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Abstract 

This paper explores a novel framework for deploying self-optimizing AI agents designed to enforce real-time security 
policies across dynamic broadband infrastructures. Given the rise of zero-touch networks, increasing traffic 
heterogeneity, and growing cyber threats, conventional reactive security methods are no longer sufficient. We propose 
an architecture that combines reinforcement learning (RL), federated observability, and edge-native threat detection. 
The paper introduces a scalable agent-based model with proactive anomaly detection and self-adjustment capabilities. 
Key contributions include a hybrid decision loop, a risk-weighted policy optimizer, and an adaptive trust index. The 
proposed solution is validated through simulations and real-world telecom KPIs. The results demonstrate enhanced 
mean time to detect (MTTD), reduced false positives, and improved threat response efficiency.  

Keywords:  AI Agents; Self-Optimization; Broadband Infrastructure; Real-Time Security; Federated Learning; 
Network Observability; Reinforcement Learning; Edge AI; Anomaly Detection; Zero-Trust; Threat Intelligence; Telecom 
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1. Introduction

1.1. Convergence of AI and Programmable Networking 

The telecom sector is undergoing a paradigm shift driven by the convergence of artificial intelligence (AI) and 
programmable networking. This evolution is not merely incremental it marks a foundational change in how networks 
are engineered, secured, and optimized. Traditionally, network management has relied heavily on manual 
configurations and static rules that are ill-suited to address the demands of next-generation networks (NGNs), which 
are characterized by high dynamism, heterogeneity, and scale. 

Programmable data planes, powered by technologies such as P4 and extended Berkeley Packet Filter (eBPF), offer fine-
grained control over packet processing at line rate. This programmability has opened the door for embedding real-time 
AI intelligence directly into the data plane a concept referred to as data plane intelligence (Bosshart et al., 2014; Bera et 
al., 2021). In parallel, AI techniques especially machine learning (ML) and deep reinforcement learning (DRL) have 
demonstrated significant potential in automating traffic engineering (TE), anomaly detection, and predictive security 
analytics (Zhang et al., 2021; Wang et al., 2023). 
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The synergy between AI and programmable networking allows for closed-loop automation, adaptive control, and 
proactive threat mitigation, thereby transforming the static fabric of network infrastructure into a self-optimizing and 
self-defending system. 

1.2. Problem Statement 

Despite the promise of programmable networking and AI, existing implementations largely treat traffic engineering and 
security as disjoint domains. Current network infrastructures are still heavily reliant on predefined configurations, 
threshold-based alerts, and rule-based intrusion detection systems (IDS) that fail to adapt to emerging traffic dynamics 
or adversarial behaviors in real time. These static mechanisms cannot keep pace with the increasing complexity of cyber 
threats or the fluctuating bandwidth demands of real-time applications such as augmented reality (AR), autonomous 
systems, and industrial IoT (Doshi et al., 2022; Li & Zhang, 2022). 

Moreover, most AI applications reside in the control plane or management plane, creating latency overhead and limited 
reaction speed. The absence of intelligent, autonomous decision-making at the data plane level results in bottlenecks, 
suboptimal routing, and delayed threat response. There is a critical need for an integrated, real-time, and intelligent 
system that can simultaneously perform traffic optimization and security enforcement within the data plane. 

1.3. Research Objectives 

This research aims to bridge the gap between intelligent traffic control and adaptive security mechanisms by embedding 
AI capabilities directly into the data plane of NGNs. The key objectives of this work are: 

• To design a unified AI-based architecture that integrates TE and IDS functionalities within programmable data 
planes. 

• To implement and validate reinforcement learning (RL) agents capable of optimizing routing paths based on 
real-time network telemetry. 

• To develop an explainable anomaly detection system leveraging eBPF and SHAP-based reasoning for 
transparent intrusion mitigation. 

• To propose novel key performance indicators (KPIs) for real-time observability, including trust scores and 
mitigation ratios. 

• To demonstrate the scalability and efficacy of the proposed system through empirical evaluations in a 
controlled testbed environment. 

1.4. Scope and Contributions 

This paper focuses on the application of AI-based optimization methods within the data plane of NGNs, particularly 
through programmable platforms such as P4 and eBPF. It contributes to both the academic and industrial understanding 
of AI-driven networking by introducing: 

• A novel AI-based data plane framework that leverages reinforcement learning and federated AI models to 
autonomously regulate both traffic patterns and security threats in real time. 

• An integrated architecture for TE and IDS that eliminates the siloed design of current systems by utilizing 
programmable switches and smart probes equipped with in-kernel AI logic. 

• A new set of KPIs for real-time observability, including TE Efficiency (ηTE\eta_{TE}ηTE), Intrusion 
Mitigation Ratio (IMR), and dynamic Trust Scores (TiT_iTi), which enable network operators to quantify AI 
effectiveness and reliability. 

• Open-source implementations of key modules using P4, BPF, and PyTorch, along with visual dashboards and 
explainable AI tools like SHAP to provide human-auditable insights into automated decisions. 

This work addresses a currently underexplored area in AI-driven networking by offering a holistic, real-time, and 
extensible framework that fuses traffic intelligence and security automation within the data plane. 

1.5. Structure of the Paper 

The paper is organized into five chapters 

• Chapter 1: Introduction – Establishes the motivation, context, research problem, and objectives. 
• Chapter 2: Literature Review and Background – Discusses foundational concepts in AI networking, 

programmable data planes, and gaps in existing research. 
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• Chapter 3: System Architecture and Design – Presents the proposed architecture, components, KPIs, and 
toolchains. 

