
 Corresponding author: Sangeeta Rani

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Tools and techniques for real-time data processing: A review

Sangeeta Rani *

Department of Computer Science and Engineering, Chaudhary Devi Lal University, Sirsa.

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

Publication history: Received on 15 December 2024; revised on 24 January 2025; accepted on 27 January 2025

Article DOI: https://doi.org/10.30574/ijsra.2025.14.1.0252

Abstract

Real-time data processing is an essential component in the modern data landscape, where vast amounts of data are
generated continuously from various sources such as Internet of Things devices, social media, financial transactions,
and manufacturing systems. Unlike traditional batch processing methods that analyse data in intervals, real-time data
processing enables the continuous intake, manipulation, and analysis of data within milliseconds of generation. This
capability is critical for applications requiring instant insights and rapid decision-making, including fraud detection,
predictive maintenance, real-time analytics, and autonomous operations. This paper reviews the tools and techniques
that have revolutionized real-time data processing, with a focus on cutting-edge platforms such as Apache Kafka and
Apache Flink, as well as cloud-native solutions. These technologies offer scalable and fault-tolerant systems capable of
managing high-volume data streams while ensuring low latency and data consistency. Apache Kafka provides a highly
scalable distributed messaging system, while Apache Flink combines stateful and stateless processing to support
complex event-driven applications. This review highlights the. This paper reviews key techniques and tools used in real-
time data processing, including stream processing, complex event processing, in-memory computing, micro-batching,
and real-time dashboards. In addition, it highlights advancements in real-time data processing frameworks, their
capabilities, and their impact on modern business applications. Additionally, the paper explores various tools used in
real-time data processing, including Apache Kafka for data ingestion, Apache Flink and Spark Streaming for stream
processing, Redis and Apache Druid for real-time storage, and Grafana and Kibana for data visualization. By examining
these techniques and tools, this paper highlights the importance of real-time data processing in enabling businesses to
make data-driven decisions with minimal latency, ultimately gaining a competitive edge in the rapidly evolving digital
world.

Keywords: Real-time data processing; Stream processing; Complex event processing; In-memory computing; Micro-
batching; Windowing

1. Introduction

The past few years have witnessed a dramatic increase in data production from diverse sources, including Internet of
Things devices, social networking platforms, monetary transactions, and manufacturing systems (Manyika et al., 2011).
This has resulted in a growing need for systems capable of processing data in real-time. Unlike conventional batch
processing methods, which analyze large sets of data at predetermined intervals, real-time data processing allows for
ongoing data intake, manipulation, and examination, often occurring within fractions of a second after the data is
generated. This functionality is essential for applications that require instant insights and quick decision-making, such
as detecting fraudulent activities, performing predictive maintenance, conducting real-time analytics, and operating
autonomous systems. The ability to process data in real-time enables organizations to gain a competitive edge by
leveraging immediate insights, which is increasingly becoming critical in various sectors.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://ijsra.net/
https://doi.org/10.30574/ijsra.2025.14.1.0252
https://crossmark.crossref.org/dialog/?doi=10.30574/ijsra.2025.14.1.0252&domain=pdf

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1873

The advent of platforms like Apache Kafka, Apache Flink, and cloud-native solutions has paved the way for creating
robust and scalable real-time data processing systems. These frameworks can manage high-volume data streams while
maintaining minimal latency, resilience to failures, and data consistency (Kreps et al., 2011). Apache Kafka, for example,
provides a highly scalable messaging system, which is ideal for processing large amounts of real-time data across
distributed systems. Similarly, Apache Flink offers a unified stream and batch processing framework that supports both
stateful and stateless real-time processing, enabling complex event-driven applications (Carbone et al., 2015). The
integration of these technologies has significantly improved the scalability and reliability of real-time data processing
systems, making them more accessible for businesses seeking to derive insights from vast data streams.

Moreover, the increasing significance of edge computing, which involves processing data nearer to its origin, has
spurred further innovations in real-time data processing methodologies. Edge computing enables faster decision-
making by reducing the distance data must travel to be processed, minimizing latency, and improving response times
(Shi et al., 2016). This is particularly important for applications such as autonomous vehicles and industrial IoT, where
real-time responses to incoming data are critical for safety and operational efficiency (Satyanarayanan, 2017). As edge
computing technologies mature, the ability to process data locally rather than relying solely on cloud-based
infrastructures will further enhance real-time data processing capabilities.

