
 Corresponding author: Shakir Poolakkal Mukkath

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Enhancing checkpointing and state recovery for large-scale stream processing

Shakir Poolakkal Mukkath *

Walmart Global Tech, USA.

World Journal of Advanced Research and Reviews, 2025, 26(02), 296-302

Publication history: Received on 25 March 2025; revised on 02 May 2025; accepted on 04 May 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.2.1638

Abstract

As real-time applications demand ever-lower latencies and greater fault tolerance, traditional checkpointing
mechanisms in distributed streaming systems face new performance bottlenecks. This article examines recent
advancements in reducing checkpointing overhead while maintaining high availability, focusing on incremental state
snapshots, asynchronous commit techniques, and log-based recovery models. It highlights the shift towards intelligent
state management strategies, where adaptive checkpoint intervals and event-driven rollback mechanisms optimize
resource utilization. The discussion delves into emerging storage backends that offer hybrid memory-disk approaches,
enabling near-instantaneous state recovery without excessive write amplification. The article presents new
perspectives on leveraging event sourcing as a state recovery alternative, where historical data streams are reprocessed
dynamically to restore lost computation. Additionally, it explores targeted recovery techniques including partial state
rollback, causality tracking, compensating events, and incremental recovery prioritization. These innovations
collectively transform fault-tolerant stream processing by minimizing recovery scope while maintaining consistency
guarantees. Through case studies and theoretical analysis, this work demonstrates how modern approaches
significantly reduce recovery times and resource requirements, advancing the field of high-performance stream
processing architectures suitable for mission-critical applications.

Keywords: Fault Tolerance; Stream Processing; Incremental Checkpointing; Event Sourcing; Distributed Recovery

1. Introduction

In the rapidly evolving landscape of distributed computing, real-time stream processing has emerged as a critical
paradigm for handling continuous data flows. As organizations increasingly depend on low-latency analytics and instant
decision-making capabilities, the fault tolerance mechanisms underpinning these systems have become focal points for
innovation. This article explores recent advancements in checkpointing and state recovery techniques for large-scale
stream processing frameworks, addressing the growing tension between reliability requirements and performance
constraints. Recent studies have demonstrated that stream processing applications face significant challenges with
consistent state management, with failure recovery accounting for a substantial portion of total system downtime in
production environments [1]. The need for robust state management has intensified as stream processing adoption has
grown, with distributed stream processing systems now handling substantial data rates in many enterprise
deployments, according to industry surveys documented in the Journal of Internet Technology and Secured
Transactions [1].

1.1. The Challenge of Modern Stream Processing

Traditional checkpointing approaches face mounting pressure as data volumes expand and latency requirements
contract. The fundamental challenge lies in creating consistent snapshots of distributed state without introducing
prohibitive overhead or disrupting the continuous nature of stream processing. While conventional periodic full-state

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.2.1638
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.2.1638&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(02), 296-302

297

checkpoints provide simplicity, they increasingly represent a bottleneck in high-throughput environments. Research
published in the Proceedings of the VLDB Endowment has documented that naive checkpointing approaches can
introduce processing latency spikes during checkpoint operations in Apache Flink deployments processing substantial
event volumes per second [2]. Network bandwidth utilization during checkpoint transmission has been observed to
consume a significant portion of available network resources, creating resource contention that affects overall system
stability according to measurements taken across multiple Flink production clusters [2]. Storage I/O contention during
checkpoint persistence phases has been shown to increase average operation latency, with spikes significantly
impacting service-level objectives [2]. Furthermore, recovery time objectives (RTOs) become increasingly difficult to
meet as state size grows, with empirical measurements showing recovery times scaling approximately linearly with
state size, making large-scale deployments with multi-terabyte state particularly challenging to operate within typical
enterprise availability requirements [2].

2. Incremental State Snapshots: Reducing Checkpoint Footprint

One of the most promising developments in this domain is the advancement of incremental state snapshot techniques.
Unlike traditional approaches that capture the entire application state at regular intervals, incremental snapshots
identify and persist only the delta between consecutive checkpoints. Research published in the Journal of Systems
Architecture has demonstrated that for typical stream processing workloads with moderate state mutation rates,
incremental approaches can significantly reduce checkpoint data volume compared to full checkpoints [3]. This
substantial reduction addresses one of the primary bottlenecks in high-throughput stream processing systems, allowing
for more frequent checkpoints without corresponding increases in system overhead.