• Chapter 4: Methodology and Implementation – Details the testbed setup, algorithms, reinforcement learning 
pipeline, and data sources. 

• Chapter 5: Evaluation and Discussion – Provides experimental results, analysis, limitations, and future 
research directions. 

2. Literature Review and Background 

2.1. Artificial Intelligence in Network Management 

Artificial Intelligence (AI) has become pivotal in transforming traditional network management into autonomous, self-
optimizing systems. AI techniques particularly machine learning (ML), deep learning (DL), and reinforcement learning 
(RL) have been applied across multiple network layers to handle prediction, anomaly detection, policy automation, and 
security enforcement (Zhang et al., 2021). These AI models leverage data from telemetry, flow statistics, and event logs 
to predict future traffic patterns and detect abnormalities with minimal human intervention. 

Supervised learning methods like Support Vector Machines (SVM), Random Forests (RF), and Convolutional Neural 
Networks (CNNs) have shown considerable success in classification problems such as intrusion detection (Shone et al., 
2018). On the other hand, unsupervised techniques, including k-means and autoencoders, are used for anomaly 
detection where labeled data is scarce (Kim et al., 2020). 

Reinforcement Learning (RL), especially Deep Q-Learning and Actor-Critic methods, has proven effective in adaptive 
routing, bandwidth allocation, and resource scheduling (Wang et al., 2023). These models interact with the environment 
in real time, receiving rewards based on actions taken, thus enabling dynamic decision-making under uncertainty. 

However, many existing implementations remain constrained to the control or management planes, leading to delays 
in enforcement and reduced responsiveness. This motivates the integration of AI logic into the data plane to allow real-
time decision execution. 

 

Figure 1 Architectural blueprint 

2.2. Programmable Data Planes: P4 and eBPF 

Traditional fixed-function routers process packets using predefined logic and ASIC-based forwarding paths, limiting 
network adaptability. The emergence of programmable data planes has transformed packet processing by allowing 
developers to define how packets are handled on the fly. Two dominant technologies in this space are P4 and eBPF. 

• P4 (Programming Protocol-Independent Packet Processors) is a domain-specific language for describing 
how packets are parsed, matched, and modified in switches or NICs (Bosshart et al., 2014). It enables custom 



International Journal of Science and Research Archive, 2025, 15(03), 188–206 

191 

protocol support, dynamic header parsing, and real-time telemetry all while maintaining line-rate processing. 
Tools like BMv2 and P4Runtime have made it possible to prototype and deploy P4-based applications on both 
software switches and programmable hardware like Tofino. 

• eBPF (extended Berkeley Packet Filter), originally a sandboxed VM in the Linux kernel, has evolved into a 
powerful mechanism for monitoring, tracing, and enforcing network policies at kernel level. eBPF allows 
dynamic injections of bytecode at runtime to attach logic to events such as packet arrival or system calls, 
without recompiling the kernel (Bera et al., 2021). Tools like Cilium and XDP (Express Data Path) leverage 
eBPF for high-performance filtering and policy enforcement. 

Despite their power, P4 and eBPF have not been widely fused with AI inference logic for real-time learning and decision-
making within the data plane. This integration remains a nascent field with limited industrial prototypes and even fewer 
academic blueprints. 

2.3. AI-Enhanced Traffic Engineering (TE) 

Traffic Engineering (TE) ensures optimal network performance by managing traffic flows across a network. Classical 
TE methods use precomputed paths (e.g., shortest path, ECMP, MPLS) that are often statically assigned. These methods 
lack adaptability in the face of changing network states or traffic bursts. 

Recent studies propose AI-based TE, where models dynamically allocate paths based on predicted congestion and traffic 
features. For example, DeepTE utilizes CNNs to predict link congestion and reroute traffic proactively (Jiang et al., 2020). 
Others employ graph neural networks (GNNs) to understand topological features and improve routing efficiency. 

While control-plane-based AI-TE solutions offer adaptability, they suffer from feedback latency and suboptimal 
enforcement at the edge. Embedding AI directly in the data plane promises microsecond-level responses to congestion 
events, flow surges, or routing anomalies, but remains largely unexplored. 

2.4. Intrusion Detection and Mitigation Techniques 

2.4.1. Intrusion Detection Systems (IDS) are classified into three categories 

• Signature-Based Detection, like Snort or Suricata, compares packets to known threat signatures. While 
accurate for known threats, they fail to detect novel attacks. 

• Anomaly-Based Detection, often AI-driven, uses statistical or ML models to flag deviations from normal 
behavior (Shone et al., 2018). These models are capable of detecting zero-day threats but can suffer from high 
false positives. 

• Behavior-Based Detection, which analyzes long-term behavioral patterns of devices, users, or flows using AI. 

State-of-the-art approaches combine deep learning with kernel-level monitoring. eXposeIDS and eBPFChain (Kumar et 
al., 2022) demonstrate how eBPF can be used for high-speed packet capture and ML feature extraction. SHAP (SHapley 
Additive exPlanations) has gained traction as a model-agnostic XAI (explainable AI) method that quantifies feature 
contributions in intrusion detection decisions. 

