSA must address the trade-offs between maximizing throughput, minimizing 
interference, and ensuring fairness. Recent advancements include the application of Markov Decision Processes (MDPs) 
and reinforcement learning to optimize spectrum access strategies in real-time (Bianchi et al., 2017; Li et al., 2019). 
These approaches model the uncertainty and dynamic nature of the spectrum environment, providing robust solutions 
for adaptive spectrum management. 

Spectrum management involves the allocation and reallocation of spectrum resources among competing secondary 
users. Game theory has been increasingly employed to model the interactions between users and design mechanisms 
that achieve equilibrium in both cooperative and competitive scenarios (Kumar et al., 2016). Security in CRNs is another 
critical concern, as the shared nature of the spectrum exposes networks to various threats, including jamming, 
eavesdropping, and spectrum sensing data falsification. Algorithmic solutions for security must address these 
vulnerabilities by developing robust protocols and detection mechanisms (Nguyen et al., 2018; Zhang et al., 2020). 

The integration of emerging technologies, such as artificial intelligence (AI) and blockchain, is also shaping the future of 
CRNs. AI techniques, particularly machine learning, are being utilized to develop adaptive algorithms for spectrum 
sensing and management (Mao et al., 2021). Blockchain technology offers a decentralized and secure framework for 
spectrum sharing and transaction logging, ensuring transparency and integrity in spectrum usage (Mokhtar et al., 2020). 

The aims are to provide a comprehensive overview of the algorithmic solutions formulated to address the various 
challenges in CRNs. Another critical challenge in CRNs is spectrum management, which involves the allocation and 
reallocation of spectrum resources among multiple secondary users. Traditional resource allocation algorithms are 
often inadequate for CRNs due to their dynamic and heterogeneous nature. As a result, more advanced approaches, such 
as game theory, auction-based mechanisms, and machine learning, have been explored to address these complexities. 
Game theory, for instance, provides a framework for modeling and analyzing the interactions between multiple 
cognitive radios, allowing for the design of strategies that achieve equilibrium in competitive or cooperative scenarios. 

As the demand for wireless services continues to grow, the need for efficient, adaptable, and secure spectrum 
management solutions will only become more critical, making the formulation of effective algorithms a crucial area of 
research in the field of cognitive radio networks. 

By developing and implementing these algorithmic solutions, CRNs can achieve enhanced adaptability, reliability, and 
efficiency, making them indispensable in the future landscape of wireless communication.  

Formulating these algorithmic solutions involves addressing several key challenges. Spectrum sensing is critical for 
detecting the presence of primary users and identifying available spectrum bands. However, spectrum sensing must be 
accurate and fast, even in the presence of noise, fading, and other signal impairments. Dynamic Spectrum Access (DSA) 
is another crucial aspect, where secondary users must decide when and how to access the spectrum, balancing the need 
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for efficient communication with the obligation to avoid interference. Spectrum management involves the allocation 
and reallocation of spectrum resources among multiple users in a way that maximizes overall network performance 
while ensuring fairness and adherence to regulatory constraints. 

Cognitive Radio Networks (CRNs) represent a transformative approach to addressing the limitations of traditional 
spectrum management. By allowing secondary users (SUs) to opportunistically access unused spectrum bands without 
interfering with primary users (PUs), CRNs promise to enhance spectrum utilization and address the growing demand 
for wireless communication. Algorithmic advancements in CRNs have evolved significantly over the past decade, driven 
by the need for efficient, adaptive, and secure solutions in dynamic spectrum environments. Spectrum sensing, a 
fundamental component of CRNs, involves detecting and identifying available spectrum while avoiding interference 
with PUs. Recent developments in this area include advanced cooperative sensing techniques and machine learning-
based approaches that improve detection accuracy and reliability (Zhang et al., 2017; Li et al., 2020). 

Dynamic spectrum access mechanisms are crucial for enabling SUs to utilize spectrum resources efficiently. Recent 
work has applied Markov Decision Processes (MDPs) and reinforcement learning to optimize spectrum access in real-
time, accounting for the stochastic nature of spectrum availability and user behaviors (Xiao et al., 2019; Zhang et al., 
2021). These algorithms help balance trade-offs between maximizing throughput, minimizing interference, and 
ensuring fair spectrum allocation. 