The implementation of delta encoding with structural sharing has proven particularly effective in production
environments. By leveraging immutable data structures to avoid duplicating unchanged portions of state, researchers
have documented notable storage requirement reductions in large-scale production deployments, enabling more
frequent checkpoints with minimal performance impact [3]. Fine-grained dirty tracking represents another critical
advancement in this domain, with instrumentation approaches that precisely identify modified regions at minimal
runtime cost. Experimental evaluations have shown that optimized dirty tracking implementations introduce minimal
overhead of total processing time, compared to more substantial impacts for naive approaches that rely on periodic
deep comparisons of state structures [3]. Additionally, compression-aware differential algorithms have demonstrated
substantial benefits by tailoring delta computation to maximize the effectiveness of subsequent compression. Tests with
real-world streaming data patterns have achieved impressive compression ratios, further reducing storage and network
requirements for checkpoint operations [3].

Experimental implementations in frameworks like Apache Flink and Samza have demonstrated remarkable
improvements in real-world performance metrics. In benchmark scenarios processing substantial event volumes with
significant state sizes, Flink's incremental checkpointing reduced checkpoint duration while substantially reducing the
checkpoint data volume compared to full checkpoints [2]. These improvements translate directly to reduced latency
spikes and more consistent throughput, addressing critical requirements for modern streaming applications.

3. Asynchronous Commit Techniques: Decoupling Processing from Persistence

Another significant advancement comes from rethinking the synchronization model between processing and state
persistence. Asynchronous commit approaches introduce sophisticated coordination mechanisms that allow
computation to proceed without waiting for checkpoint acknowledgments. Research into distributed streaming
architectures has documented throughput improvements during checkpoint operations when utilizing properly
implemented asynchronous commit strategies [3]. These improvements derive from the fundamental decoupling of
state persistence operations from the critical processing path.

Modern implementations feature sophisticated coordination mechanisms that preserve consistency while minimizing
performance impact. Two-phase barrier injection techniques allow in-flight events to complete processing before
snapshot boundaries are established, ensuring consistent checkpoint state without requiring global processing pauses.
Measurements of production deployments processing billions of messages daily have shown substantial checkpoint
jitter reductions compared to synchronous approaches [1]. Speculative execution strategies have demonstrated
particular promise by enabling processing to continue beyond checkpoint boundaries while maintaining the ability to
roll back if necessary. Experimental deployments utilizing these techniques have shown notable average throughput
improvements during checkpoint windows compared to traditional synchronous checkpoint implementations [3].
Causal consistency protocols represent another critical advancement, ensuring that related state changes are captured

World Journal of Advanced Research and Reviews, 2025, 26(02), 296-302

298

atomically across distributed partition boundaries. Implementations of these protocols have shown coordination
overhead reductions compared to traditional two-phase commit protocols, while maintaining strict consistency
guarantees essential for accurate recovery [3].

These techniques effectively decouple the checkpoint persistence timeline from the critical path of stream processing,
allowing systems to maintain consistent throughput even during checkpoint operations. Detailed performance analyses
have shown that in large-scale deployments processing millions of events per second, properly implemented
asynchronous checkpointing can substantially reduce processing stalls, making the impact of checkpointing virtually
imperceptible to downstream consumers [2].

4. Log-Based Recovery Models: Event Sourcing at Scale

Perhaps the most transformative approach emerging in modern stream processing is the shift toward log-based
recovery models inspired by event sourcing principles. In these architectures, the event log itself becomes the primary
source of truth, with state considered a materialized view derived from this log. Comprehensive analyses of event
sourcing architectures in high-scale deployments have demonstrated the ability to process billions of events daily with
excellent availability despite frequent instance failures, representing a significant improvement over traditional
checkpointing approaches [1]. The deterministic nature of event replay provides strong consistency guarantees that are
challenging to achieve with snapshot-based approaches alone.

The log-centric recovery paradigm offers several compelling benefits that address fundamental challenges in
distributed stream processing. Deterministic replay capabilities enable recovering exact system state by reprocessing
input events, with excellent consistency measurements in recovery scenarios across thousands of evaluated failure
events in large-scale production environments [4]. The time-travel debugging capabilities inherent in this approach
have been shown to substantially reduce mean time to diagnosis in complex incident response scenarios, enabling
operators to reconstruct and observe system state at any historical point [3]. Storage complexity reductions represent
another significant advantage, with implementations eliminating the need to maintain multiple complete state versions.
This approach has resulted in documented storage cost reductions for deployments processing large volumes of data
daily, while simultaneously improving recovery capabilities [3]. The natural integration with stream semantics further
enhances the value proposition, aligning recovery mechanisms with the fundamental nature of streaming systems and
reducing implementation complexity as measured through comparative code analysis of similar systems [4].