Nevertheless, most IDS implementations rely on asynchronous processing packets are mirrored to userspace for 
analysis, creating delays. A data-plane-native AI-driven IDS could deliver real-time, explainable mitigation by combining 
eBPF with ML inferences and SHAP scoring. 

2.5. Gaps in Current Research 

2.5.1. Although AI has made inroads into networking, several research gaps remain that this work seeks to address 

• Lack of unified frameworks that concurrently address traffic engineering and intrusion detection at the data 
plane level. Most current research treats these as disjoint domains, resulting in inconsistent enforcement and 
duplicated telemetry collection. 

• Underutilization of programmable data planes for AI inference. While P4 and eBPF are programmable, 
they have not been broadly used for on-path AI logic that enables autonomous decision-making directly in the 
packet pipeline. 

• Absence of real-time observability metrics to quantify the trustworthiness, performance, and 
responsiveness of AI-based actions. Existing KPIs like throughput and latency are insufficient to evaluate the 
internal decision-making quality of AI agents in a network context. 
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• Model drift and explainability challenges. AI models can become stale when traffic patterns change. 
Moreover, lack of transparency in DL models limits operator trust and compliance in high-security 
environments. 

• Evaluation environments are not reproducible or scalable. Many published solutions lack open-source 
implementations, testbed environments, or datasets for validation, inhibiting replication and comparison. 

2.6. Summary 

In sum, the convergence of AI and programmable networking has opened new research frontiers, particularly in 
intelligent traffic and threat management. While numerous solutions have been proposed across control and 
management planes, the data plane remains an underexplored frontier for embedding intelligence. This literature 
review underscores the need for a unified, explainable, and real-time AI framework that operates within the 
programmable data plane to deliver both adaptive traffic engineering and intrusion mitigation. The next chapter will 
present such a system designed, implemented, and validated in this study. 

3. System Architecture and Design 

3.1. Overview of the System Design 

Modern next-generation networks (NGNs) demand ultra-low-latency decision-making, dynamic adaptability to 
changing traffic conditions, and robust, fine-grained security enforcement. To meet these requirements, the proposed 
system embeds artificial intelligence (AI) directly within the programmable data plane, leveraging P4 for customizable 
packet processing and eBPF/XDP for high-speed, in-kernel filtering and telemetry. These capabilities are orchestrated 
by a federated AI inference engine, which performs distributed model inference and learning, and a centralized policy 
orchestrator responsible for rule enforcement, trust management, and coordination across components. Together, 
these modules form a unified framework designed to simultaneously optimize traffic flow and mitigate evolving 
network threats. 

The system offers several key capabilities that distinguish it from traditional architectures. First, it supports on-path AI 
inference, enabling decisions to be made in real time at the point of packet traversal without control plane delays. 
Second, it implements a hybrid feedback loop between the control and data planes, allowing continuous policy 
refinement based on real-time telemetry. Third, the system incorporates eXplainable AI (XAI) using SHAP (SHapley 
Additive exPlanations), which provides transparent and interpretable security decisions. Lastly, the architecture 
employs a federated learning model, allowing localized model updates that preserve data privacy while still benefiting 
from collective intelligence across multiple agents. 

3.2. High-Level Architecture Diagram 

3.2.1. Below is a layered view of the full architecture 

 

Figure 2 System Architecture for AI-Driven TE and IDS in Programmable Data Planes 
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3.3. Modular Subsystems and Logic 

To operationalize AI-driven decision-making within the network, the system architecture is modularized into four 
major subsystems, each responsible for a distinct function: inference, data plane processing, control, and observability. 
This modular design enables scalability, maintainability, and functional isolation while maintaining tight coordination 
through well-defined interfaces. 

3.3.1. TE & IDS Agents in Federated Inference Layer 

At the heart of the system’s intelligence is a federated inference layer composed of multiple AI agents operating at the 
edge. The Traffic Engineering (TE) Agent utilizes a Deep Q-Network (DQN) to learn and select optimal paths across 
network nodes based on real-time network conditions. In parallel, the Intrusion Detection System (IDS) Agent employs 
Gradient Boosted Trees (GBT) in combination with SHAP scoring to enable high-accuracy threat detection with model 
interpretability. Each agent independently computes local actions based on its environment and synchronizes its 
learning parameters with a central federated aggregator, following the Federated Averaging (FedAvg) strategy as 
described by McMahan et al. (2017). This approach preserves data locality and privacy while achieving global 
convergence of models across distributed nodes. 

3.3.2. Programmable Data Plane (P4 + eBPF/XDP) 

The programmable data plane is implemented using P4 and eBPF/XDP, which together enable high-speed, context-
aware processing of packets. P4 is used to define match-action tables in software switches (BMv2) or hardware ASICs 
like Intel Tofino, facilitating programmable packet parsing, flow matching, and real-time telemetry collection (Bosshart 
et al., 2014). The following is an example of a basic forwarding rule written in P4 

Script 1 Example P4 Flow Rule 

action forward(macAddr_t dstAddr, bit<9> port) { 

    hdr.ethernet.dstAddr = dstAddr; 

    standard_metadata.egress_spec = port; 

} 

Complementing this, eBPF/XDP provides inline packet filtering and in-kernel telemetry updates. It enables fast packet 
processing without context switching to userspace and plays a critical role in enforcing trust-aware actions. A typical 
XDP function might appear as follows: 

Script 2 Example eBPF Script Snippet 

SEC("xdp") 

int xdp_prog(struct xdp_md *ctx) { 

    // Drop traffic from blacklisted IPs 

    if (is_blacklisted(ctx)) return XDP_DROP; 

    return XDP_PASS; 

} 

This hybrid of programmable user and kernel space functionality ensures efficient and secure packet handling within 
the data plane. 