Real-time data processing is used for analyzing data as it is generated, producing results almost immediately. This
method of data processing analyses incoming data points as soon as they are received, generating immediate outputs
(Chaudhuri et al., 2011). It requires a constant flow of data to maintain real-time insights, which is essential for many
modern applications, such as monitoring financial transactions to detect fraud or optimizing industrial production
processes. When raw data is received, it is immediately processed to empower near-instant decision-making. Real-time
data processing and analysis play a crucial role in modern Management Information Systems, enabling organizations to
make informed decisions swiftly and efficiently. In healthcare, real-time data analytics can improve patient outcomes
by monitoring vital signs and triggering alerts for any abnormalities. Similarly, in e-commerce, real-time analytics can
help tailor customer experiences by recommending products based on current browsing behavior.

However, this process comes with its challenges, ranging from data volume to processing speed and data quality
(Zikopoulos et al., 2012). Managing the massive influx of data generated by Internet o Things devices and online
platforms requires advanced data storage, processing capabilities, and network infrastructure (Manyika et al., 2011). In
addition, ensuring that the data being processed is of high quality, accurate, and consistent remains a significant
challenge, as poor data quality can lead to misleading insights and incorrect decision-making (Wang & Strong, 1996).
As organizations continue to generate and consume larger volumes of real-time data, they must address these issues to
fully realize the potential of real-time data processing.

Real-time data processing is also used across various sectors, from finance and e-commerce to healthcare and
manufacturing. In finance, real-time data processing is used to detect fraudulent activities by analyzing transaction
patterns and flagging suspicious behavior (Ngai et al., 2011). In e-commerce, it enables personalized recommendations
and dynamic pricing models that adapt to market conditions in real-time (Chen et al., 2015). In healthcare, real-time
monitoring of patient health data enables timely medical interventions and enhances decision-making for healthcare
providers (Dhar, 2013). In manufacturing, real-time analytics can predict equipment failures and optimize production
processes, leading to improved efficiency and reduced downtime. As industries continue to embrace digital
transformation, the role of real-time data processing in shaping business operations and driving innovation becomes
increasingly evident.

2. Real-time data processing techniques

Real-time data processing employs a wide array of sophisticated techniques designed to ensure the prompt, reliable,
and efficient management of continuous data streams. These methods are essential for enabling systems to handle high-
speed data flows with minimal delay, facilitating rapid insights and immediate responses to dynamic data changes.
Advanced techniques for processing data streams are vital for systems that require swift, accurate, and efficient
handling of continuous information. These methodologies are fundamental for platforms managing high-speed data
inputs with minimal latency, enabling real-time analysis and responses to evolving data patterns. The following section
outlines key strategies for real-time data processing and stream analytics.

2.1. Stream Processing

Stream processing is one of the foundational techniques used in real-time data processing, allowing continuous data to
be handled without the delays inherent in traditional batch processing. While once considered a niche technology,

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1874

stream processing has become indispensable with the rise of Internet of Things (IoT) devices, cloud services, and
machine learning. Stream processing is now standard practice across industries due to its ability to analyze continuous
data flows in real time. Some of the key features of stream processing include the capability to handle continuous event
streams, immediate or near-immediate processing, identifying patterns in time-series information, and effortless data
expansion. Stream processing can handle naturally occurring continuous data, such as sensor readings or live social
media updates. Unlike batch processing, which requires breaking data into chunks and processing it at specific intervals,
stream processing captures and analyses data on the fly, providing instantaneous insights. It enables real-time data
analytics, which is essential for applications that require timely decision-making. While high-performance databases
can support real-time analytics, stream processing platforms such as Apache Kafka or Apache Flink are more effective
in handling data in continuous streams. Time-series data, like stock market trends or IoT sensor data, requires
continuous processing to detect patterns and anomalies. Batch processing, by dividing the data into intervals, can
obscure time-sensitive patterns, whereas stream processing continuously updates insights in real-time. Modern stream
processing systems are scalable and designed to handle growing data volumes without significant infrastructure
changes. This makes them ideal for rapidly expanding datasets such as those generated by sensors in IoT applications
(García, 2021).

