
 Corresponding author: Karan Diwan. 

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0. 

Breaking bottlenecks: CPU optimization through architectural and neuromorphic 
techniques  

M L Sharma, Neelam Sharma, Sunil Kumar, Karan Diwan *, Vibhore Agarwal, Ansh Pathak, Shubham Gupta, 
Shreshth Jain and Ram Katara  

Department of Electronics and Communication Engineering, Maharaja Agrasen Institute of Technology, Delhi, India. 

World Journal of Advanced Research and Reviews, 2025, 26(02), 190-204 

Publication history: Received on 17 March 2025; revised on 26 April 2025; accepted on 29 April 2025 

Article DOI: https://doi.org/10.30574/wjarr.2025.26.2.1463 

Abstract 

This research explores two different approaches to improving how computers process information efficiently. The first 
part uses the Gem5 simulator to test and compare three types of CPU designs—Timing Simple CPU, Minor CPU, and 
O3CPU—by running a basic program. We looked at how features like pipelining, caching, and branch prediction affect 
how fast the program runs and how efficiently the CPU works. The second part focuses on recognizing handwritten 
digits from the MNIST dataset using two types of AI models. One model is a traditional neural network (MLP) that runs 
on a standard computer setup (Von Neumann architecture), and the other is a spiking neural network (SNN) that runs 
on a neuromorphic system, which mimics how the human brain works. Overall, this study shows how both architectural 
improvements and brain-inspired computing can help solve performance and efficiency issues in modern computing 
systems.  
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1. Introduction

1.1. Method 1 CPU optimization using architectural methods 

The Central Processing Unit (CPU) is often referred to as the brain of the computer. It is a multipurpose, register-based, 
programmable, clock-driven electronic device that reads binary instructions from memory, accepts binary data, and 
processes the data according to those instructions. The CPU plays a central role in communicating with both memory 
and input/output (I/O) devices. However, the Control Unit within the CPU manages the timing and coordination of these 
communication processes. With advancements in integrated circuit (IC) technology, the CPU was eventually built onto 
a single chip, leading to the development of the microprocessor.  

Despite the impressive speed and capabilities of modern CPU’s, they operate below their maximum potential due to 
various bottlenecks, factors that limits the overall speed of execution, despite CPU’s high clock rate. One common form 
of a bottleneck arises due to the difference between CPU processing speed and slower speed of data transfer which is 
especially common in systems that follow Von Neumann architecture. In such systems, instructions and data share the 
same data bus leading to delays when CPU has to fetch them one after another.  

This part of the research focuses on understanding these bottlenecks and exploring CPU optimization techniques such 
as caching, pipelining, branch prediction and out of order execution. Using gem5 simulator we evaluate three built in 
CPU models- TimingSimpleCPU, Minor CPU and O3 CPU each implementing different types of optimization techniques. 
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By running a similar workload on each model and observing their behaviour, we aim to understand how these 
techniques affect execution performance. 

1.2. Method 2 CPU optimization using neuromorphic computing 

Neuromorphic computing, inspired by the structure and functioning of the human brain, presents a radically different 
approach to processing information. In this research, a Spiking Neural Network (SNN) is implemented on a 
neuromorphic system, offering an event-driven architecture that mimics the brain’s neural processes. This contrasts 
with the traditional Von Neumann architecture, where computation and memory are separate, creating bottlenecks in 
processing speed and power efficiency.  

The SNN model takes advantage of these neuromorphic principles to improve efficiency in tasks such as handwritten 
digit classification, using the MNIST dataset. Unlike conventional neural networks, SNNs process information in discrete 
events, allowing them to operate with lower power consumption and memory usage, making them highly suitable for 
real-time and resource-constrained applications. This approach explores the trade-offs in accuracy, memory usage, 
training time, and inference latency compared to the MLP model on the Von Neumann architecture.  

Despite slightly lower accuracy, the SNN model significantly reduces memory usage and latency, highlighting the 
potential of neuromorphic systems to overcome the limitations of traditional computing architectures, particularly in 
AI tasks. 