3.3.3. Orchestrator and Policy Engine 

The orchestrator and policy engine acts as the control layer responsible for deploying and managing policies throughout 
the network. It handles dynamic rule updates using interfaces like P4Runtime and bpftool, facilitates secure model 
rollouts, and enforces access controls to maintain a consistent security posture. To avoid conflicting rules and policy 
churn, the orchestrator implements intent-based networking logic (IBM, 2023), ensuring that rule installations align 
with desired outcomes and global network objectives. 

3.3.4. Telemetry & Visualization Subsystem 

To enable operational transparency and performance monitoring, the system integrates a robust telemetry and 
visualization stack. Prometheus is used to scrape and collect metrics at the node level, such as link utilization, RTT, and 
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packet drops. These metrics are visualized in real time using Grafana, which displays KPI trends including trust scores, 
intrusion mitigation ratios (IMR), and TE efficiency. Additionally, the Elastic Stack (ELK) captures detailed event logs 
and AI decision trails, supporting anomaly analysis and forensic auditing. 

3.4. AI Traffic Engineering Workflow 

The AI-driven traffic engineering workflow is designed to adaptively manage network routing decisions in response to 
fluctuating traffic patterns and congestion states. The system achieves this through a reinforcement learning (RL) agent 
that learns optimal routing strategies based on feedback from the environment. 

3.4.1. DQR-Based Path Selection 

The Deep Q-Routing (DQR) agent forms the core of the AI traffic engineering module. It operates over a 
multidimensional state space that includes parameters such as link utilization, queue size, and round-trip time (RTT). 
The agent observes these metrics and selects routing paths that optimize network performance over time. Its behavior 
is driven by a carefully balanced reward function: 

3.4.2. Reward Function 

𝑅 = −𝛾1 ⋅ RTT + 𝛾2 ⋅ Throughput − 𝛾3 ⋅ Queue Size 

Here, γ1, γ2, γ3 are tunable weight parameters that prioritize lower latency, higher throughput, and minimal queuing 
delays. This reward function guides the learning process, enabling the agent to make context-aware, adaptive routing 
decisions that outperform static or heuristic-based methods. 

3.4.3. DQR Visual Cycle 

 

Figure 3 DQR Agent State-Reward Cycle for Adaptive Traffic Engineering 

3.5. Intrusion Detection and Trust Updating 

The intrusion detection subsystem plays a vital role in identifying malicious activity and dynamically adjusting agent 
privileges through trust metrics. 

3.5.1. Threat Classification Pipeline 

Threat detection is achieved through a pipeline that begins with eBPF hooks at the kernel level, which collect packet 
headers and TCP/IP flags as packets arrive at network ingress points. These features are passed through a machine 
learning ensemble composed of Gradient Boosted Trees (GBT) enhanced with SHAP explainability. The GBT classifier 
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produces a probabilistic output representing the likelihood of malicious behavior, while SHAP values offer per-feature 
interpretability for each decision. Once classification is complete, a trust score is updated for each agent iii using the 
following function: 

𝑇𝑖 = 1 −
𝛼 ⋅ 𝐹𝑃𝑖 + 𝛽 ⋅ 𝐹𝑁𝑖

𝑁events,𝑖
 

Where 𝐹𝑃𝑖 and 𝐹𝑁𝑖 represent the number of false positives and false negatives respectively, while α and β are penalty 
coefficients emphasizing the severity of detection errors. The denominator 𝑁events,𝑖 normalizes the score over the total 
number of classification events associated with the agent. This dynamic trust score forms the basis for adjusting access 
privileges and quarantine decisions. 

3.6. KPIs and Graphical Analysis 

To assess the system’s performance across both operational and security dimensions, several key performance 
indicators (KPIs) are defined and visualized through real-time dashboards and post-hoc analysis. 

3.6.1. TE Efficiency 

Traffic engineering efficiency (𝜂𝑇𝐸) quantifies how well the system optimizes bandwidth across the network compared 
to a static or baseline routing approach. It is defined as: 

𝜂𝑇𝐸 =
∑ 𝐵𝑊𝑖

optimized𝑛
𝑖=1

∑ 𝐵𝑊𝑖
baseline𝑛

𝑖=1

× 100 

where 𝐵𝑊𝑖
optimized

and 𝐵𝑊𝑖
baseline refer to the bandwidth utilization of link iii under intelligent and static routing 

conditions, respectively. A higher value indicates more effective use of network resources. 

3.6.2. Intrusion Mitigation Ratio (IMR) 

To evaluate the success of threat response, the Intrusion Mitigation Ratio (IMR) is introduced, defined by: 

𝐼𝑀𝑅 =
𝐵𝑙𝑜𝑐𝑘𝑒𝑑attacks

𝑇𝑜𝑡𝑎𝑙detected attacks

× 100 

This ratio reflects the percentage of detected attacks that were successfully blocked at the data plane, serving as a 
practical measure of the IDS module’s effectiveness. 

3.6.3. Graph: Trust Score Decay 

A time-series line chart shows 𝑇𝑖 over time, flagging sharp declines as potential agent misbehavior. 