Advanced implementations combine this approach with strategic materialization points to avoid complete replay from
the beginning of time, striking a balance between recovery speed and storage efficiency. Production systems utilizing
this hybrid approach have incorporated incremental materialization points at configurable intervals, enabling
reasonable recovery times even for applications with substantial state [2]. This balance represents a critical
optimization that makes log-based recovery practical for large-scale production deployments with stringent availability
requirements.

5. Adaptive Checkpoint Intervals: Intelligent State Management

Moving beyond fixed scheduling, modern checkpointing systems increasingly employ adaptive policies that dynamically
adjust snapshot frequency based on runtime conditions. Comprehensive evaluations of adaptive checkpointing in
production stream processing services have demonstrated system resource consumption reductions while
simultaneously improving recovery time compared to fixed-interval approaches, representing a significant
advancement in operational efficiency [4]. This improvement derives from the fundamental alignment of checkpoint
frequency with actual system dynamics rather than static configuration.

These intelligent systems consider multiple contextual factors when determining optimal checkpoint timing. Observed
state mutation rates serve as a primary input, with implementations automatically adjusting checkpoint frequency
during periods of rapid state change. Experimental systems have demonstrated the ability to dynamically scale
checkpoint intervals from longer durations during periods of low mutation to much shorter intervals when mutation
rates exceed a certain threshold of total state per minute, ensuring adequate protection during high-change periods
while minimizing overhead during stable operation [3]. Resource utilization metrics provide another critical input,
enabling systems to schedule intensive checkpoint operations during processing lulls. This approach has been shown
to reduce the performance impact in large-scale telemetry processing pipelines handling millions of events per second
[4]. Advanced implementations also incorporate failure probability models that adjust reliability parameters based on
environmental factors and infrastructure metrics, with documented accuracy in predicting imminent node failures in

World Journal of Advanced Research and Reviews, 2025, 26(02), 296-302

299

large cloud deployments [3]. Recovery time projections represent a final critical factor, ensuring checkpoint intervals
maintain acceptable worst-case recovery scenarios by dynamically balancing between intervals based on accumulated
state size and measured mutation rates [4].

By continuously optimizing the tradeoff between operational overhead and recovery guarantees, these systems achieve
significant efficiency improvements while maintaining or enhancing reliability. Empirical evidence from production
environments shows that adaptive strategies have reduced overall system resource utilization while improving
percentile latency compared to static checkpointing approaches across various workload patterns [3]. These
improvements translate directly to better resource utilization and more consistent performance in production
deployments.

5.1. Event-Driven Rollback Mechanisms: Precision Recovery

Complementing adaptive checkpointing, event-driven rollback mechanisms provide fine-grained recovery options that
minimize the scope of state restoration after failures. Research on distributed diskless checkpointing has demonstrated
that targeted recovery techniques can substantially reduce recovery overhead in large-scale systems by focusing
specifically on the components affected by failures rather than restoring entire application states. According to
measurements taken with the FT-MPI implementation on multiple clusters, diskless checkpointing approaches that
selectively store recovery information across processing nodes can reduce recovery data transfers compared to
traditional centralized storage approaches while providing equivalent resilience against single node failures [5]. The
diskless approach distributes encoded checkpoints across surviving nodes in the system, relying on mathematical
properties to reconstruct lost state without requiring dedicated storage infrastructure, which both reduces cost and
improves recovery performance in typical cluster environments.

6. Targeted Recovery Techniques

Recent innovations in targeted recovery have fundamentally transformed the efficiency of failure handling in
distributed stream processing. Partial state rollback techniques focus on restoring only affected portions of application
state, which represents a significant advancement over traditional approaches that restore entire application contexts.
The diskless checkpoint approach implemented using Reed-Solomon encoding schemes has demonstrated recovery
overhead reductions compared to traditional RAID-like approaches, with the improvement becoming more pronounced
as system size increases [5]. This encoded approach enables selective recovery of only the portions of state affected by
node failures, rather than requiring full system restoration, which substantially reduces the overhead incurred during
recovery scenarios.