2. Material and Methods 

2.1. Method 1 architectural methods  

2.1.1. Bottlenecks 

The Central Processing Unit (CPU) plays a crucial role in everyday computing—from running applications to browsing 
the internet and processing documents. Despite rapid advancements in processor technology, users often encounter 
slow or unresponsive systems, especially during multitasking or heavy workloads.   

This slowdown is commonly due to CPU bottlenecks—situations where the processor’s potential is limited by slower 
components or architectural constraints. Bottlenecks prevent the CPU from executing instructions at its maximum 
efficiency, leading to performance degradation. One prominent type is the Von Neumann bottleneck, which arises when 
the CPU must fetch both instructions and data over a single shared bus, causing delays. Other bottlenecks include 
memory latency, cache misses, poor branch prediction, and lack of pipelining, all of which stall the instruction pipeline 
or reduce throughput.  

Understanding these bottlenecks is key to developing architectural improvements like caching, pipelining, and out-of-
order execution—techniques that aim to minimize idle CPU cycles and maximize performance.  

2.2. Various types of bottlenecks are mentioned below 

2.2.1. Instruction Fetch Bottleneck 

Happens when the CPU cannot fetch instructions fast enough, often due to a shared bus or limited instruction 
throughput.  

2.2.2. Memory Bottleneck 

Occurs when memory access is slower than CPU execution speed.   Leads to stalls as CPU waits for data to load.  

2.2.3. Cache Bottleneck 

When the working set of data doesn't fit in cache, resulting in frequent cache misses and slow memory accesses.  

2.2.4. Branch Prediction Bottleneck 

Happens when the CPU incorrectly predicts a branch, wasting cycles on wrong instruction paths.  
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2.2.5. Pipeline Bottleneck (or Stalls) 

In pipelined CPUs, hazards like data dependencies, control hazards (branches), or structural hazards can cause delays.  

2.2.6. In-order Execution Bottleneck 

In in-order CPUs, instructions must complete in order, so one slow instruction can block all others.  

2.2.7. Resource Contention 

When multiple instructions compete for the same execution resource (ALUs, buses, etc.).  

3. Methodology 

To analyze the impact of different CPU optimization techniques on execution performance, we utilized the gem5 
simulator, a widely used open-source platform for computer architecture research.  

In this study, we selected three built-in CPU models from gem5’s X86 architecture:  

• Timing Simple CPU – a basic in-order CPU model with no pipelining or caching.  
• Minor CPU – an in-order pipelined CPU that includes basic branch prediction and support for caches.  
• O3CPU – a complex out-of-order CPU with aggressive pipelining, advanced branch prediction, and full cache 

hierarchy.  

To ensure consistency, the same workload was executed on all three CPU models:  

A simple "Hello World" program compiled for the x86 architecture.  

The primary parameter recorded for performance comparison was execution time, measured in simulation ticks. 
Assuming a default CPU frequency of 1 GHz in gem5, we converted the number of ticks to seconds using the formula: 
Execution time (seconds) = ticks ÷ 1,000,000,000,000  

This allowed for direct comparison of the time taken by each CPU model to complete the same task. The goal was to see 
how the inclusion of pipelining, caching, and branch prediction affects performance, thereby offering insight into the 
practical impact of each optimization technique.  

3.1. Experiments 

3.1.1. Hello World program  

The “Hello, World!” program is a simple application that performs a basic output operation without involving complex 
data processing or extensive memory usage. It typically consists of a single function call to print a short string to the 
console. Since the program does not involve loops, large data structures, or dynamic memory allocation, the number of 
instructions executed is minimal, and memory access is limited primarily to fetching the instructions themselves and 
accessing a small amount of data (i.e., the string "Hello, World!"). This simplicity makes it an ideal workload for isolating 
and analyzing the raw execution efficiency of different CPU models without interference from higher-level software 
behavior.  

