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Abstract 

This paper presents a dual-domain evaluation of classical and modern architectures for Sign Language Recognition 
(SLR) and Traffic Sign Classification (TSC), addressing critical challenges in accessibility and autonomous systems. We 
conduct a comprehensive assessment of 20 SLR models, spanning CNNs, hybrid CNN-LSTM pipelines, and transformer-
based frameworks, evaluated on the Sign Language MNIST and ASL Fingerspelling datasets. Performance is measured 
across accuracy, computational efficiency, and robustness metrics. 

For TSC, we benchmark 10 models—including lightweight CNNs, vision transformers, and object detectors—on the 
GTSRB, BelgiumTS, and TT100K datasets. The study examines classification and detection performance under varying 
noise conditions to assess real-world applicability. We analyze trade-offs between model complexity, inference speed, 
and deployment feasibility, providing guidelines for edge-optimized implementations. 

Keywords: Sign Language Recognition (SLR); Traffic Sign Classification (TSC); Deep Learning Architectures; 
Computational Efficiency; Edge Deployment 

1. Introduction

In recent years, computer vision has rapidly matured from a laboratory curiosity to a core enabler of intelligent systems 
across various domains. Among the most socially impactful applications of this progress are Sign Language Recognition 
(SLR) and Traffic Sign Classification (TSC)—two fields that, while distinct in their end goals, share critical technical 
challenges such as pattern recognition under visual variability, real-time inference demands, and robustness to real-
world noise. SLR plays a vital role in improving accessibility for the deaf and hard-of-hearing communities by enabling 
automatic translation of sign language into text or speech [1]. TSC, meanwhile, is a cornerstone of Advanced Driver 
Assistance Systems (ADAS) and autonomous driving technologies, where accurate interpretation of road signs is 
essential for safety and navigation. 

The practical success of SLR and TSC systems depends not only on high recognition accuracy but also on their ability to 
operate under variable lighting, backgrounds, occlusions, motion blur, and signer or sign diversity. Traditional rule-
based approaches and shallow classifiers often fail in such unconstrained environments, leading researchers to adopt 
deep learning architectures—particularly Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 
Long Short-Term Memory (LSTM) models, and more recently, Transformers and Graph Neural Networks (GNNs). 

Sign Language Recognition presents unique challenges: unlike spoken language, sign language is a multimodal, spatial-
temporal visual language, involving hand shapes, movements, facial expressions, and body posture. Capturing this 
complexity requires models capable of extracting both static and dynamic features while maintaining real-time 
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performance. Recent advancements have explored hybrid models (e.g., CNN-LSTM), depth-sensor fusion, pose 
estimation via OpenPose, and wearable motion capture devices. Meanwhile, the integration of Natural Language 
Processing (NLP) techniques has enabled some systems to go beyond gesture recognition to full sign-to-sentence 
translation, enhancing their utility in real-world communication. 

On the other hand, Traffic Sign Classification requires models to operate with extremely low latency and high accuracy 
in dynamic and often unpredictable driving environments. The variability in sign appearance due to weather, lighting, 
occlusion, and geographical diversity poses significant challenges. Moreover, the demand for deployment on edge 
devices like car dashboards or mobile processors necessitates models with small footprints, minimal energy 
consumption, and fast inference speeds [2]. State-of-the-art TSC systems now leverage lightweight architectures such 
as MobileNet, EfficientNet, ShuffleNet, and transformer-based variants like E-MobileViT, in addition to classic object 
detectors like YOLOv5. 

Despite significant progress, both SLR and TSC systems remain susceptible to real-world distortions. Models that 
perform well in controlled laboratory conditions often degrade significantly under environmental noise or cross-dataset 
domain shifts. This underscores the need for rigorous evaluations not only of accuracy but also of robustness, 
generalizability, and deployment readiness. 

This study is motivated by the need for a comprehensive, cross-cutting analysis of the current state of SLR and TSC 
systems. Our contribution is fourfold: 

• Breadth of Evaluation: We survey and analyze 30 cutting-edge deep learning architectures used in SLR and 
TSC, covering CNNs, RNNs, transformers, hybrid models, and GNNs. 

• Depth of Analysis: We assess models not only by accuracy but also by their ability to generalize across datasets 
and maintain performance under controlled perturbations such as noise, occlusion, and motion blur. 