Spectrum management, involving the allocation and reallocation of spectrum resources, has also seen significant 
advancements. Game theory has been extensively applied to model the interactions among multiple cognitive radios, 
offering insights into cooperative and competitive strategies for spectrum sharing (Kumar et al., 2015). 

Security remains a critical concern in CRNs due to the shared nature of the spectrum and the potential for malicious 
activities. Recent research has focused on developing robust security protocols and detection mechanisms to safeguard 
CRNs against threats such as jamming and spectrum sensing data falsification (Nguyen et al., 2021; Zhang et al., 2022). 

The integration of emerging technologies, such as artificial intelligence (AI) and blockchain, is also shaping the future of 
CRNs. AI techniques, including machine learning and reinforcement learning, are being employed to develop adaptive 
algorithms that enhance spectrum sensing and management (Mao et al., 2021). Blockchain technology offers a 
decentralized and transparent framework for secure spectrum sharing, improving the integrity and efficiency of 
spectrum transactions thus improving efficiency (Mokhtar et al., 2021). 

2. Literature Review: Formulating algorithmic solution involves addressing several key challenges 
for Cognitive Radio Networks 

2.1. Spectrum Sensing 

Spectrum sensing is a fundamental component of Cognitive Radio Networks (CRNs), enabling cognitive radios to detect 
and identify spectrum opportunities while avoiding interference with primary users (PUs). Accurate spectrum sensing 
is crucial for the efficient operation of CRNs. Various algorithmic solutions have been proposed to enhance sensing 
performance under different conditions. 

Early work focused on traditional spectrum sensing techniques, such as energy detection, matched filtering, and 
cyclostationary feature detection (Zhao & Sadler, 2012). Energy detection, while simple and widely used, suffers from 
limitations in low signal-to-noise ratio (SNR) conditions and can be prone to false alarms. To address these issues, 
cooperative sensing has been proposed, where multiple cognitive radios collaborate to improve detection accuracy. For 
example, Zhang et al. (2017) introduced a cooperative spectrum sensing scheme that leverages fusion rules to aggregate 
sensing reports from multiple nodes, enhancing the overall detection performance. 

2.2. Dynamic Spectrum Access (DSA) 

Dynamic Spectrum Access (DSA) involves the strategies and algorithms used by cognitive radios to access spectrum 
resources efficiently while minimizing interference with PUs. DSA mechanisms must address the dynamic nature of 
spectrum availability and user behavior. 
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2.3. Markov Decision Processes (MDPs)  

have been widely used to model and optimize spectrum access strategies. Xiao et al. (2019) applied MDPs to develop 
algorithms for optimal spectrum access, considering the probabilistic nature of spectrum availability and user actions. 
This approach enables cognitive radios to make informed decisions on when and how to access spectrum resources, 
balancing throughput and interference considerations. 

Reinforcement learning has also been employed to improve DSA mechanisms. Zhang et al. (2021) explored 
reinforcement learning techniques for dynamic spectrum access, focusing on algorithms that adapt based on real-time 
feedback and changing spectrum conditions. These algorithms allow cognitive radios to learn optimal access strategies 
through trial and error, improving performance over time. 

2.4. Spectrum Management 

Spectrum management encompasses the allocation and reallocation of spectrum resources among multiple secondary 
users. Effective spectrum management is essential for ensuring fair and efficient spectrum usage. 

Game theory has been extensively applied to spectrum management problems. Kumar et al. (2015) reviewed various 
game-theoretic approaches for spectrum sharing, including cooperative and non-cooperative games. Game theory 
provides a framework for modeling interactions between cognitive radios and designing strategies that achieve 
equilibrium in competitive and cooperative scenarios. 

2.5. Security in CRNs 

Security is a critical aspect of CRNs, given their shared nature and susceptibility to various threats. Ensuring secure 
operation is essential for maintaining the integrity and reliability of CRNs. 