2.2. Complex Event Processing

Complex event processing involves the analysis of event streams to identify patterns, trends, and correlations in real
time. This technique is widely used in systems where immediate decisions are necessary, such as in financial trading,
fraud detection, and industrial automation. Key aspects of complex event processing include event streams, event
pattern matching, temporal processing, aggregation and transformation, and actionable insights. Event streams
process streams of raw events, which can be generated by sensors, users, or devices. These events can be discrete (e.g.,
a stock trade) or continuous (e.g., temperature readings from a sensor). In event pattern matching rules or query
languages are used to detect patterns, such as sequences or correlations. For example, detecting multiple failed login
attempts within a short timeframe could trigger a security alert. Temporal processing supports temporal constraints
and can analyse events over time-based windows, such as sliding or tumbling windows, to recognize trends or
anomalies over specific periods. Aggregation and transformation allow data aggregation (e.g., calculating moving
averages) and transformation (e.g., deriving meaningful insights from raw events) to generate actionable information
(Garcia, 2021). Actionable insights are based on detected patterns, CEP can automatically trigger actions such as
sending alerts, initiating workflows, or activating downstream processes.

2.3. In-Memory Computing

In-memory computing leverages the system’s random-access memory to store and process data, bypassing traditional
disk-based storage methods. This results in significantly faster data processing, enabling low-latency and high-
throughput operations. In-memory computing is particularly beneficial for real-time applications where quick access to
data is essential. It supports sub-millisecond response times for critical applications, such as fraud detection or
autonomous driving systems. Distributed architectures further enhance scalability, enabling organizations to process
petabytes of data in real time (Chen et al., 2015).

2.4. Micro-Batching and Windowing

Micro-batching is a hybrid technique that combines aspects of batch processing with real-time stream processing. By
processing small batches of data in near real-time, micro-batching bridges the gap between traditional batch processing
and continuous stream processing. Some key features of micro-batching include batch-like semantics, low latency, and
simplified fault tolerance. Batch-like semantics are used to group incoming data into small batches, which are processed
periodically (e.g., every few milliseconds or seconds) to provide near-real-time insights. Low Latency and Simplified
Fault Tolerance techniques provide low-latency performance that also supports fault tolerance. If a failure occurs, small
batches can be replayed for recovery. Windowing is often used in stream processing to group events into meaningful
segments based on time or count. Common window types include tumbling, sliding, and session windows. Tumbling
windows are fixed, non-overlapping windows that process data in distinct periods. Sliding windows are overlapping
windows that move forward by a defined interval, enabling continuous analysis of data. Session windows dynamically
adjust in size based on activity gaps between events, making them ideal for applications where the flow of events is
irregular.

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1875

2.5. Real-Time Dashboards and Visualization

Real-time dashboards and visualization tools play a crucial role in making the insights derived from real-time data
accessible and actionable. Unlike batch processing, which provides delayed insights, real-time dashboards offer
immediate visual feedback, enabling timely decision-making. Common features of real-time dashboards include real-
time graphs, heat maps, alerts and notifications. Time series data is often visualized using line or area charts, which
display trends and fluctuations over time. Heat maps are used for geographical or density-based visualizations, helping
to identify patterns in location-based data. Visual and auditory signals, such as pop-up alerts or sounds, are used to
notify users of critical events or anomalies are available in alerts and notifications. Real-time dashboards typically
involve several layers of architecture, including data producers, data pipelines for processing, storage systems for low-
latency read/write access, and visualization layers that use Web Socket or push technologies for interactive updates. By
employing these techniques, organizations can optimize their data processing systems for real-time performance,
facilitating rapid decision-making across a variety of sectors, including finance, healthcare, and manufacturing.
Visualization tools provide intuitive interfaces for analysing real-time data. Data visualization is a critical aspect of
modern analytics, enabling organizations to understand complex datasets, identify trends, and make data-driven
decisions. Several visualization tools are widely used in various industries to create interactive and insightful
dashboards and reports.

3. Real-time data processing tools

Real-time data processing tools enable organizations to process and analyse data as it is generated or received. These
tools are critical for applications requiring immediate insights and decision-making, such as fraud detection, IoT device
monitoring, stock market analysis, and more. Table 1 below describes the key aspects of real-time data processing tools,
along with notable examples.