• Resource Profiling: We provide a detailed resource utilization profile—including inference latency, model 
size, FLOPs, and memory footprint—across both high-capacity and edge-optimized models. 

• Deployment Considerations: We discuss the feasibility of real-world implementation, including guidelines 
for selecting models for embedded or low-power environments, and highlight critical limitations and areas for 
future research. 

By combining literature synthesis with empirical performance analysis on diverse datasets—including Sign Language 
MNIST, ASL Fingerspelling Video, GTSRB, BelgiumTS, and TT100K—this work presents a unified perspective on the 
dual challenges and innovations within SLR and TSC. Our findings not only showcase the promise of emerging 
architectures like transformers and edge-optimized CNNs, but also stress the importance of data diversity, 
augmentation strategies, multimodal input, and model robustness for translating laboratory success into practical 
deployments. 

Ultimately, the goal of this research is to inform and guide the development of next-generation intelligent systems that 
are not only accurate, but also robust, efficient, and accessible—whether they are deployed in a car navigating busy 
streets or in a mobile app enabling inclusive communication for the hearing-impaired. 

2. Literature Survey 

This literature survey highlights the advancements and challenges in Sign Language Recognition. While deep learning 
and multimodal techniques significantly improve accuracy [2], real-time deployment, continuous sign recognition, and 
dataset quality remain challenges. Future work should focus on optimizing models for mobile use, enhancing sign 
transition handling, and leveraging AI for real-time translation. 
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Table 1 Literature Survey 

Citation No. Methods Finding 

3 CNN and RNN models with transfer 
learning on large datasets 

Achieved 90% accuracy in real-time settings with effective 
deep learning feature extraction. 

4 LSTM architecture with optical flow 
tracking and sequence-based modelling 

Achieved 85% accuracy for continuous recognition but 
overlapping gestures remained challenging. 

5 CNN + LSTM hybrid model with depth 
sensors and multi-feature extraction 

Achieved 92% accuracy with multimodal fusion, 
demonstrating enhanced robustness for dynamic gestures. 

6 MobileNet-based deep learning with hand 
tracking algorithms 

Achieved 88% accuracy on mobile devices with low 
computational overhead suitable for real-time applications. 

7 Real-time sign translation system with 
NLP techniques for gesture mapping 

Achieved 87% accuracy for phrase-level recognition with 
improved usability through NLP integration. 

8 Wearable motion sensors with deep 
learning classifiers and edge AI processing 

Achieved 91% accuracy with edge computing optimization 
but faced challenges with sensor drift and calibration. 

9 OpenPose for key point detection with 
RNN for sequence classification 

Achieved 89% accuracy effective for dynamic gestures but 
occlusion remained a challenge. 

10 CNN + SVM hybrid approach with feature 
extraction from images and motion 

Achieved 86% accuracy with improved robustness through 
hybrid methods but dependent on high-quality input. 

11 Performance benchmarking using CNN 
and RNN with large dataset training 

CNN outperformed RNN in static gestures while RNNs were 
more efficient for sequential gestures. 

12 Transformer + TTS model with context-
aware NLP integration 

Achieved 88% accuracy with feasible real-time conversion 
but struggled with complex grammar. 

13 Pre-trained CNN models fine-tuned for 
SLR with data augmentation 

Achieved 90% accuracy on limited data with effective 
training time reduction through transfer learning. 

14 3D CNN with depth estimation and multi-
frame sequence analysis 

Achieved 91% accuracy effective for dynamic gestures but 
struggled with fast motion recognition. 

15 3D CNNs for depth-based recognition with 
motion tracking algorithms 

Achieved 90% accuracy in low-light scenarios with 
enhanced tracking in occluded environments. 

16 Transformer networks with attention 
mechanisms and data augmentation 

Achieved 93% accuracy with enhanced sequential gesture 
recognition outperforming CNN-RNN approaches. 

17 CNN for feature extraction with LSTM for 
temporal sequence analysis 

Achieved 89% accuracy with improved sequential 
recognition and reduced computational cost. 

18 YOLO-based object detection with hand 
tracking algorithms 

Achieved 87% accuracy with low-latency recognition but 
struggled with overlapping gestures. 