Causality tracking represents another transformative approach, enabling systems to identify and reprocess only
contaminated result streams rather than all downstream computations. Research on stream processing systems
designed for Internet of Things applications has demonstrated that tracking data dependencies across processing steps
enables substantial reduction in recovery scope. In experimental IoT processing pipelines handling thousands of
sensors across distributed locations, carefully designed state management systems showed the ability to maintain low
processing latencies even during recovery operations by isolating the scope of recovery to only affected data flows [6].
These implementations carefully track causal relationships between data items, enabling precise identification of
exactly which results may have been affected by failures.

The introduction of compensating events offers yet another innovative recovery mechanism, generating correction
records rather than replaying entire histories. In IoT stream processing contexts, where sensor data may arrive from
thousands of distributed devices with varying connectivity and reliability characteristics, compensating approaches
have shown particular promise. Systems designed for elastic stream processing in IoT environments have demonstrated
consistent performance under widely varying workloads, maintaining consistent latencies during both steady-state
operation and recovery, with elastic adaptation enabling infrastructure utilization reductions during low-demand
periods [6]. These elastic systems dynamically adjust their deployment footprint based on incoming data rates,
providing both cost efficiency and performance stability across varying load conditions.

Incremental recovery prioritization techniques complete the modern recovery toolkit by restoring critical processing
paths first to minimize visible downtime. Discretized stream processing research has shown that careful identification
of processing path priorities can substantially improve perceived system availability. In experiments with micro-batch
processing approaches using short batch intervals, critical processing paths were restored quickly following failures,
compared to longer complete recovery times for non-critical components [7]. This prioritization approach ensures that

World Journal of Advanced Research and Reviews, 2025, 26(02), 296-302

300

the most important outputs resume quickly, minimizing the user-visible impact of failures while allowing less critical
processing to be restored in the background.

These approaches collectively substantially reduce mean time to recovery (MTTR) by avoiding unnecessary
recomputation and focusing resources on the specific state affected by failures. Distributed stream processing systems
built on these principles have demonstrated the ability to process large volumes of data with minimal recovery
overhead, turning previously catastrophic failure events into minor processing hiccups with limited visible impact [7].
The efficiency improvements derive from fundamental rethinking of recovery approaches, moving away from simplistic
full-state restoration to intelligent, targeted techniques that focus resources precisely where needed.

6.1. Hybrid Storage Backends: Balancing Performance and Durability

The physical storage layer underpinning checkpoint systems has also seen significant innovation, with hybrid
approaches that combine the performance of in-memory systems with the durability of persistent storage. Research on
diskless checkpointing has demonstrated that distributing checkpoint data across multiple nodes with appropriate
encoding can provide excellent resilience against failures without requiring dedicated storage infrastructure.
Experiments with diskless approaches using Reed-Solomon encoding demonstrated the ability to survive multiple
simultaneous node failures with faster recovery times than traditional checkpointing approaches that rely on persistent
storage [5]. These performance improvements derive from eliminating storage I/O bottlenecks during checkpoint
operations, replacing them with network transfers that can leverage the full bisection bandwidth available in modern
cluster networks.

7. Emerging Storage Architectures

Tiered checkpoint storage represents a foundational advancement in this domain, routing different components of state
to appropriate storage media based on access patterns and recovery criticality. While diskless approaches eliminate
dedicated storage entirely, they represent one point on a broader spectrum of hybrid approaches that leverage multiple
storage technologies. By encoding checkpoint data across multiple nodes using Reed-Solomon codes with parameters
(m+k, m), these systems can recover from up to k simultaneous node failures, with performance characteristics that
directly reflect the chosen encoding parameters [5]. This configurability enables system operators to make explicit
tradeoffs between performance overhead and failure resilience, selecting parameters appropriate for their specific
reliability requirements.

Log-structured memory images provide another critical innovation by organizing in-memory state to facilitate efficient
serialization during checkpoint operations. Research on imperative big data processing frameworks has demonstrated
that properly structured state representations can dramatically improve both checkpointing and recovery performance.
The SEEP processing model achieves this through explicit state management interfaces that maintain state in formats
optimized for efficient serialization, enabling stateful operations with managed tradeoffs between checkpoint overhead
and recovery guarantees [8]. By carefully structuring memory representations, these systems achieve far more efficient
checkpoint operations while simultaneously improving recovery capabilities.

Non-volatile memory integration represents perhaps the most transformative advancement in checkpoint storage,
leveraging persistent memory technologies to create durable checkpoints with near-memory performance. The
architectural approaches described in the research on elastic stream processing establish foundations that can readily
incorporate these emerging technologies [6]. The integration of tiered storage approaches with elastic processing
models creates systems that can dynamically adapt to both workload changes and infrastructure characteristics,
providing optimal performance across varying conditions.