Table 1 Key components of real-time data processing

Components Description Examples

Data Ingestion Collecting data from various sources with
minimal latency

Apache Kafka, Apache Pulsar, AWS Kinesis

Stream
Processing

Transforming and analysing data streams in
real-time

Apache Flink, Apache Spark Streaming, Google
Dataflow, Samza

Real-Time
Storage

Storing and querying real-time data
efficiently

Redis, Apache Druid, TimescaleDB, Cassandra

Visualization
Tools

Providing intuitive interfaces for analyzing
real-time data

Grafana, Tableau, Power BI, Kibana

3.1. Data Ingestion Tools

• Apache Kafka: Apache Kafka is a distributed event streaming platform that is used for high-throughput data
ingestion. It serves as the backbone for real-time data pipelines. This allows for the publishing, storing, and
processing of high-throughput, low-latency data streams. Kafka is designed to handle large volumes of data by
distributing it across multiple brokers and partitions. Kafka ensures data durability through replication,
ensuring that messages are not lost. Kafka can process millions of messages per second with low latency. The
distributed architecture of Kafka provides fault tolerance by replicating data across multiple nodes. Kafka is
used for log aggregation, which means collecting and aggregating log data from various sources for real-time
monitoring and analysis. In addition, it works as an event source that stores state changes as a series of events,
enabling applications to reconstruct past states.

• Apache Pulsar: Apache Pulsar is an open-source, distributed messaging and streaming platform that was
initially developed at Yahoo and later contributed to the Apache Software Foundation. It aims to deliver a
unified, high-performance solution for the real-time and delayed processing of data streams, featuring
capabilities that make it a strong contender for modern data infrastructure requirements. It is a powerful
messaging and streaming platform that is used for fulfilling modern data processing needs. Its extensive feature
set, which includes multi-tenancy, geo-replication, and tiered storage, makes it an attractive option for
enterprises aiming to develop scalable and dependable data pipelines. The system utilizes Apache Book Keeper
for persistent storage, ensuring durable message retention and data integrity.

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1876

• AWS Kinesis: Amazon Kinesis is a managed, cloud-based service that facilitates real-time data streaming and
analytics. As a component of Amazon Web Services (AWS), Kinesis streamlines the ingestion, processing, and
analysis of substantial data streams from a variety of sources in real time. It is a cloud-native service for real-
time data ingestion and processing. AWS Kinesis removes the burden of managing underlying infrastructure,
allowing users to concentrate on developing applications. AWS takes care of provisioning, scaling, and
maintenance. This service can handle data streams of virtually any size. It scales automatically to match the
throughput of the incoming data. Kinesis seamlessly integrates with other AWS services like S3, lambda,
redshift, and elastic search that enable users to create extensive data processing pipelines.

3.1.1. Comparison of Data Ingestion Tools

Data ingestion tools play a pivotal role in collecting, streaming, and processing data efficiently for modern applications.
Apache Kafka, Apache Pulsar, and AWS Kinesis are among the leading tools in this domain, each offering unique
capabilities tailored to specific needs. Table 2 below provides a side-by-side comparison of these tools, highlighting
their core features, strengths, and ideal use cases.

Table 2 Comparison of data ingestion tools

Feature Apache Kafka Apache Pulsar AWS Kinesis

Performance High throughput, requires
manual tuning.

High throughput with low
latency.

Scales automatically to match
throughput.

Scalability Partition-based scaling, manual
balancing.

Compute and store scale
independently.

Automatically scales with
data.

Multi-Tenancy Limited support via namespaces. Built-in support with isolation Not natively supported.

Geo-
Replication

Requires additional tools.
Example: Mirror Maker

Built-in and seamless. Limited to AWS regions.

Ecosystem Mature, large community. Growing, smaller community Tight integration with AWS
services.

Management Requires manual setup and
monitoring.

Slightly complex but better
abstractions.

Fully managed by AWS.

Security Strong, with plugins for extra
features.

Built-in and highly
customizable.

Strong, integrated with IAM.

Cost Open-source, infrastructure costs
apply.

Open-source, infrastructure
costs apply.

Pay-as-you-go pricing, can be
expensive

Ease of Use Complex to manage and
configure.

Easier with Pulsar Functions
and schemas.

Simplified setup and
operation.

Data
Retention

Configurable, requires storage
planning

Tiered storage for cost
efficiency.

Up to 365 days with Firehose.

Flexibility Open-source, highly customizable Open-source with server-less
capabilities.

Limited by AWS ecosystem.

3.2. Stream Processing Tools

• Apache Flink: Apache Flink is another well-known open-source distributed data streaming engine, good at
performing stateful computations on both bounded and unbounded data streams. This framework is written in
Scala and Java and is particularly suited for complex data stream computations. The main features of Apache
Flink are true stream processing, Event-Time Semantics, State Management, and scalability. It provides native
support for both batch and stream processing, treating batch jobs as a special case of streaming. It supports
event-time and out-of-order processing with watermarks. It is known for its advanced event-time processing
capabilities and fault tolerance mechanisms.