A time-series graph visualizing trust score trajectories 𝑇𝑖  over time is used to detect anomalous agent behavior. Sudden 
drops in trust scores are flagged as indicators of potential misbehavior or model drift, triggering additional analysis or 
quarantine procedures. This visualization is integrated into the Grafana dashboard and cross-linked with log events for 
real-time incident correlation. 

3.7. Deployment Stack 

The architecture is implemented using a layered stack of tools and technologies optimized for programmable 
networking, machine learning, and federated coordination. The data plane is realized using P4 on BMv2 and Tofino 
switches, alongside eBPF/XDP for inline filtering and telemetry. The AI inference layer uses PyTorch, XGBoost, and 
SHAP for model training and explainability. Model coordination is managed using FedAvg and the Flower framework 
for federated learning. Policy control is achieved via P4Runtime, bpftool, and gRPC, while observability is provided by 
Prometheus, Grafana, and the Elastic Stack. Simulation and testing are performed using Mininet, Cilium, and Scapy, 
ensuring realistic experimentation in a controlled testbed. 
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Table 1 Deployment stack – layer and tools 

Layer Tool/Technology 

Data Plane P4 (BMv2, Tofino), eBPF/XDP 

AI Inference PyTorch, XGBoost, SHAP 

Model Coordination FedAvg, Flower (FL Framework) 

Policy Control P4Runtime, bpftool, gRPC 

Monitoring Prometheus, Grafana, Elastic 

Simulation/Testbed Mininet, Cilium, Scapy 

3.8. Algorithms and Scripts 

3.8.1. Deep Q-Learning Algorithm for TE 

The Deep Q-Learning agent for traffic engineering uses a tabular Q-learning approach to iteratively update its value 
estimates based on observed transitions and rewards. The update rule is defined as: 

Script 3 Q-table update for a given state-action pair using the Bellman equation 

def update_q_values(q_table, state, action, reward, next_state, alpha, gamma): 

    max_q_next = np.max(q_table[next_state]) 

    q_table[state][action] = (1 - alpha) * q_table[state][action] + \ 

                             alpha * (reward + gamma * max_q_next) 

    return q_table 

This script updates the Q-table for a given state-action pair using the Bellman equation, with α\alphaα as the learning 
rate and γ\gammaγ as the discount factor. The agent gradually learns to select optimal routes through exploration and 
exploitation. 

3.8.2. Federated Model Aggregation 

Model updates from distributed agents are averaged by the federated aggregator using the Federated Averaging 
(FedAvg) algorithm. The following script demonstrates how weight updates from local models are aggregated: 

Script 4 Aggregation of weight updates from local models 

def federated_avg(model_updates): 

    avg_weights = {} 

    for key in model_updates[0]: 

        avg_weights[key] = sum(update[key] for update in model_updates) / len(model_updates) 

    return avg_weights 

This function ensures that each global round reflects the collective learning across all participating agents without 
exposing raw data, thereby preserving privacy and compliance. 

4. Methodology and Implementation 

4.1. Overview 

This chapter details the experimental environment, models, toolchains, and step-by-step methodology used to 
implement the AI-driven data plane system. It includes the design of reinforcement learning (RL)-based traffic 
engineering agents, explainable AI (XAI)-enhanced intrusion detection systems, and the orchestration of federated 
model updates. Implementation was validated using a reproducible testbed built with open-source frameworks. 
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4.2. Testbed Architecture 

To validate the proposed AI-augmented data plane framework, a comprehensive evaluation testbed was implemented 
using virtualized components and real-world datasets. The environment was built on Mininet, a network emulator that 
allows for the creation of Software-Defined Networking (SDN) topologies with programmable switches. The BMv2 
software switch was deployed to emulate P4-enabled programmable data plane behavior, allowing packet parsing and 
match-action logic to be tested. For kernel-level packet filtering and telemetry extraction, Cilium was configured with 
eBPF/XDP, providing high-speed in-kernel data processing. 

The ML stack powering inference and explainability included PyTorch for training reinforcement learning agents, 
XGBoost for intrusion classification, and SHAP for post-hoc interpretability. Real-time observability was enabled via 
Prometheus for metrics collection and Grafana for dashboard visualization. To support privacy-preserving model 
coordination across distributed agents, Flower (a federated learning orchestration framework) was used to manage 
parameter synchronization between clients and the central aggregator. 

The emulated topology included three programmable edge switches, a centralized orchestrator node, and five AI agents 
deployed as containerized clients. Each agent performed real-time flow analysis and anomaly detection, sharing 
gradient updates with the federated coordinator to improve the global model without sharing raw data. 

 

Figure 4 Federated Learning Cycle for IDS Agent Collaboration 

The network topology includes three programmable edge switches (P4-enabled), a central orchestrator, and five client 
agents (emulated as containers). 

4.3. Dataset and Preprocessing 

4.3.1. Data Sources 

Two primary datasets were utilized to evaluate different facets of the system: one for traffic engineering and another 
for intrusion detection. For traffic engineering, the MAWI dataset (2022) provided time-series telemetry traces 
containing labeled measurements of link utilization, round-trip time (RTT), and congestion events across ISP backbone 
links. For intrusion detection, the system was evaluated using two well-established datasets: CIC-IDS-2017 and UNSW-
NB15, which encompass a variety of attack types including Denial-of-Service (DoS), brute-force logins, infiltration, and 
botnet communications. These datasets were preprocessed to align with feature requirements of both GBT classifiers 
and SHAP explainability layers. 
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4.3.2. Feature Engineering 

Feature engineering was performed by extracting flow-level statistics from captured packet traces using tcpdump in 
conjunction with Argus. Key features included flow duration, bytes per second, packet interarrival time, TCP flag 
entropy, and SYN/ACK counts. To reduce dimensionality while preserving performance, SHAP impact scores were 
computed for each feature. Only the top 10 features with the highest contribution to model output were retained, 
enhancing inference efficiency and interpretability in constrained edge environments. 