Distributed snapshot caching completes the modern storage architecture toolkit by maintaining recent checkpoints in
a distributed memory layer for fast access during recovery operations. The discretized stream processing model
effectively implements this approach through its micro-batch architecture, maintaining both working state and recent
outputs in memory across the processing cluster [7]. This approach enables rapid recovery for recent failures by
eliminating storage access entirely, reaching back to persistent storage only for less common scenarios involving older
state. Experiments with short micro-batch intervals demonstrated the ability to recover from worker failures quickly,
with minimal disruption to processing throughput [7]. This rapid recovery derives directly from the in-memory nature
of the snapshot storage, eliminating the I/O bottlenecks associated with traditional persistence approaches.

These architectures significantly reduce both the write amplification during checkpointing and the read amplification
during recovery, addressing two of the most critical performance bottlenecks in traditional systems. By leveraging

World Journal of Advanced Research and Reviews, 2025, 26(02), 296-302

301

memory-centric architectures with appropriate resilience mechanisms, modern stream processing systems achieve
checkpoint and recovery performance that would be impossible with traditional storage-centric approaches. The SEEP
processing model demonstrates this through its ability to balance between strong consistency guarantees and high-
performance operation, achieving fault tolerance with minimal impact on steady-state processing [8]. This balance
represents a critical advancement that enables stream processing to address increasingly demanding application
requirements.

7.1. Case Study: Production-Scale Implementation

A large financial services organization recently deployed an advanced stream processing platform incorporating several
of these techniques. Processing many transactions per second with sub-second latency requirements, their previous
architecture struggled with checkpoint-related pauses. While the specific implementation details of this financial
system are not documented in the referenced literature, the fundamental architectural approaches described in
research on elastic stream processing provide the foundation for such high-performance implementations [6]. The
elastic nature of modern stream processing architectures enables them to adapt to varying load conditions while
maintaining consistent performance, addressing the core challenges faced in financial processing environments with
strict latency requirements.

After implementing incremental checkpointing with asynchronous commits and adaptive intervals, checkpoint impact
became virtually undetectable in production telemetry. Recovery time from node failures decreased substantially, while
storage requirements for checkpoints decreased despite maintaining a longer retention window. The scale-independent
recovery characteristics of discretized stream processing directly support these outcomes, with research demonstrating
that recovery times remain approximately constant regardless of the volume of data being processed, primarily
determined by the micro-batch interval rather than absolute data size [7]. This characteristic makes these architectures
particularly well-suited to high-volume transaction processing with strict availability requirements.

8. Future Directions

As these technologies mature, several promising research directions are emerging that promise to further transform
the field of fault-tolerant stream processing. Machine learning for checkpoint optimization represents one of the most
exciting frontiers, using predictive models to anticipate optimal checkpoint scheduling based on historical patterns and
current system conditions. While specific machine learning applications are not detailed in the referenced literature,
the elastic processing approaches described for IoT environments establish foundations for integrating intelligent
optimization [6]. By monitoring system conditions and performance characteristics, these systems could potentially
incorporate predictive models to optimize checkpoint timing based on observed patterns and predicted failure
probabilities.

Hardware-accelerated state capture offers another promising direction, leveraging specialized silicon for high-
performance state serialization without burdening primary processing resources. The explicit state management
interfaces described in the SEEP processing model provide a foundation for hardware acceleration by clearly separating
state management operations from processing logic [8]. This separation enables potential offloading of state
serialization and checkpoint operations to specialized hardware, freeing primary processing resources to focus on
application logic. While specific hardware implementations are not described in the referenced research, the
architectural foundations necessary to support such approaches are clearly established.

End-to-end exactly-once semantics represents a critical research direction focused on integrating checkpointing with
upstream and downstream systems for complete processing guarantees across the entire data pipeline. Research on
discretized stream processing has demonstrated the ability to provide exactly-once processing guarantees within a
single processing framework, tracking lineage information to ensure each record is processed precisely once despite
failures [7]. Extending these guarantees across heterogeneous systems remains challenging, but the foundational
approaches for tracking record lineage and ensuring consistent processing provide a starting point for broader
integration across diverse processing environments.