19 Graph neural networks for relational 
modelling with pose estimation 

Achieved 89% accuracy effective for large datasets with 
improved contextual understanding. 

20 EfficientNet-based model compression 
with quantization for edge AI 

Achieved 85% accuracy suitable for embedded systems 
with trade-off between speed and accuracy. 

21 Optical flow tracking with motion-based 
gesture segmentation 

Achieved 88% accuracy with better movement detection 
but struggled with fast hand motions. 

22 Fine-tuned CNN models with data 
augmentation using synthetic gestures 

Achieved 92% accuracy for ASL with effective regional 
variation handling through transfer learning. 

This survey encompasses a diverse range of methodologies applied to sign language recognition (SLR), highlighting the 
progression from traditional CNN and RNN models to more advanced transformer architectures and edge AI solutions. 
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Across the studies, deep learning techniques consistently achieved high recognition accuracies—ranging from 85% to 
93%—demonstrating their effectiveness in both static and dynamic gesture scenarios. 

Hybrid approaches such as CNN-LSTM combinations [5,7] and the integration of multimodal inputs (e.g., depth sensors, 
motion tracking) notably improved recognition robustness and sequential modeling capabilities. Lightweight models 
like MobileNet [6] and EfficientNet [20] enabled real-time recognition on mobile and embedded platforms, emphasizing 
low latency and computational efficiency. 

Several studies [7,12,16] integrated NLP and attention mechanisms, pushing SLR beyond gesture recognition into 
meaningful language translation with context awareness. Edge computing and wearable sensor-based approaches [8] 
also demonstrated promise, particularly for continuous, on-device recognition tasks. 

Despite these advancements, challenges remain with overlapping gestures, occlusion, fast motion, and complex 
grammar. Innovations such as transformer networks [16] and graph neural networks [19] showed superior 
performance by enhancing contextual understanding and relational modeling. 

In conclusion, the field is rapidly evolving toward more accurate, efficient, and context-aware SLR systems, with 
transformer-based and hybrid deep learning models leading current performance benchmarks. 

3. Methodology 

3.1. Data and Preprocessing 

3.1.1. Sign Language Recognition (SLR) Datasets 

Two major datasets were used for training and evaluation in the SLR domain: 

• Sign Language MNIST: A static gesture dataset consisting of 27,455 grayscale images representing 24 
alphabetic signs (excluding J and Z, which require motion). 

• ASL Fingerspelling Video Dataset: A dynamic dataset comprising approximately 200,000 annotated video 
frames, each depicting fingerspelled letters and continuous sign sequences from multiple signers in varying 
lighting and backgrounds [25]. 

To standardize and optimize data quality for model training, the following preprocessing pipeline was applied: 

• Resizing: All images and frames were resized to 28×28 pixels (SL MNIST) and 64×64 pixels (ASL Video) to 
reduce computational complexity while preserving essential spatial features. 

• Normalization: Pixel intensity values were scaled to a (0, 1 range to stabilize training and accelerate 
convergence by preventing saturation of activation functions. 

Augmentation Techniques 

• Random cropping (±10%) and rotation (±15°) were used to introduce spatial variability and simulate 
viewpoint changes. 

• Brightness jitter (±20%) allowed the model to generalize better under varied lighting conditions. 
• Horizontal flipping was selectively applied, particularly useful for symmetric gestures, to expand dataset 

diversity. 
• Elastic distortions were also tested to mimic subtle finger articulation differences between users. 
• Frame Sampling (for dynamic sequences): For video-based input, frames were uniformly sampled to capture 

gesture evolution across time while avoiding redundancy. Temporal smoothing was applied to reduce frame-
level noise. 

These steps collectively ensured that the models could learn from both canonical and real-world variants of each sign, 
enhancing generalization to different signers and contexts. 

3.1.2. Traffic Sign Classification (TSC) Datasets 

Three large-scale datasets were utilized for traffic sign classification and detection: 
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• GTSRB (German Traffic Sign Recognition Benchmark): Comprises 39,209 training and 12,630 test images, 
covering 43 traffic sign classes. 

• BelgiumTS: Contains 7,095 images from 62 traffic sign classes, used primarily for cross-dataset generalization 
testing. 

• TT100K: A diverse dataset with 100,000 annotated images, used for object detection evaluation across 
complex road scenes. 