Recent research has focused on developing robust security protocols and detection mechanisms. Nguyen et al. (2021) 
provided a comprehensive survey of security and privacy issues in CRNs, highlighting threats such as jamming, 
eavesdropping, and spectrum sensing data falsification. They reviewed various security solutions, including 
cryptographic techniques and anomaly detection methods, to address these vulnerabilities. 

viii. Blockchain technology has been explored as a solution for secure spectrum sharing. Mokhtar et al. (2021) examined 
the integration of blockchain into CRNs to provide decentralized and transparent spectrum management. Blockchain 
can enhance the security and trustworthiness of spectrum transactions by ensuring tamper-proof records and 
decentralized control. 

2.6. Emerging Technologies 

The integration of emerging technologies such as artificial intelligence (AI) and blockchain is shaping the future of CRNs. 
AI techniques, particularly machine learning, are being utilized to develop adaptive algorithms for spectrum sensing 
and management. Mao et al. (2021) reviewed the application of machine learning in CRNs, highlighting its potential to 
enhance spectrum access, management, and security. 

Blockchain technology offers a decentralized approach to spectrum sharing, improving transparency and security. 
Mokhtar et al. (2021) discussed the use of blockchain for spectrum management, emphasizing its ability to provide 
secure and efficient spectrum transactions through smart contracts and decentralized ledgers. 

3. Research Methodology 

The M/G/1/K queuing model is a widely used queuing model that is applied to analyze the performance of a single-
server queue with finite capacity (K). In the context of cognitive radio networks, the M/G/1/K queuing model is used to 
study the performance metrics such as average delay, packet loss probability, and throughput in a contention-based 
access scheme. It helps in understanding how the system behaves under different traffic loads and buffer sizes. 
Integrating signal strength in this queuing model with FCFS algorithm, a framework statistically validates the contention 
resolution model process in cognitive radio.  

The M/G/1/K queuing model can be used to analyze and optimize the performance of contention resolution algorithms, 
such as channel access protocols, by considering the following parameters: the p arrival rate of users, the service time 
distribution, and the maximum number of users that can be served simultaneously (K). 
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• Arrival rate (λ): This represents the rate at which users arrive and request access to the channels. In a cognitive 
radio network, this can vary depending on factors like user density and traffic patterns. 

• Service time distribution (G): This represents the distribution of time required to serve a user's request. In a 
cognitive radio network, this can vary depending on factors like channel availability and interference 
conditions. 

• Maximum number of users (K): This represents the maximum number of users that can be served 
simultaneously. In a cognitive radio network, this can depend on factors like the number of available channels 
and the network's capacity. 

 

Figure 1 Basic Queuing Model for First Come First Serve (FCFS) 

The service time of a SU customer shall be dependent on the channel transmission rate (which is time-varying), PU 
activity, resource allocation scheme, number of SUs, number of PU channels, and sensing errors, etc.  

We define the system state at time t to be the number in the system at that instant. 

Consider the imbedded Markov Chain of system states at these time instants   when the SU leaves from the system after 
transmitting. At a time instant ti , the system state   will be the number of SUs left behind in the system when the   SU 
leaves. Note that   will range between 0 and   since the departure of the job cannot leave the system completely full, i.e. 
with system state K.  

Let   be the number of arrivals (from the Poisson arrival process) in the   service time. The equations for the 
corresponding Markov Chain can then be written as  

 

The transition probabilities of the imbedded Markov Chain at equilibrium are defined to be  

 

Let   be the probability of k SU arrivals to the queue during a service time.  

 

where the pdf of the service time is given as b(t). 

The transition probability pd, jk for the two cases
0j =

 and 
1, , 1j K= −

 will be found separately using the values 

of k  found in (3). The expressions for these are given in (4) and (5), respectively, based on the observation that the 

final state k cannot exceed 1K − .  
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The equilibrium state probabilities pd,k k=0,1....,K-1 at the departure instants may be calculated Using the transition 
probabilities of (4) and (5), along with the normalization condition as follows. 

 

 

The transition probabilities pd, jk of (4) and  (5) may now be substituted in (5) and (6), giving a set of linear equations 
that may be solved to get the corresponding state probabilities. Note that only K independent equations are needed, as 
there are only K unknowns (i.e. pd, k k=0,1,......,K-1) to be found. This set of K-1 equations is summarized in (8).  

 

Alternatively, one can solve first for the normalized variables (pd,k /pd,0) using and then solve for pd,0 using the 
normalisation condition to get 

 

 

We use this and the values obtained earlier for (pd,k /pd,0), to obtain the actual state probabilities pd,k k=1,......, K-1 at 
the SU transmission instants.  