• Apache Spark Streaming: Apache Spark Streaming enhances the core Spark framework by enabling micro-
batch processing for real-time data streams. Its seamless integration with the broader Spark ecosystem makes
it an appealing option for current Spark users. Features of Spark are micro-batch processing, fault tolerance,

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1877

unified framework, and wide connector support. It is used in real-time dashboard updates, log processing, IoT
data processing and data enrichment and filtering.

• Google Dataflow: Google Dataflow is a fully managed service designed for both stream and batch data
processing. It is built on the Apache Beam programming model that offers flexibility and scalability for
processing data in distributed environments. It is a cloud-based service supporting unified stream and batch
processing. Its features are a unified model, managed service, auto-scaling and cross-platform. It supports batch
and streaming through Apache Beam. This is used for real-time log analysis, streaming analytics for IoT, Data
pipeline orchestration, and ETL operations for cloud-based data warehouses.

• Samza: Apache Samza is a distributed stream-processing framework designed for efficient data processing
from messaging systems such as Apache Kafka. It is recognized for its strong integration with Kafka and its
simplicity in creating scalable, fault-tolerant applications. It focuses on stateful stream processing with strong
integration with Kafka. Features of Samza are Kafka Integration, stateful processing, fault tolerance and
resource management. Applications of Samza are log processing, real-time analytics, asynchronous processing
of events from messaging queues, and stateful stream processing applications.

3.2.1. Comparison of Stream Processing Tools

Stream processing tools enable the real-time analysis of continuous data streams, making them essential for
applications like real-time analytics, anomaly detection, and event-driven systems. Apache Flink, Apache Spark
Streaming, Google Dataflow, and Apache Samza are prominent uses in this space, each offering distinct advantages and
features. Table 3 below presents a detailed comparison of these tools, focusing on aspects such as scalability, ease of
use, fault tolerance, and integration capabilities, helping organizations make informed decisions based on their specific
requirements.

Table 3 Comparison of stream processing tools

Feature Apache Flink Apache Spark
Streaming

Google Dataflow Apache Samza

Primary Use
Case

Stream processing,
real-time analytics,
and event-driven
applications

Batch and micro-
batch stream
processing

Batch and stream
processing with
managed
infrastructure

Stream processing,
message-based systems,
real-time processing

Processing
Model

True stream
processing (event-at-
a-time processing)

Micro-batch
processing

True stream
processing

True stream processing

Latency Low latency Higher latency
compared to Flink
due to micro-
batching

Low latency that
depends on
infrastructure
configuration.

Low latency

Throughput High throughput High throughput High throughput
managed by Google
infrastructure

High throughput

Fault
Tolerance

Checkpointing with
exactly-once
semantics

Checkpointing with
at least once
semantics

Exactly-once
processing by default

Checkpointing with at
least once semantics

Programming
Languages

Java, Scala, Python Java, Scala, Python, R Java, Python Java, Scala

Ease of Use Complex API with high
flexibility

Easier API but less
fine-grained control
compared to Flink

Simple API, fully
managed
infrastructure

Moderate API
complexity

Integration
with Systems

Kafka, Kinesis,
Hadoop, Cassandra,
Elastic search, and
more

Kafka, Hadoop,
HDFS, Cassandra,
Elastic Search, and
more

Native integrations
with Big Query,
Pub/Sub, and other
GCP services

Kafka, YARN, Hadoop,
HDFS, and more

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1878

Deployment On-premises or cloud,
Kubernetes support

On-premises or
cloud, Kubernetes
support

Fully managed by
Google Cloud

On-premises,
Kubernetes, YARN

Scalability Horizontally scalable Horizontally scalable Automatically scales
with Google Cloud
infrastructure

Horizontally scalable

Community
and Support

Large open-source
community

Large open-source
community

Supported by Google
and growing
community

Smaller but active
community

State
Management

Advanced state
management with
save points and
incremental
snapshots

Limited state
management

Managed state with
automatic scaling

Built-in state
management optimized
for stream processing

Windowing
Support

Flexible (event-time
and processing-time
windowing)

Event-time and
processing-time
windowing

Flexible (event-time
and processing-time
windowing)