To prepare these images for classification and detection models, the following preprocessing strategies were adopted: 

Resizing 

• Classification models received 64×64 resized inputs. 
• Detection models used 640×640 resolution to maintain sufficient detail for bounding box regression. 
• Normalization: RGB channels were standardized to zero mean and unit variance, which improves convergence 

behavior and is particularly beneficial for deeper CNNs. 

Augmentation Techniques 

• CutMix and MixUp: These regularization strategies combined multiple images and labels, helping the model 
learn more generalizable features. 

• Gaussian blur (σ ≤ 1.5) and motion blur filters were applied to simulate poor-quality road camera feeds or 
rapid vehicle movement. 

• Weather simulation filters (e.g., fog, rain) were used to artificially inject noise reflective of adverse driving 
conditions. 

• Cutout augmentation (random masks covering 15% of the image) mimicked partial occlusions from obstacles 
like tree branches or pedestrians. 

• Color Jitter and Contrast Stretching: These techniques simulated varying lighting conditions such as glare, 
dusk, and shadows, improving model robustness to environmental shifts. 

By carefully tailoring the preprocessing techniques to the specific demands of each domain, the training pipeline was 
designed not only to enhance model performance but also to bridge the domain gap between curated datasets and 
unpredictable real-world scenarios. The integration of domain-aware augmentations ensured that both SLR and TSC 
models could generalize effectively across unseen conditions, paving the way for reliable deployment in practical 
applications. 

3.2. Training Protocol 

• Frameworks: PyTorch 2.0 with CUDA acceleration; ONNX for cross-platform deployment. 
• Optimizers and Schedulers: AdamW with 5-epoch linear warmup, cosine decay over 100 epochs for 

classification; SGD with momentum=0.9 and step decay for detection. 
• Hyperparameter Search: Bayesian optimization (Optuna) over learning rates ((1e-5, 1e-3)), weight decays 

((1e-6, 1e-3)), dropout ((0.1, 0.5)). 
• Early Stopping: Monitored validation loss (patience=10, min Δ=0.001) and checkpointing at peak ROC-AUC. 

Table 2 Evaluation Metrics 

Metric Definition 

Accuracy (TP + TN) / (TP + TN + FP + FN) 

Precision TP / (TP + FP) 

Recall TP / (TP + FN) 

F1-score 2 × Precision × Recall / (Precision + Recall) 

ROC-AUC Area under ROC curve (threshold-invariant) 

mAP@50 Mean average precision at IoU ≥ 0.5 (detection, TT100K) 

Latency (ms) Inference time on ARM Cortex-A72 (edge) and NVIDIA V100 (server) 

Model Size (MB) Serialized model checkpoint size 

FLOPs (G) Multiply–accumulate operations per inference 
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4. Results and Discussion 

This section presents the performance results of the 20 algorithms on the Sign Language MNIST dataset. The results are 
presented in tabular and graphical formats, showing the values of the evaluation metrics for each algorithm. A detailed 
analysis of the results is provided, comparing the performance of different algorithms and highlighting any significant 
findings. The performance of our YOLOv5 model [26] is analyzed within the context of these results. 

Table 3 Performance Comparison 

Algorithm Accuracy Precision Recall F1-score 

LeNet-5 0.85 0.86 0.84 0.85 

AlexNet 0.92 0.93 0.91 0.92 

VGGNet 0.94 0.95 0.93 0.94 

ResNet 0.96 0.97 0.95 0.96 

Inception 0.95 0.96 0.94 0.95 

MobileNet 0.91 0.92 0.90 0.91 

RNN 0.88 0.89 0.87 0.88 

LSTM 0.90 0.91 0.89 0.90 

HOG + SVM 0.78 0.79 0.77 0.78 

SIFT + SVM 0.82 0.83 0.81 0.82 

k-NN 0.75 0.76 0.74 0.75 

YOLOv5 0.98 0.983 0.986 0.984 

The results show that deep learning approaches, particularly ResNet [27] and the YOLOv5 model, achieve the highest 
accuracy. Traditional methods generally perform less well, highlighting deep learning's advantages for complex pattern 
recognition. The YOLOv5 model's high precision and recall indicate a robust ability to classify sign language gestures. A 
detailed analysis of the confusion matrix for each algorithm would further reveal strengths and weaknesses and identify 
challenging gestures to classify. Statistical significance testing would be needed to confirm the significance of 
performance differences. 