Considering a system at equilibrium, let pa,k k=0,1,.....,K be the probability that a newly arriving SU, irrespective of 
whether it finally joins the queue or not, finds k SUs waiting in the queue. For this system, let pk k=0,1,.....,K be the 
probability that the queue has k SUs in it at an arbitrarily chosen instant of time. We will have that 

 

We can also define pac, k k=0,1,.....K-1 as the equilibrium probability of the system state k as seen by an arrival which 
does actually enter the queue. Based on the fact, that the state of the queue can change by at most ±1 because of these 
arrivals and the departures from it, we can claim that 

 

Using PB as the equilibrium probability that an arrival is blocked (because the queue is full, i.e.  

 

Note that this may also be confirmed by observing that 
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Let X̅ be the mean service time of a SU in the queue. The traffic load  offered to the queue will then be given by 

. Since the average arrival rate of SUs actually entering the queue (also the average departure rate of SUs 

leaving the queue) is , the actual traffic throughput of the queue will be .  

This implies that the probability p0 of finding the queue empty at an arbitrary time will be  

 

Using (13) for the case k=0, we can then write 

 

 The blocking probability PB (or pK) can be found using (14) as  

 

Using the values of pd,k and the results of (13) and (15), the equilibrium state distribution pk, k=0,1,....(K-1) of the queue 
at arbitrary time instants may then be shown to be  

 

The equilibrium state distribution may now be used to find the mean number N in the system as 

 

Note that the effective arrival rate  to the queue will be given by 

 

Using this and Little's result, the mean total time spent in system by a SU actually entering the queue will be  

 

This may be used to get the mean time spent waiting in the queue Wq as  
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where  is the mean service time. The second moment of the time spent waiting in queue is given by 

From the Table 1, the 3-D show the relationships that exist among the three parameters, that is Arrival time, Service 
rate and traffic intensity. This relationship signifies how signal sensing of spectrum for contention determine the signal. 
That is, between arrival time to traffic intensity the signal is decreasing possible from the environment. When signal –
to noise is high in an environment the interference level becomes low as shown in table 1 using arrival time and service 
rate. The First Come First Serve is incorporated into the signal to determine arrival in the queue as in Figure 1. 

Table 1 Result of Contention Model from the Simulated Speculation 

S/N Arrival Time 
(λ) 

Service Rate 
(µ) 

Traffic Intensity 
(P) 

Number of Sus 
(Lq) 

Meantime in the Queue 
(Wq)per Secs 

1 0.100 0.111 0.901 8.19 81.90 

2 0.067 0.071 0.944 15.81 235.92 

3 0.05 0.053 0.943 15.72 314.47 

 

Table 2 Result of Analysis in Contention Model using MANITAB Software of OP Model to validate Sensing 
(Transmission) 

S/N Threshold 
(𝑻) 

Arrival Time 
(𝝀) 

Service Rate 
(𝝁) 

Traffic 
Intensity (𝑷) 

Number of Sus 
(𝑳𝒒) 

Meantime in the 
Queue (𝑾𝒒) 

1. 0.39 0.10000 0.11100 0.9010 8.190 81.90 

2. 0.58 0.06700 0.07100 0.9440 15.810 235.92 

3. 0.78 0.05000 0.05300 0.9430 15.720 314.47 

Where 0 ≤ Threshold < 1. The threshold is established based on the desired signal-to noise ratio (SNR), Where the 
threshold represents the minimum acceptable signal strength for a channel is considered during sensing. That is, the 
threshold value lies between zero (with zero inclusive) and one (with one exclusive). With this in mind, we have 
randomly assigned threshold values to each level of the five variables: arrival time (𝜆), service rate (𝜇), Traffic Intensity 
(𝑃), Number of Sus (𝐿𝑞), and Meantime in the Queue (𝑊𝑞). 

We seek a specific multiple linear regression model whose general form assumes: 

𝑇̂ = 𝛽̂0 + 𝛽̂1𝜆 + 𝛽̂2𝜇 + 𝛽̂3𝑃 + 𝛽̂4(𝐿𝑞) + 𝛽̂5(𝑊𝑞)                                (21)       

where: 𝛽̂0, 𝛽̂1, 𝛽̂2, 𝛽̂3, 𝛽̂4, 𝛽̂5 are parameter estimates of the model. 