3.1.2.  Timing Simple CPU 

Timing Simple CPU is the most basic CPU model available in the gem5 simulator. It represents a non-pipelined, in-order 
processor where instructions are fetched, decoded, executed, and retired sequentially. Unlike more advanced models, 
Timing Simple CPU does not support pipelining, branch prediction, or cache mechanisms by default. Each instruction 
must fully complete before the next one begins, making this model simple but inherently slow and inefficient for 
complex or high-throughput tasks. However, its straightforward design makes it an excellent reference point for 
understanding how different architectural enhancements impact CPU performance. Due to the absence of overlapping 
instruction stages, any delay—such as memory access latency or control hazards—stalls the entire processor, resulting 
in longer execution times. This model serves as a baseline in our study to highlight the performance gains achieved 
through pipelining and other optimizations in more advanced CPUs.  
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3.1.3. Possible Bottlenecks in Timing Simple CPU:  

Lack of Pipelining: Without pipelining, each instruction must fully complete before the next begins, leading to 
underutilization of CPU resources. Memory Latency: Without a cache, the CPU experiences longer wait times for 
memory operations, as each access must retrieve data directly from main memory.  

BASH COMMAND: ./build/X86/gem5.opt configs/deprecated/example/se.py -cpu-type=Timing Simple CPU -c 
tests/test-progs/hello/bin/x86/linux/hello  

OUTPUT: Exiting@ 454646000 ticks which means the execution time of Timing Simple CPU to run Hello World program 
is 0.454646 milliseconds.  

3.1.4. X86Minor CPU  

Minor CPU is an in-order pipelined CPU model in gem5 that simulates a more realistic processor compared to 
TimingSimpleCPU. It breaks instruction execution into multiple pipeline stages—fetch, decode, execute, and 
writeback—allowing multiple instructions to be in different stages of execution simultaneously. This pipelining 
improves throughput by overlapping operations and reducing idle cycles. Minor CPU also introduces basic caching 
mechanisms and simple branch prediction, making it capable of handling moderate workloads with better performance 
than a non-pipelined architecture.  

3.2. CPU Optimization Techniques in Minor CPU 

Pipelining is a fundamental technique used in modern CPUs to increase instruction throughput. It works by breaking 
down the execution of instructions into several distinct stages, such as fetch, decode, execute, and writeback. Instead of 
waiting for one instruction to fully complete before starting the next, pipelining allows the CPU to work on multiple 
instructions at once—each at a different stage. This overlapping of operations significantly improves performance by 
keeping different parts of the CPU active simultaneously.  

Branch Prediction is used to overcome one of the key challenges of pipelining—control hazards. When the CPU 
encounters a conditional branch (e.g., an "if" statement), it must decide which instruction path to load next. Waiting for 
the condition to resolve would stall the pipeline, so instead, branch prediction guesses the likely outcome of the branch.  

Cache is a small, high-speed memory unit located close to the CPU that temporarily stores copies of frequently accessed 
data and instructions. Its main purpose is to reduce the time it takes for the CPU to retrieve information from the main 
memory (RAM), which is much slower. When the CPU needs data, it first checks the cache. If the data is found there 
(called a cache hit), it is accessed quickly  

3.3. Possible Bottlenecks in X86Minor CPU:  

3.3.1.  In-order Execution 

Minor CPU executes instructions sequentially. If an instruction stalls due to a data dependency or memory latency, all 
subsequent instructions are delayed, reducing overall efficiency.  

3.3.2.  Simple Branch Prediction 

Minor CPU employs a basic branch prediction mechanism. In programs with complex control flows, frequent 
mispredictions can lead to pipeline flushes and wasted cycles.  

3.3.3.  Limited Cache Hierarchy 

Although Minor CPU uses caching, the cache is relatively small and basic. High cache miss rates force the CPU to fetch 
data from slower main memory, increasing execution time.  

• BASH COMMAND./build/X86/gem5.opt configs/deprecated/example/se.py -cpu-type=X86Minor CPU --
caches -c tests/test-progs/hello/bin/x86/linux/hello  

• OUTPUT: Exiting@ 28096500 ticks which means the execution time of X86Minor CPU to run Hello World 
program is 0.0280965 milliseconds. 