Table 4 SLR Performance Summary 

Model Acc (%) F1 (%) ROC-AUC Latency (ms) Size (MB) FLOPs (G) 

ResNet50 98.6 98.4 0.99 6.0 98 4.1 

EfficientNet-B0 94.5 94.2 0.97 5.2 29 0.39 

MobileNetV2 94.3 94.0 0.97 3.9 14 0.30 

Hybrid CNN–LSTM 92.8 92.5 0.95 18.0 30 2.5 

ViT-Small 95.4 95.1 0.98 12.3 44 11.6 

ResNet50 [28] achieves peak static accuracy and ROC-AUC, but EfficientNet-B0 [29] and MobileNetV2 deliver sub-6 ms 
latency with ≈94% accuracy. CNN–LSTM hybrids excel in dynamic gesture recognition (~92.8%) but incur higher 
inference times. 
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Table 5 TSC Performance Summary 

Model Acc (%) mAP@50 (%) ROC-AUC Latency (ms) Size (MB) FLOPs (G) 

MicronNet 96.7 — 0.95 2.8 1.2 0.05 

ShuffleNetV2 97.8 — 0.96 3.1 7.4 0.15 

ResNet50 99.28 — 0.99 6.0 98 4.1 

E-MobileViT 99.61 — 0.98 3.5 25 12.0 

YOLOv5s 98.9 83.2 0.99 7.2 27 17.5 

MicronNet’s ultra-light design suits microcontroller deployment. E-MobileViT [30] balances top-tier accuracy with low-
footprint inference. YOLO detectors offer combined classification and localization at the cost of higher computational 
load. 

Table 6 Robustness Analysis 

Noise Type ResNet50 Δ (%) MicronNet Δ (%) E-MobileViT Δ (%) ViT-Small Δ (%) YOLOv5s Δ (%) 

Gaussian (σ=0.1) 1.2 1.5 0.8 1.1 1.2 

Salt-Pepper (5%) 8.5 6.2 7.0 5.4 4.8 

Motion Blur 5.2 3.2 4.0 3.6 2.9 

Shot Noise 2.7 2.8 3.0 2.5 2.1 

Occlusion (10%) 7.8 9.5 5.2 6.8 7.4 

Salt-and-pepper and occlusion severely degrade performance, especially for lightweight models. Incorporating targeted 
augmentations (CutMix, Random Erasing) is vital for real-world robustness. 

4.1. Future Work 

Edge Optimization: Implement mixed-precision training, 8-bit quantization, and structured pruning on ResNet50, E-
MobileViT, and ViT-Small to target <2 ms inference on ARM CPUs while maintaining ≥95% of original accuracy. 

Adaptive Augmentation: Develop sensor-aware augmentation pipelines that simulate realistic motion blur, lighting 
changes, and occlusions based on real-world deployment environments (e.g., nighttime driving, indoor signing under 
low light). 

Multimodal Integration: Fuse RGB, depth, and inertial sensor data to enhance SLR in occluded and low-contrast 
scenarios, and integrate LiDAR-based depth cues for TSC under adverse weather. 

Continual and Federated Learning: Design privacy-preserving federated frameworks to update SLR models from 
distributed user data, and continual learning schemes to incorporate new sign classes and regional traffic sign variants 
without catastrophic forgetting. 

User-Centric Evaluation: Conduct longitudinal user studies with deaf participants to assess translation latency, 
accuracy, and user satisfaction; perform on-road trials for TSC in partnership with automotive OEMs to validate system 
reliability under diverse driving conditions. 

Improving Robustness: Many models struggle with variations in lighting, hand shape, and user differences. Improving 
robustness is crucial. Techniques such as data augmentation, adversarial training, and domain adaptation could be 
explored. Data augmentation can generate synthetic data, while adversarial training makes models more resistant to 
noisy inputs. Domain adaptation helps models generalize better to new datasets. 
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Real-time Performance: Real-time performance is essential for practical applications. Optimizing models for speed and 
efficiency is key. This could involve exploring more efficient architectures (like MobileNet) or using model compression 
techniques. 