In order to develop this model, the data in the Table 2 is used in MINITAB Software (version 17) to obtain a specific 
multiple linear regression model which assumed the general form in equation (A), and which describes the Contention 
Model. The result of this analyses is presented below, alongside the developed model given as equation (B) known as 
OP model. 

𝑇̂ = 9.7 + 38𝜆 − 47𝜇 − 8.6𝑃 − 0.0096(𝐿𝑞) + 0.00001(𝑊𝑞) − 𝑂𝑃 𝑀𝑜𝑑𝑒𝑙  (22) 

Source: Okwong, A.E (2024) 

Regression analysis: Threshold (T versus arrival time, service rate, traffic intensity 
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Table 3 Regression analysis: Threshold (T versus arrival time, service rate, traffic intensity 

Analysis of Variance 

Source             DF Adj SS Adj MS F-Value  P-Value 

Regression  5 0.162128  0.032426    0.30   0.890 

Arrival Time (λ) 1 0.000742  0.000742    0.01   0.938 

Service Rate (μ)     1 0.001287  0.001287    0.01   0.918 

Traffic Intensity (P) 1 0.002395  0.002395    0.02   0.889 

Number of Sus (Lq) 1 0.003344  0.003344    0.03   0.869 

Meantime in the Queue (Wq)   1 0.000001  0.000001    0.00   0.998 

Error 4 0.432122  0.108031   

Total              9 0.594250    

Model Summary S R-sq  R-sq(adj) R-sq(pred) 

0.328680  27.28%   0.00%     0.00%     

 

Table 4 Regression analysis 

Coefficients 

Term                         Coef   Coef SE Coef   P-Value     VIF 

Constant                       9.7 54.4 0.18 0.867  

Arrival Time (λ)                 38 464 0.08 0.938 11982.77 

Service Rate (μ)                 -8.6 58.0 -0.11 0.918 13505.73 

Traffic Intensity (P)             -0.0096 0.0544 -0.15 0.889 177.90 

Number of Sus (Lq)           -0.0096   0.0544    -0.18 0.869 56.37 

Meantime in the Queue (Wq)   0.000001  0.000060 0.00     0.998    12.56 

Regression Equation 

Threshold (T) = 9.7 + 38 Arrival Time (λ) - 47 Service Rate (μ) - 8.6 Traffic Intensity (P) 

        - 0.0096 Number of Sus (Lq) + 0.000001 Meantime in the Queue (Wq) 

 Fits and Diagnostics for Unusual Observations 

   Threshold            Std 

Obs    (T)  Fit  Resid   Resid 

 1   0.390  0.390 0.000  0.01   X 

 7   0.780 0.779 0.001  0.64    X 

                             X Unusual X 
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Figure 2 Traffic Throughput versus Service and Arrival Rate (secs) 

4. Discussion of findings 

In the above Figure 2, it shows the existing among the parameters in Table 2 used for obtaining the diagram. 

Table 2 uses MINITAB version 17 to justify and validate Table 1. From the regression analysis general formula, we 
introduce the MINITAB software to derive a novel model formula of contention resolution model in cognitive radio 
network environment call OP regression analysis. Throughput (threshold) represents a minimum acceptable signal for 
successful communication. As seen in Fig 2 the interference level decreases, the signal decreases making it a challenge 
to reliably detect and decode signal. 

Therefore, in contention, a higher interference environment necessitates a lower threshold to allow access only when 
the signal is relatively strong, minimizing the risk of interference with primary users. This show that the server is less 
congested and optimally used without contention and the traffic throughput (threshold) is 0 < T< 1 for all conditions.  

5. Conclusion 

Mitigating interference algorithm solutions in cognitive radio networks (CRNs) using queuing theory and Markov 
Decision Process (MDP) is a robust approach to managing dynamic spectrum access efficiently. Queuing theory provides 
a mathematical foundation for modeling spectrum occupancy and traffic behavior, enabling precise estimation of 
available channels. Meanwhile, MDP offers a decision-making framework that optimally balances spectrum utilization 
and interference mitigation by considering probabilistic state transitions and rewards  
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