Minor CPU performs better than Timing Simple CPU, Minor CPU is approximately 16 times faster than Timing Simple 
CPU when running the same "Hello World" program, primarily because it employs a pipelined architecture that allows 
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multiple instructions to be processed simultaneously in different stages of execution. In contrast, Timing Simple CPU is 
a simple, non-pipelined processor that executes instructions sequentially—fetching, decoding, and executing one 
instruction at a time, and only starting the next instruction after the current one has fully completed. This sequential 
nature leads to inefficiencies, especially when memory access delays occur. On the other hand, Minor CPU can overlap 
instruction execution, improving throughput and reducing idle CPU cycles. Additionally, Minor CPU includes basic cache 
support and branch prediction mechanisms, which further help in minimizing delays due to memory access and control 
flow changes. These architectural improvements result in better performance, even for simple programs like "hello 
world." 

3.4. O3CPU   

O3CPU, or Out-of-Order CPU, is the most advanced CPU model available in gem5. Unlike in-order CPUs like Timing 
Simple CPU and Minor CPU, O3CPU is capable of executing instructions out of their original program order to maximize 
performance. This architecture allows the CPU to bypass stalled instructions (such as those waiting for memory) and 
continue executing independent instructions, thereby improving instruction-level parallelism. These features 
collectively reduce idle time, make better use of execution units, and minimize performance bottlenecks caused by data 
or control dependencies. Due to its complexity, O3CPU is best suited for simulating high-performance processors.  

3.4.1. CPU Optimization Techniques in O3CPU 

Out-of-Order Execution allows the CPU to execute instructions as their operands become available, rather than strictly 
following the original program order. This helps avoid delays caused by instruction dependencies and keeps execution 
units busy.  

Speculative Execution and Branch Prediction allows O3CPU to guess the outcome of branches. It then speculatively 
executes instructions along the predicted path. If the prediction is correct, this saves time, if not, it discards the results 
and rolls back.  

Pipelining is Similar to Minor CPU but deeper and more dynamic, pipelining enables multiple instructions to be in 
different stages of execution at the same time, improving instruction throughput.  

Caching in O3CPU utilizes a hierarchical caching system, including L1 and L2 caches, to reduce memory latency. This 
speeds up data access and helps avoid frequent stalls caused by slow memory.  

3.4.2. Possible Bottlenecks in O3CPU 

 Cache Misses, if data is not found in the cache, it must be fetched from slower main memory, causing delays.  

Mispredicted Branches, Although the prediction is sophisticated, incorrect guesses result in costly rollbacks and wasted 
cycles.  

Pipeline Stalls, Due to complex instruction dependencies or resource conflicts, parts of the pipeline can still stall.  

• BASH COMMAND: ./build/X86/gem5.opt configs/deprecated/example/se.py --cputype=O3CPU --caches -c 
tests/test-progs/hello/bin/x86/linux/hello  

• OUTPUT: Exiting@ 16119500 ticks which means the execution time for O3CPU to run Hello World program is 
0.0161195 milliseconds.   

The execution of the “hello world” program across three different CPU models in gem5—Timing Simple CPU, Minor CPU, 
and O3CPU—demonstrates the significant impact of architectural optimizations on performance. Timing Simple CPU, 
which lacks pipelining and executes instructions strictly in order, recorded the highest number of ticks at 454,646,000, 
indicating slowest performance. Minor CPU, with its in-order pipelined design and basic cache and branch prediction 
support, showed a substantial improvement, completing execution in 28,096,500 ticks. O3CPU, featuring out-of-order 
execution, register renaming, speculative execution, and advanced branch prediction, delivered the best performance 
with just 16,119,500 ticks. These results confirm that architectural enhancements like pipelining, caching, and out-of-
order execution greatly reduce execution time, even for simple workloads. The execution speed of the "Hello World" 
program across the three CPU models in Gem5 reveals significant performance differences. In Gem5, simulation time is 
measured in ticks, where 1 tick equals 1 picosecond (1e-12 seconds). The Timing Simple CPU took approximately 
454,646,000 ticks, which converts to 0.000454 seconds. Minor CPU executed the same program in around 28,096,500 
ticks (0.000028 seconds), and O3CPU completed it in just 16,119,500 ticks (0.000016 seconds). These results 
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demonstrate that while all models completed the simple task within a fraction of a millisecond, the degree of 
architectural optimization greatly influenced performance. TimingSimpleCPU, being a simple non-pipelined model, had 
the slowest execution. Minor CPU, which incorporates pipelining and limited branch prediction, showed a substantial 
speed improvement. O3CPU, which supports out-of-order execution and more aggressive optimizations, outperformed 
both, highlighting the impact of advanced CPU features even on lightweight workloads.   