4.4. Reinforcement Learning for Traffic Engineering 

4.4.1. Agent Configuration 

The reinforcement learning (RL) agent for traffic engineering was configured to observe a rich state space and make 
context-aware routing decisions. The agent’s state space at time ttt, denoted StS_tSt, included: 

• State Space S: 
• 𝑆𝑡 = {LinkUtil,QueueSize,RTT,Jitter} 
• Action Space A: 

These variables encapsulate network congestion, delay, and flow consistency. The action space AAA consisted of 
routing decisions PiP_iPi across all viable paths: 

Select routing path 

𝑃𝑖 ∈ {𝑃1, 𝑃2, … , 𝑃𝑛} 

The agent aimed to maximize a composite reward function that balanced network efficiency and delay minimization: 

• Reward Function R 

Where α,β,γ, are weighting coefficients tuned to prioritize performance dimensions such as low latency, high 
throughput, and reduced congestion. 

𝑅𝑡 = −𝛼 ⋅ 𝑅𝑇𝑇 + 𝛽 ⋅ Throughput − 𝛾 ⋅ QueueSize 

4.4.2. Training Parameters 

The RL agent was trained over a series of 1,000 episodes, allowing sufficient exploration of the environment and policy 
convergence. The learning rate was set to 0.001, ensuring stable updates without overshooting optimal values. A 
discount factor γ=0.9 was used to give moderate weight to future rewards. An ε-greedy exploration policy was 
employed, with ε decaying from 1.0 to 0.1, encouraging early exploration followed by exploitation of learned policies. 
This configuration provided a well-balanced environment for convergence of the Q-learning algorithm to optimal 
routing strategies. 

Table 2 Training parameters for Q-learnng 

Parameter Value 

Episodes 1000 

Learning Rate 0.001 

Discount Factor γ 0.9 

Exploration ε-greedy decay from 1.0 to 0.1 

4.5. Reward Convergence Graph 

The intrusion detection subsystem leverages both eBPF for data collection and XGBoost for predictive modeling, 
integrating explainability through SHAP to ensure traceable and interpretable decisions. 
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Figure 5 Reward Convergence of Reinforcement Learning over Training Episodes  

4.6. Explainable Intrusion Detection (IDS) with eBPF 

Packets are intercepted using an eBPF hook, which extracts relevant metadata such as source/destination IPs, flags, and 
protocol features. These features are then passed to a pre-trained XGBoost classifier, which outputs a probability score 
representing the likelihood of malicious behavior. In parallel, SHAP (SHapley Additive exPlanations) is applied to 
interpret the classifier’s decision, attributing influence to each input feature. If the classifier’s output exceeds a defined 
threshold (e.g., 0.8), the packet is dropped and the corresponding agent’s trust score is reduced. 

4.6.1. Detection Pipeline 

Packets are intercepted using an eBPF hook, which extracts relevant metadata such as source/destination IPs, flags, and 
protocol features. These features are then passed to a pre-trained XGBoost classifier, which outputs a probability score 
representing the likelihood of malicious behavior. In parallel, SHAP (SHapley Additive exPlanations) is applied to 
interpret the classifier’s decision, attributing influence to each input feature. If the classifier’s output exceeds a defined 
threshold (e.g., 0.8), the packet is dropped and the corresponding agent’s trust score is reduced. 

4.6.2. Pseudocode for eBPF/XGBoost Hybrid 

The pipeline below supports both inline enforcement and post-hoc explainability, aligning with modern security 
standards for zero-trust environments. 

Script 5 Sample pipeline for inline enforcement and post-hoc explainability 

def classify_packet(features, model, shap_explainer): 

    score = model.predict_proba([features])[0][1] 

    shap_values = shap_explainer.shap_values([features]) 

    if score > 0.8: 

        trust_score -= compute_penalty(shap_values) 

        return "DROP" 

    return "PASS" 

4.7. Trust Score Dynamics 

To maintain accountability across distributed agents, each agent iii is assigned a dynamic Trust Score 𝑇𝑖 , which is 
recalculated every 10 seconds using classification metrics. The formula is given by: 

𝑇𝑖 = 1 −
𝛼 ⋅ 𝐹𝑃𝑖 + 𝛽 ⋅ 𝐹𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
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Where: 𝐹𝑃𝑖is False positives, 𝐹𝑁𝑖 is False negatives, 𝑇𝑃𝑖, 𝑇𝑁𝑖 , are True positives/negatives 

𝐹𝑃𝑖is False positives, 𝐹𝑁𝑖 is False negatives, 𝑇𝑃𝑖, 𝑇𝑁𝑖 , are True positives/negatives. The penalty weights α and β allow 
asymmetric emphasis on different types of classification errors, enabling granular tuning of trust policies based on risk 
posture. 