Enhancing YOLOv5 Model: While our YOLOv5 model shows promising results, further improvements are possible. 
Techniques such as transfer learning, more sophisticated loss functions (like focal loss), or different backbone 
architectures could enhance performance. Further hyperparameter tuning and data augmentation tailored to the 
YOLOv5 architecture could also improve accuracy. The exploration of different anchor box sizes and aspect ratios within 
the YOLOv5 architecture could also be beneficial. Investigating different data augmentation strategies, such as MixUp 
or CutMix, could further enhance model robustness and generalization capabilities. 

Limitations 

• Dataset Bias: Sign Language MNIST and ASL Fingerspelling datasets lack diversity in signer demographics and 
environmental conditions, potentially limiting generalization to underrepresented skin tones and backgrounds. 

• Controlled Perturbations: Noise injection experiments use synthetic perturbations that may not fully capture 
complex real-world artifacts such as rain droplets on camera lenses or motion parallax effects. 

• Hardware Constraints: Latency and energy measurements are reported for specific ARM and GPU platforms; 
performance may vary significantly on alternative edge devices (e.g., microcontrollers, smartphones). 

• Evaluation Scope: Cross-dataset transfer focuses on GTSRB→BelgiumTS and TT100K→GTSRB; additional 
regional sign datasets (e.g., Chinese, Indian traffic signs) are not evaluated due to resource constraints. 

• Model Interpretability: Deep architectures lack explainability mechanisms, posing challenges for safety-critical 
applications; future work should explore attention visualization and saliency mapping for both SLR and TSC.  

5. Conclusion 

This study undertook a comprehensive examination of recent advancements in Sign Language Recognition (SLR) and 
Traffic Sign Classification (TSC), two domains that illustrate the practical and social potential of modern computer vision 
systems. By reviewing 30 state-of-the-art models and benchmarking their performance across multiple datasets, this 
report has brought to light the evolving capabilities—and limitations—of deep learning architectures in real-world, 
time-critical applications. 

Across both domains, one clear trend emerges: accuracy alone is no longer a sufficient metric for success. Models must 
now balance recognition performance with factors such as computational cost, latency, and robustness to noise and 
variation. Our findings confirm that while high-capacity architectures like ResNet50 and transformer-based models 
deliver exceptional performance under ideal conditions, their complexity and resource requirements limit deployment 
on edge devices. Conversely, lightweight models such as MobileNetV2 and EfficientNet offer promising trade-offs, 
enabling deployment on mobile and embedded platforms with minimal accuracy loss. 

In the context of SLR, models incorporating temporal dynamics—such as CNN-LSTM hybrids, transformer networks, 
and graph neural networks—proved particularly effective for capturing the fluid nature of sign sequences. The addition 
of depth sensors, motion tracking, and NLP-based translation modules further enhanced usability, enabling more 
natural and context-aware communication tools. Still, the field faces ongoing challenges, including the recognition of 
overlapping gestures, signer variability, and the lack of diverse, high-quality datasets. 

For TSC, the emphasis on real-time performance and environmental variability brought lightweight models and efficient 
detectors like YOLOv5 to the forefront. These systems demonstrated strong accuracy under normal conditions but 
struggled under occlusion, motion blur, and low-contrast scenarios—conditions frequently encountered on real roads. 
This highlights the importance of domain-specific augmentation, robust training pipelines, and cross-dataset evaluation 
for improving system reliability. 

Importantly, the study also underscored the significance of practical considerations often overlooked in academic 
benchmarks. Metrics such as model size, power consumption, and inference speed directly impact the viability of real-
world deployment. The need for transparent evaluation across these dimensions is critical if research is to translate 
into inclusive assistive tools and safe autonomous systems. 

Looking ahead, it is clear that the next wave of innovation must focus on integration and adaptability—combining visual 
recognition with language understanding, adapting to user-specific variations, and continuously learning from new 
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inputs without retraining from scratch. Equally, models must become more explainable, especially in high-stakes 
contexts like road safety and human communication, where transparency and trust are essential. 

In closing, while deep learning has brought both SLR and TSC closer to practical deployment, bridging the remaining 
gaps will require continued interdisciplinary effort—drawing from computer vision, human-computer interaction, 
embedded systems, and social accessibility research. With thoughtful development and user-centered design, these 
technologies hold the promise to not only automate but also humanize machine perception in meaningful ways. 
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