Event-time and
processing-time
windowing

Licensing Apache License 2.0 Apache License 2.0 Proprietary (Google
Cloud)

Apache License 2.0

Best Suited For Complex event
processing, real-time
analytics, and low-
latency applications

Batch processing and
scenarios where
micro-batching is
sufficient

Fully managed
solutions with easy
integration into
Google Cloud
applications

Message-driven
applications and stream
processing with a focus
on Kafka-based systems

Pricing Open-source, costs
depend on
infrastructure

Open-source, costs
depend on
infrastructure

Pay-as-you-go pricing
for Google Cloud
resources

Open-source, costs
depend on
infrastructure

3.3. Real-Time Storage Tools

• Redis: Redis is an in-memory data store ideal for caching and quick lookups. It is an in-memory data structure
store commonly used as a cache, message broker, or lightweight NoSQL database. Its key features include high-
speed data access, support for complex data types, and replication capabilities. The benefits of using Redis are
blazing-fast performance, rich data types and simple deployment but the limited data persistence and
scalability constrained by memory are its weaknesses but it excels in caching and low-latency scenarios.

• Cassandra: Apache Cassandra is a highly scalable distributed NoSQL database designed for fault tolerance and
handling massive amounts of structured data across commodity hardware. It employs a peer-to-peer
architecture and offers tuneable consistency. It is a NoSQL database designed for scalability and high
availability. Cassandra is ideal for highly scalable, fault-tolerant storage solutions.

• Timescale DB: A time-series database built on PostgreSQL, offering robust SQL support. Timescale DB is an
open-source time-series database built on PostgreSQL. It specializes in time-series data management, offering
scalability, advanced query capabilities, and PostgreSQL compatibility. Timescale DB is the go-to choice for
time-series data management with SQL compatibility.

• Apache Druid: Apache Druid is optimized for Online Analytical Processing (OLAP) queries and time-series
data. It is a real-time analytics database designed for high-performance OLAP workloads. It features a columnar
storage format, real-time ingestion, and optimized query execution for large-scale datasets. Real-time ingestion,
OLAP query performance and tiered storage are advantages of this solution. Maintenance and setup are very
complex in it. Apache Druid shines in real-time analytics and OLAP use cases.

3.3.1. Comparison of Real-time Storage Tools

Real-time storage tools are crucial for managing and querying large volumes of data with low latency, supporting
applications like monitoring systems, analytics dashboards, and IoT platforms. Redis, Cassandra, Timescale DB, and
Apache Druid are widely used solutions, each designed to address specific storage and performance challenges. Table 4

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1879

below provides a comprehensive comparison of these tools, highlighting their primary use case, scalability, data model,
and eco-system integration to assist in selecting the best option for real-time data storage needs.

Table 4 Comparison of real-time storage tools

Feature Redis Cassandra Timescale DB Apache Druid

Primary Use
Case

Caching, session
storage, pub/sub

High-availability data
storage

Time-series data,
monitoring

Real-time analytics,
OLAP

Data Model Key-value Wide-column Relational
(PostgreSQL-based)

Columnar

Performance Extremely low-
latency

High throughput, low
latency

Optimized for time-
series queries

Fast OLAP queries

Scalability Limited by memory Horizontally scalable Vertically scalable with
partitioning

Horizontally scalable

Query Language Commands-based
API

CQL (Cassandra
Query Language)

SQL (PostgreSQL
dialect)

Druid SQL, JSON-
based queries

Data Retention Short-term (in-
memory)

Long-term with TTL
support

Long-term storage with
compression

Tiered storage for
hot/cold data

Replication Master-slave or
cluster

Multi-data centre
support

Built-in with
PostgreSQL features

Replication across
segments

Fault Tolerance Limited (requires
clustering)

High (no single point
of failure)

PostgreSQL-based,
requires HA setup

High (distributed
architecture)

Ecosystem
Integration

Broad client library
support

Hadoop, Spark, Kafka PostgreSQL tools and
extensions

Kafka, Hadoop,
Presto, Superset

Licensing BSD Apache 2.0 Apache 2.0 Apache 2.0

3.4. Visualization Tools

• Grafana: Grafana is an open-source platform primarily used for monitoring and observability. It is well-suited
for visualizing time-series data and integrates seamlessly with numerous data sources, including Prometheus,
Influx DB, and Elastic Search. It is a highly customizable platform for monitoring and alerting. Time-series
visualization is designed for metrics and logs, and Grafana excels at creating dashboards for system
performance monitoring. It offers a range of pre-built and customizable dashboard visualizations. Plugin
ecosystem, alerting and open source and community support are the features of Grafana. Strong community
and enterprise support are the key features for advanced use cases. The applications of Grafana are
infrastructure and application monitoring, Real-time metrics analysis, DevOps, and IT operations.