4.8. Federated Learning Cycle for IDS Collaboration 

In a privacy-preserving setting, each IDS agent trains locally on its partitioned network traffic data, using stochastic 
gradient descent (SGD) or a similar optimizer. At defined intervals, the agents send updated model parameters—not 
raw data—to the federated server. The server performs model averaging using the FedAvg algorithm (McMahan et al., 
2017), producing a global model distributed back to the agents. 

4.9. Federated Averaging Equation 

𝑤𝑡+1 = ∑
𝑛𝑖

𝑛

𝑁

𝑖=1

𝑤𝑡
𝑖 

Where 𝑤𝑡
𝑖 represents the local model weights from client i, 𝑛𝑖 is the number of training samples at client i, and ∑

𝑛𝑖

𝑛

𝑁
𝑖=1  is 

the global sample count. This collaborative learning approach ensures generalization while preserving data locality.  

4.10. Real-Time KPI Dashboard 

To enable actionable monitoring, the system exposes real-time key performance indicators (KPIs) through a Grafana 
dashboard, updated via Prometheus and scraped from each node. The primary KPIs include: 

4.10.1. KPIs Tracked 

• TE Efficiency 𝜂𝑇𝐸  
• Packet Loss Rate (PLR) 
• Intrusion Mitigation Ratio (IMR) 
• Trust Score Dynamics 

Grafana modules include a line chart for TE efficiency trends, a histogram for trust score distribution across agents, 
and an alert panel highlighting quarantine events triggered by sharp trust score declines. These visualizations support 
rapid incident detection and historical trend analysis. 

4.10.2. Grafana Dashboard Modules 

• Line chart for TE over time 
• Histogram for trust score distribution 
• Alert panel for agent quarantine 

4.11. Deployment Considerations 

Table 3 Reinforcement Learning Agent Components 

Component Deployment Mode 

RL Agent Containerized via Docker 

XGBoost Model Serialized (. model) + SHAP JSON 

P4 Rules Installed via P4Runtime 

eBPF/XDP Programs Compiled using Clang + bpftool 

Metrics Scraped via Node Exporter 

The deployment of system components was designed for reproducibility and modularity using containerization and 
infrastructure-as-code paradigms. The Reinforcement Learning Agent was deployed in a Docker container with 
persistent Q-tables. The XGBoost model was serialized in. model format, with SHAP configurations stored as a JSON 
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dictionary for interpretability. P4 rules were pushed to BMv2 switches via P4Runtime, while eBPF/XDP programs were 
compiled using Clang and deployed using bpftool. All performance metrics were scraped using the Node Exporter agent 
and visualized via Grafana. 

4.12. Summary 

This chapter established the technical scaffolding behind our AI-driven programmable network. From federated RL 
model training to XAI-enhanced IDS deployment via eBPF, our implementation leverages real-time telemetry, efficient 
model updates, and robust visualization to drive intelligent decisions directly within the data plane. 

5. Evaluation and Discussion 

5.1. Overview of Evaluation Objectives 

This chapter presents the empirical evaluation of the proposed AI-driven programmable data plane framework. The 
assessment is guided by four primary objectives: (1) to compare the performance of the Deep Q-Routing (DQR) 
algorithm against conventional traffic engineering (TE) approaches such as Equal-Cost Multi-Path (ECMP) and static 
shortest path (SP) routing, (2) to assess the accuracy and explainability of the SHAP-enhanced Intrusion Detection 
System (IDS), (3) to monitor trust score dynamics and latency overhead introduced by AI agents, and (4) to validate the 
convergence behavior and resilience of federated learning (FL) under heterogeneous data distribution across agents. 

5.2. Traffic Engineering Performance 

5.2.1. Throughput and Delay Analysis 

The performance of the Deep Q-Routing agent was benchmarked against ECMP and SP routing policies using 
throughput, latency, and packet loss as evaluation metrics. Results demonstrate that DQR significantly outperforms its 
counterparts: achieving an average throughput of 940 Mbps, compared to 820 Mbps for ECMP and 790 Mbps for SP. 
Average latency was reduced to 18.2 ms under DQR, with ECMP and SP showing 25.7 ms and 28.3 ms, respectively. 
Moreover, packet loss under DQR dropped to 0.23%, substantially lower than ECMP’s 0.79% and SP’s 1.41%. The Traffic 
Engineering Efficiency (η_TE) improved by 16.8% over baseline values. A paired t-test confirmed the statistical 
significance of these improvements (p < 0.01), validating the agent's capacity to adaptively reroute flows based on real-
time telemetry. 

Table 4 Throughput and Delay Analysis Outcome 

Metric DQR ECMP Shortest Path 

Avg. Throughput (Mbps) 940 820 790 

Avg. Latency (ms) 18.2 25.7 28.3 

Packet Loss (%) 0.23 0.79 1.41 

TE Efficiency (η_TE) (%) 116.8 102.1 Baseline (100) 

The DQR agent adapts routing in real-time, outperforming static methods under fluctuating link loads (p < 0.01, paired 
t-test). 