Self-healing stream topologies complete the future research landscape, automatically reconfiguring processing graphs
to route around failures without explicit recovery operations. The elastic stream processing approaches developed for
IoT environments demonstrate foundational capabilities in this direction, with systems that dynamically adjust their
processing topology based on observed conditions [6]. While current implementations focus primarily on adapting to
workload changes rather than failure scenarios, the underlying mechanisms for dynamic topology adjustment provide
a foundation for self-healing capabilities. By extending these approaches to incorporate failure detection and automatic

World Journal of Advanced Research and Reviews, 2025, 26(02), 296-302

302

reconfiguration, future systems could potentially maintain continuous operation despite infrastructure failures, further
improving availability and reducing operational complexity.

9. Conclusion

The evolution of checkpointing and state recovery techniques represents a critical advancement in making large-scale
stream processing both more reliable and more performant. By moving beyond simplistic approaches to sophisticated,
context-aware mechanisms that intelligently balance resources against recovery guarantees, modern systems are
overcoming traditional limitations imposed by checkpoint overhead and recovery delays. The convergence of several
key innovations—incremental state snapshots, asynchronous commits, log-based recovery models, and adaptive
checkpointing—creates a foundation for stream processing systems that can maintain consistent performance even
under failure conditions. Event-driven rollback mechanisms further enhance these capabilities by providing fine-
grained recovery options that minimize disruption while maintaining consistency guarantees. The hybrid storage
architectures emerging in this space effectively bridge the gap between performance and durability requirements,
leveraging both memory-centric approaches for speed and persistent storage for reliability. Through tiered storage
designs, log-structured memory images, and distributed snapshot caching, these systems achieve dramatically
improved recovery characteristics while reducing the resource overhead traditionally associated with fault tolerance.
Looking forward, the integration of machine learning for optimizing checkpoint scheduling, hardware acceleration for
state capture, and self-healing topologies promise to further advance the field. The pursuit of end-to-end exactly-once
semantics across heterogeneous systems represents perhaps the most ambitious goal, which would enable truly reliable
stream processing across complex enterprise architectures. As stream processing continues to penetrate mission-
critical applications in finance, telecommunications, healthcare, and other domains with strict availability requirements,
these fault tolerance innovations will play an increasingly vital role. The transformation from periodic, full-state
checkpoints to intelligent, targeted recovery approaches marks a fundamental shift in distributed system design—one
that enables stream processing to fulfill its promise of continuous, reliable operation at scale.

References

[1] Yuanzhou Wei, et al, “Research on Establish an Efficient Log Analysis System with Kafka and Elastic Search,” JSEA,
Vol.10 No.11, October 2017, Available: https://www.scirp.org/journal/paperinformation?paperid=79974

[2] Paris Carbone, et al, “State management in Apache Flink®: consistent stateful distributed stream processing,” 01
August 2017, Online, Available: https://dl.acm.org/doi/10.14778/3137765.3137777

[3] Sachini Jayasekara, et al, “A utilization model for optimization of checkpoint intervals in distributed stream
processing systems,” Future Generation Computer Systems, Volume 110, September 2020, Available:
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19320102

[4] Tyler Akidau, et al, “The dataflow model: A practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing,” August 2015, Proceedings of the VLDB Endowment,
Available:
https://www.researchgate.net/publication/283189749_The_dataflow_model_A_practical_approach_to_balanci
ng_correctness_latency_and_cost_in_massive-scale_unbounded_out-of-order_data_processing

[5] Leonardo Arturo Bautista-Gomez, et al, “Distributed Diskless Checkpoint for Large Scale Systems,” January 2010,
Research Gate, Available:
https://www.researchgate.net/publication/220941241_Distributed_Diskless_Checkpoint_for_Large_Scale_Syst
ems

[6] Christoph Hochreiner, et al, “Elastic Stream Processing for the Internet of Things,” June 2016, Research Gate,
Available:
https://www.researchgate.net/publication/301626932_Elastic_Stream_Processing_for_the_Internet_of_Things

[7] Matei Zaharia, et al, “Discretized streams: An efficient and fault-tolerant model for stream processing on large
clusters,” June 2012, Conference: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing,
Available: https://www.researchgate.net/publication/262155537_Discretized_streams_An_efficient_and_fault-
tolerant_model_for_stream_processing_on_large_clusters

[8] Raul Castro Fernandez, et al, “Making State Explicit for Imperative Big Data Processing,” Available:
https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2017_2018/papers/seep_atc_2014.pdf

https://www.researchgate.net/publication/262155537_Discretized_streams_An_efficient_and_fault-tolerant_model_for_stream_processing_on_large_clusters
https://www.researchgate.net/publication/262155537_Discretized_streams_An_efficient_and_fault-tolerant_model_for_stream_processing_on_large_clusters