3.5. Method 2: Neuromorphic methods 

3.5.1. Neuromorphic computing 

Neuromorphic computing is inspired by the human brain's architecture, aiming to create systems that mimic biological 
neural networks. Unlike traditional computing, which relies on the Von Neumann architecture, neuromorphic systems 
use Spiking Neural Networks (SNNs). In SNNs, data is represented by spikes, mimicking the way neurons in the brain 
communicate through electrical impulses.  

The key benefits of this approach are energy efficiency and real-time processing. SNNs activate only when necessary, 
reducing power consumption compared to traditional models that continuously process data. This makes them ideal 
for resource constrained environments like embedded systems and edge computing.  

To analyze the impact of neuromorphic computing on performance and efficiency, we employed the Brian2 simulator, 
a widely used framework for simulating spiking neural networks (SNNs) and neuromorphic systems.  

For testing, we used the popular MNIST dataset, which contains 70,000 images of handwritten digits (from 0 to 9). Each 
image is 28x28 pixels. Before feeding them into the network, we normalized the pixel values and converted them into 
spike trains using a simple rate-based method — where brighter pixels cause neurons to spike more frequently.  

The network used in this experiment was an SNN with three layers:  

• Input Layer: 784 neurons (one for each pixel).  
• Two Hidden Layers: These helped the network learn patterns in the digits.  
• Output Layer: 10 neurons, one for each digit from 0 to 9. The neuron that spiked the most was considered the 

network’s guess.  

The network was trained using a brain-inspired rule called STDP (Spike-Timing Dependent Plasticity), which adjusts 
the strength of connections based on the timing of neuron spikes.  

We recorded the following values to measure performance: Accuracy, latency and memory usage. We then compared 
these results with a traditional neural network (MLP) that was trained on the same dataset using PyTorch on a Von 
Neumann system. This helped us see how the brain-like SNN model performs differently from standard models in terms 
of speed, memory, and accuracy.  

3.6. Experiments 

3.6.1. MNIST dataset  

For testing, a standard handwritten digit recognition task was used — the MNIST dataset — which is widely accepted 
for evaluating classification models. It consists of 70,000 grayscale images (28x28 pixels) of digits from 0 to 9. This 
dataset was chosen because it is simple, yet effective for comparing the learning ability, speed, and efficiency of different 
neural network approaches. Both the traditional MLP and the brain-inspired SNN were trained and evaluated on this 
dataset to ensure a consistent basis for comparison.  

3.6.2. Classifying digits from the MNIST Dataset (Von Neumann)  

This code trains and tests an AI model (a simple multi-layer perceptron neural network) to recognize handwritten digits. 
It measures how fast, how accurate, and how much memory it uses and as well as how long it takes to make predictions. 
It basically takes a 28x28 pixel image of a digit (like ‘4’) and flattens it into a 1D vector. It passes it through two hidden 
layers with 512 and 256 neurons.  
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3.6.3. CODE: 
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3.6.4. OUTPUT: 

 

 

 