5.3. Intrusion Detection System (IDS) Evaluation 

5.3.1. Precision-Recall and XAI Support 

The SHAP-enhanced XGBoost model demonstrated superior classification performance compared to baseline anomaly 
detection techniques. The precision, recall, and F1 score of the SHAP+XGBoost model reached 0.921, 0.906, and 0.913, 
respectively, outperforming both Autoencoders (0.886 F1) and Isolation Forests (0.814 F1). Furthermore, the SHAP 
model provided high-fidelity explanations by ranking the top 10 features contributing to each classification decision, 
thus aligning with eXplainable AI (XAI) principles and enabling regulatory transparency. 
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Table 6  Precision-Recall and XAI  Ranking 

Model Precision Recall F1 Score SHAP Explainability 

SHAP + XGBoost 0.921 0.906 0.913 ✓ (Top 10 features) 

Autoencoder 0.843 0.933 0.886 ✗ 

Isolation Forest 0.765 0.871 0.814 ✗ 

5.3.2. Mitigation Efficiency 

IMR (Intrusion Mitigation Ratio) 

The Intrusion Mitigation Ratio (IMR), which quantifies the effectiveness of blocking detected threats, was calculated as 
follows: 

IMR =
𝐵𝑙𝑜𝑐𝑘𝑒𝑑attacks

𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑attacks

× 100 =
1823

1935
× 100 ≈ 94.2% 

In addition, the average trust score Ti across agents stabilized at 0.87 post-policy update, suggesting a consistent 
recovery mechanism following initial misclassifications. 

5.3.3. Trust Score Volatility (Ti) 

Mean trust score stabilized at 0.87 after policy retraining. 

5.4. Federated Learning Assessment 

5.4.1. Accuracy and Convergence 

The federated IDS agents participated in 20 rounds of training. Initial classification accuracy was measured at 84.3% 
and improved to 96.5% by the final round. The global model converged after approximately 14 communication rounds, 
with a synchronization latency averaging 340 milliseconds per round, confirming the feasibility of real-time 
collaborative learning in edge environments. 

Over 20 training rounds 

• Initial accuracy: 84.3% 
• Final accuracy: 96.5% 
• Convergence time: ~14 rounds 
• Sync Latency: ~340 ms per round 

5.4.2. Client Contribution Diversity 

To assess fairness in the federated model aggregation, client update weights were normalized, and entropy values were 
computed. Results confirmed that no individual agent contributed more than 30% of the update weight in any given 
round, thereby mitigating the risk of skewed global models and supporting democratic learning across clients. 

5.5. System-Wide Observability Insights 

Observability data captured through Grafana dashboards offered several valuable operational insights. Drift alerts were 
automatically triggered in 2 out of 5 agents during a simulated burst DoS attack, highlighting the responsiveness of the 
telemetry pipeline. Policy enforcement delay (PED) remained under 200 ms in 98.7% of rule installations, confirming 
the efficiency of the control channel. The Trust Score Heatmap provided temporal and spatial visibility into agent 
behavior, enabling proactive quarantine of misbehaving nodes prior to large-scale false positive spikes. 

5.5.1. From the integrated Grafana dashboard 

• Drift Alerts: Triggered in 2/5 agents during burst DoS simulation. 
• ule Push Latency (PED): Maintained < 200 ms in 98.7% of cases. 
• Trust Score Heatmap: Detected decaying trust in 2 nodes before IDS false positive spikes. 
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5.6. Strengths of the Proposed Framework 

• The system introduces several innovations that contribute to its effectiveness 
• A unified Traffic Engineering and IDS framework, embedded within the data plane, significantly improves 

latency and synchronization between routing and security decisions. 
• The use of SHAP-based explainability ensures transparency, enabling the system to meet compliance 

requirements in regulated environments. 
• The low-footprint reinforcement learning agent was optimized for deployment on edge platforms without 

requiring hardware acceleration. 
• A federated architecture promotes data privacy and scalability while preserving model generalizability 

across diverse environments. 
• Finally, an automated observability loop, integrating Prometheus and Grafana, accelerates anomaly detection 

and adaptation. 

5.7. Limitations 

Despite the strengths, the proposed system exhibits several limitations 

• Computational Overhead: Edge-hosted RL agents implemented in PyTorch consumed between 8–15% of CPU 
resources during inference, which may impact performance on resource-constrained devices. 

• Model Drift Sensitivity: Seasonal variations in traffic patterns affected the stability of SHAP values, especially 
for non-normalized feature distributions. 

• Quarantine Delay: Enforcement actions triggered by low trust scores had a lag of approximately 5 seconds, 
which may be critical in high-speed threat propagation scenarios. 

• Training Data Bias: The IDS model’s detection rate dropped when confronted with novel stealth attack 
signatures not present in the CIC-IDS-2017 dataset, indicating a need for continual model retraining and 
diversification. 

5.8. Future Work 

The proposed architecture opens multiple promising directions for future research: 

• Deployment of lightweight inference models (e.g., TinyML) on SmartNICs for in-situ threat classification and 
routing. 

• Policy distillation techniques to compress and accelerate RL models without sacrificing performance. 
• Cross-domain trust propagation through distributed trust scores to foster collaborative reputation systems. 
• Quantum-resilient policies incorporating lattice-based cryptographic primitives into orchestration for post-

quantum security. 
• Zero-touch telemetry using AI-based flow sketching and packet summarization to reduce monitoring overhead 

without sacrificing observability.  

6. Conclusion 

This chapter empirically validates the proposed AI-driven data plane architecture, demonstrating its superiority over 
traditional routing and security mechanisms in terms of adaptability, latency, and observability. The integration of 
reinforcement learning, explainable intrusion detection via SHAP, and federated model training yields a cohesive, 
scalable, and privacy-aware framework. These innovations collectively represent a forward leap in the design of 
intelligent, resilient, and programmable network infrastructures suitable for next-generation telecom environments.  
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