• Tableau: Tableau is known for its interactive dashboards and ease of use. Tableau is a leading business
intelligence (BI) tool that enables users to transform raw data into actionable insights. Known for its user-
friendly interface and robust visualization capabilities, Tableau supports both technical and non-technical
users. Drag-and-Drop interface simplifies the creation of complex visualizations without coding. Interactive
dashboards allow users to drill down into data for deeper analysis. AI-powered insights are used to provide
automated recommendations and natural language querying. Dashboards can be shared and accessed across
teams.

• Power BI: Power BI, developed by Microsoft, is a comprehensive BI tool that integrates deeply with other
Microsoft products. It is designed to enable data-driven decision-making for businesses of all sizes. It integrates
well with other Microsoft services for data visualization. It offers drag-and-drop functionality and pre-built
templates that is easy to use. Works well with Microsoft Excel, Azure, and Office 365. It includes tools for
transforming and cleaning data. Advanced analytics and DAX (Data Analysis Expressions) are available for
custom calculations. Cloud and On-Premises options are available in Power BI. Enterprise-level reporting, sales
and marketing analytics, and operational performance tracking are use cases of Power BI.

• Kibana: Kibana is a component of the ELK stack, designed for analyzing log and event data. It is an open-source
visualization tool that is part of the Elastic Stack (ELK Stack). It is designed to work with Elastic search and is
widely used for log and event data analysis. It is tailored for analyzing and visualizing log data. It is fully

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1880

integrated with Elastic Search for querying and analytics. Custom visualizations offer a variety of charts, maps,
and graphs. Kibana enables real-time monitoring and alerting and provides role-based access and other
security features. Log and event monitoring, security analytics, and real-time application monitoring are the
applications of Kibana.

3.4.1. Comparison of Visualization Tools

Data visualization tools are essential for interpreting and communicating insights from complex datasets through
interactive and intuitive dashboards. Grafana, Tableau, Power BI, and Kibana are popular tools, each offering unique
capabilities tailored to specific analytics and visualization requirements. Table 5 below compares these tools in terms
of features, ease of use, integration options, and ideal use cases, helping organizations select the most suitable platform
for their data visualization needs.

Table 5 Comparison of visualization tools

Feature Grafana Tableau Power BI Kibana

Primary Focus Monitoring and
Metrics

Business
Intelligence

Business Intelligence Log Analysis

Integration Metrics/Data Stores Diverse Data
Sources

Microsoft Ecosystem Elastic search

User Interface Technical Intuitive Intuitive Technical

Real-Time
Capabilities

Strong Moderate Moderate Strong

Pricing Model Free and Paid Paid Free and Paid Free and Paid

Customization High Moderate High High

Security Features Role-Based Access Enterprise Security Robust (Microsoft
Defender)

Role-Based
Access

Collaboration Moderate Strong Strong Moderate

AI/ML Capabilities Limited Advanced (AI
Insights)

Advanced (DAX, AI) Limited

Learning Curve Moderate to Steep Low Low to Moderat Moderate to
Steep

4. Conclusion

The growing demand for immediate insights and rapid decision-making in diverse sectors has made real-time data
processing a cornerstone of modern information systems. This paper has explored the tools and techniques essential
for enabling real-time data ingestion, stream processing, real-time storage, and visualization. Through a detailed
comparative analysis, the paper highlighted the strengths, limitations, and optimal use cases for various tools and
technologies in each category. In the domain of data ingestion, tools like Apache Kafka and Amazon Kinesis have proven
effective in managing high-velocity data streams with minimal latency. For stream processing, platforms such as Apache
Flink and Apache Spark Streaming offer powerful capabilities for real-time computation, with unique advantages in
scalability, state management, and fault tolerance. Real-time storage solutions like Redis, Apache Cassandra, and
Amazon Dynamo DB provide robust mechanisms for managing and querying data with low latency, catering to the
unique requirements of dynamic workloads. Lastly, visualization tools such as Tableau, Power BI, and Grafana enable
organizations to transform raw, real-time data into actionable insights through interactive and intuitive dashboards.
The comparative analysis in this study underscores the importance of selecting the right combination of tools based on
specific application needs, workload characteristics, and organizational goals. As technology continues to evolve, future
innovations are expected to address current challenges, such as ensuring data consistency, improving fault tolerance,
and optimizing resource efficiency in real-time systems. By integrating the tools and techniques discussed in this paper,
organizations can build end-to-end real-time data processing pipelines that not only enhance operational efficiency but
also foster a data-driven culture,