World Journal of Advanced Research and Reviews, 2025, 26(02), 190-204 

199 

3.7. Classifying digits from the MNIST dataset (SNN)  

In this phase of the experiment, the digit classification task was performed using a Spiking Neural Network (SNN) to 
simulate neuromorphic computing principles. The MNIST dataset, consisting of 28×28-pixel grayscale images of 
handwritten digits (0–9), was encoded into spike trains suitable for SNN processing using rate-based or temporal 
encoding methods. The network architecture was implemented using a lightweight Python SNN library such as Brian2, 
which emulates the behaviour of biological neurons and synapses. Neurons in the network communicated via discrete 
spikes, and the model were trained using surrogate gradient techniques or unsupervised learning. The SNN exhibited 
event-driven computation, firing spikes only, when necessary, which led to more efficient memory usage and lower 
power estimates. The goal was to compare the performance, accuracy, and resource consumption of the SNN against a 
traditional MLP model, thereby evaluating the potential of neuromorphic systems in overcoming the Von Neumann 
bottleneck.  

3.7.1. CODE 
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Figure 1 Comparison of performance metrics 

 

 

Figure 2 Experimental setup and system specifications 

4. Results and discussion 

4.1. Method 1 

The execution speed comparison between TimingSimpleCPU, MinorCPU, and O3CPU reveals a clear progression in 
performance resulting from increasing architectural sophistication. TimingSimpleCPU, which follows a basic in-order 
execution model without pipelining or caching, required approximately 0.000454 seconds to execute the "Hello World" 
program. MinorCPU, incorporating pipelining along with basic cache and branch prediction mechanisms, completed the 
same task in about 0.000028 seconds—making it roughly 16 times faster than TimingSimpleCPU. In contrast, O3CPU, 
which leverages advanced out-of-order execution, aggressive pipelining, and more sophisticated branch prediction 
strategies, achieved the task in just 0.000016 seconds. This demonstrates a performance that is approximately 28 times 
faster than TimingSimpleCPU and nearly twice as fast as MinorCPU. These findings highlight the significant execution 
speed benefits afforded by modern CPU optimization techniques. 
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Figure 3 Execution time Comparison 

4.2. Method 2 

The experimental results clearly demonstrate the contrasting characteristics of Von Neumann and neuromorphic (SNN-
based) architectures. While the Von Neumann approach achieved slightly higher accuracy on the MNIST digit 
classification task, the SNN model excelled in efficiency-related metrics—consuming significantly less memory and 
exhibiting much lower inference latency. These findings are especially significant in the context of AI workloads, where 
memory bandwidth and latency have become major bottlenecks in traditional architectures due to the Von Neumann 
bottleneck. Neuromorphic computing, inspired by biological neural systems, offers a promising alternative by enabling 
event-driven, parallel processing with minimal energy and memory overhead. This highlights its potential for low 
power, real-time AI applications on edge devices, where resource constraints are critical. As AI models grow larger and 
demand faster, energy-efficient inference, neuromorphic approaches could play a pivotal role in shaping the future of 
computing. 

 

Figure 4 Performance Comparison 
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5. Conclusion 

While this study focused on CPU performance enhancements through architectural optimizations such as pipelining, 
caching, and out of order execution, similar principles can be can be explored in context of GPU architecture. GPUs 
consists of many simple cores designed for parallel execution, prioritizing throughput over individual core optimization. 
A promising future direction involves integrating some of these CPU optimizations in GPU execution units to enhance 
performance for AI workloads, especially where data dependencies and memory access patterns become bottlenecks. 
This can lead to significantly improved training and inference times in deep learning models.  

On the other hand, Neuromorphic computing presents a transformative direction for the future of artificial intelligence 
and energy-efficient systems. As dedicated neuromorphic hardware platforms such as Intel’s Loihi and IBM’s TrueNorth 
become more advanced and accessible, real-time deployment of spiking neural networks (SNNs) will become 
increasingly practical. Future work can focus on enhancing the accuracy of SNNs through improved spike encoding 
techniques and more biologically inspired learning algorithms. Additionally, integrating neuromorphic systems into 
edge devices, autonomous robots, and IoT networks could enable low-power intelligent processing in environments 
where traditional architectures are constrained by energy and latency limitations. The continued exploration of hybrid 
models that combine the energy efficiency of SNNs with the learning power of deep neural networks may also bridge 
the gap between biological realism and computational performance, paving the way for brain-like adaptive systems.   
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