International Journal of Science and Research Archive, 2025, 14(01), 1872-1881

1881

References

[1] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015). Apache Flink: Stream and batch
processing in a single engine. IEEE Data Engineering Bulletin, 36, 28–33.

[2] Chaudhuri, S., Dayal, U., & Narasayya, V. R. (2011). An overview of business intelligence technology.
Communications of the ACM, 54, 88–98.

[3] Chen, L., Zheng, D., Liu, B., Yang, J., & Jin, Q. (2015). VFDB 2016: Hierarchical and refined dataset for big data
analysis. Nucleic Acids Research, 44, D694–D697.

[4] Fournier, F., & Skarbovsky, I. (2021). Real-time data processing. In Big data in bioeconomy: Results from the
European DataBio project (pp. 147–156). Springer. https://doi.org/10.1007/978-3-030-71069-9_11

[5] Garcia, G. D. (2021). Data visualization and analysis in second language research. New York, NY: Routledge.

[6] Kekevi, U., & Aydin, A. A. (2022). Real-time big data processing and analytics: Concepts, technologies, and
domains. Journal of Computer Science, 7(2), 111–123. https://doi.org/10.53070/bbd.1204112

[7] Khine, P. P., & Shun, W. Z. (2017). Big data for organizations: A review. Journal of Computer and Communications,
5(3), 40–48. https://doi.org/10.4236/jcc.2017.53005

[8] Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A distributed messaging system for log processing. Proceedings of
the NetDB, 1–7.

[9] Mahajan, K. N., & Gokhale, L. A. (2020). Comparative study of data visualization tools. Institute of Management
and Entrepreneurship Development (IMED), Bharati Vidyapeeth Deemed to be University, Pune, India.

[10] Majeed, F., & Rahman, S. (2015). Graph visualization tools: A comparative analysis. Journal of Independent
Studies and Research – Computing, 13(1), 20–26.

[11] Manyika, J., Chui M., Brown B., Bughin J., Dobbs., Roxburgh C., Byers A.H. (2011). Big data: The next frontier for
innovation, competition, and productivity. McKinsey Global Institute, San Francisco, CA, USA.

[12] Nair, G. C. (2024). Data visualization tools: A comparative analysis. International Journal of Science and Research,
13(11), 1599–1602.

[13] Ngai, E. W., Chau, D., & Chan, A. T. (2011). Information technology, operational, and management competencies
for supply chain agility: Findings from case studies. Journal of Strategic Information Systems, 20, 232–249.

[14] Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50, 30–39.

[15] Seenivasan, D. (2023). Real-time data processing with streaming ETL. International Journal of Science and
Research, 12(11), 1–10.

[16] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things
Journal, 3, 637–646.

[17] Thillaieswari, B. (2017). Comparative study on tools and techniques of big data analysis. International Journal of
Advanced Networking & Applications, 8(5), 61–66.

[18] Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12), 64–73.
https://doi.org/10.1145/2500499

[19] Wang, R. Y., & Strong, D. (1996). Beyond accuracy: What data quality means to data consumers. Journal of
Management Information Systems, 13(1), 5–33. https://doi.org/10.1080/07421222.1996.11518099

[20] Zheng, T., Chen, G., Wang, X., Chen, C., Wang, X., & Luo, S. (2021). Real-time intelligent big data processing:
Technology, platform, and applications. College of Computer Science and Technology, Zhejiang University,
Hangzhou, China. https://arxiv.org/abs/2111.11872

[21] Zikopoulos, P., & Eaton, C. (2012). Understanding big data: Analytics for enterprise-class Hadoop and streaming
data. McGraw-Hill, New York, NY.

https://doi.org/10.1007/978-3-030-71069-9_11
https://doi.org/10.53070/bbd.1204112
https://doi.org/10.4236/jcc.2017.53005
https://doi.org/10.1145/2500499
https://doi.org/10.1080/07421222.1996.11518099
https://arxiv.org/abs/2111.11872

