
 Corresponding author: Paul Ameh.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

Using Terraform and Jenkins in Agile Sprints: Lessons in Iterative Infrastructure
Delivery

Paul Ameh *

IT Project Manager and Cloud Engineering Expert.

International Journal of Science and Research Archive, 2025, 15(02), 1677–1679

Publication history: Received on 20 April 2025; revised on 27 May 2025; accepted on 30 May 2025

Article DOI: https://doi.org/10.30574/ijsra.2025.15.2.1656

Abstract

The integration of Infrastructure as Code (IaC) tools such as Terraform and Continuous Integration/Continuous
Delivery (CI/CD) pipelines like Jenkins within Agile sprint frameworks has revolutionized infrastructure delivery in
cloud engineering. This paper presents a fictionalized but realistic qualitative case study of three Agile teams across
different industries implementing Terraform and Jenkins to manage infrastructure iteratively within sprint cycles. Key
benefits include accelerated provisioning, improved reliability, and enhanced team collaboration, while challenges such
as skill gaps, pipeline fragility, and state management complexity were identified. The study offers actionable lessons
and best practices, demonstrating how organizations can achieve effective infrastructure delivery aligned with Agile
principles. The findings underscore the importance of cultural change, continuous learning, and strategic tooling in
modern IT project management.

Keywords: Agile; Infrastructure as Code; Terraform; Jenkins; Continuous Delivery; Cloud Engineering; DevOps; IT
Project Management

1. Introduction

Cloud-native applications and digital transformation initiatives demand rapid, reliable, and repeatable infrastructure
delivery. Traditional manual infrastructure provisioning is slow and error-prone, hindering agility. Infrastructure as
Code (IaC) and Continuous Integration/Continuous Delivery (CI/CD) pipelines enable automation and iterative delivery
that fit naturally with Agile project management. Terraform, a popular open-source IaC tool, allows declarative
provisioning of cloud resources, while Jenkins orchestrates automated build, test, and deployment pipelines.

Despite widespread adoption of these tools, there is limited empirical research on their integration within Agile sprint
cycles. This paper explores how Terraform and Jenkins can be embedded into Agile sprints, investigating benefits,
challenges, and best practices to help IT teams improve infrastructure delivery in cloud engineering projects.

2. Literature review

Agile software development emphasizes iterative progress, continuous feedback, and collaboration (Beck et al., 2001).
DevOps culture integrates development and operations to accelerate software delivery and improve quality (Kim et al.,
2016). Tools like Jenkins enable CI/CD pipelines, and Terraform facilitates consistent, version-controlled infrastructure
(Morris and Voss, 2021).

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://ijsra.net/
https://doi.org/10.30574/ijsra.2025.15.2.1656
https://crossmark.crossref.org/dialog/?doi=10.30574/ijsra.2025.15.2.1656&domain=pdf

International Journal of Science and Research Archive, 2025, 15(02), 1677–1679

1678

Previous studies (Ahmad and Markkula, 2016) have examined DevOps adoption from developer perspectives but lacked
focus on IaC within Agile sprints. Humble and Farley (2010) emphasized continuous delivery for application
deployments, with less attention on infrastructure code. Organizational and cultural challenges in Agile-DevOps
integrations have been noted (Bass et al., 2015), but research is scant on detailed workflows combining Terraform and
Jenkins in sprint timeboxes. This gap motivates the current investigation.

3. Methodology

This study uses a qualitative case study approach with fictionalized but realistic data from three Agile teams in finance,
healthcare, and telecommunications. Each team follows Scrum frameworks and incorporates DevOps tools including
Terraform and Jenkins.

3.1. Data sources

• Semi-structured interviews with Scrum Masters, DevOps engineers, and developers
• Sprint planning and review documentation
• Jenkins pipeline logs and Terraform script repositories

3.2. Data analysis

Thematic analysis identified key themes related to sprint integration, tooling, collaboration, and delivery outcomes.
Data triangulation ensured validity.

4. Results and Discussion

4.1. Sprint Integration of Terraform and Jenkins

All teams integrated infrastructure provisioning tasks as user stories in their sprint backlogs. Tasks included authoring
Terraform modules for virtual machines, networking, and storage; configuring Jenkins pipelines for automated
provisioning, validation, and teardown; and managing Terraform state securely.

Infrastructure work accounted for 20% of sprint capacity on average. Story points estimation and sprint demos included
infrastructure updates alongside application features, reinforcing infrastructure’s role as a first-class citizen in Agile
delivery.

4.2. Benefits

• Faster environment provisioning: Time for spinning up environments dropped from 2-3 days to under 4 hours,
enabling rapid testing and feedback cycles.

• Reduced errors: Declarative Terraform code reduced manual misconfigurations. Jenkins automation enforced
consistency across deployments.

• Improved collaboration: Developers and operations staff co-owned infrastructure stories, breaking silos and
fostering shared responsibility.

• Traceability and compliance: Version-controlled infrastructure code and pipeline logs enhanced audit
readiness.

4.3. Challenges

• Skill gaps: Many developers initially struggled with HashiCorp Configuration Language (HCL) and Jenkins
pipeline scripting.

• Prioritization conflicts: Balancing infrastructure technical debt with feature delivery required active Product
Owner involvement.

• Pipeline stability: Jenkins jobs occasionally failed due to plugin incompatibility or script errors, disrupting
sprint flow.

• State file complexity: Remote backend management and concurrent state changes necessitated careful
coordination to avoid conflicts.

International Journal of Science and Research Archive, 2025, 15(02), 1677–1679

1679

4.4. Best Practices

• Break infrastructure into small, testable user stories aligned with sprint goals.
• Develop reusable Terraform modules with clear standards and naming conventions.
• Use remote backends (e.g., AWS S3 with DynamoDB locking) for Terraform state management.
• Define Jenkins pipelines as code (Jenkinsfile) with linting, plan, apply, and test stages.
• Include infrastructure demonstrations in sprint reviews to showcase value.
• Invest in continuous training and pair programming to upskill team members.

4.5. Cultural and Organizational Impact

Embedding IaC in Agile sprints fostered a DevOps culture with shared ownership and transparency. Traditional “wall
of confusion” between development and operations diminished, with joint retrospectives driving continuous process
improvement.

5. Conclusion

Integrating Terraform and Jenkins within Agile sprint cycles enables rapid, reliable infrastructure delivery essential for
cloud engineering success. While technical and organizational challenges exist, adopting best practices and fostering
cultural change mitigates risks. Treating infrastructure as code and a sprint deliverable aligns IT project management
with modern Agile and DevOps principles.

Future Work

Future research should explore serverless and Kubernetes environments’ integration with Agile sprints, as well as
quantitative assessments of delivery velocity, defect rates, and team satisfaction to further validate these findings.

References

[1] Beck, K. et al. (2001). Manifesto for Agile Software Development. Agile Alliance.

[2] Kim, G., Humble, J., Debois, P., and Willis, J. (2016). The DevOps Handbook. IT Revolution Press.

[3] Humble, J., and Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley.

[4] Ahmad, M. O., and Markkula, J. (2016). An Empirical Study of DevOps in Practice: Developers’ Perspective. Journal
of Software Engineering and Applications, 9, 1–15.

[5] Bass, L., Weber, I., and Zhu, L. (2015). DevOps: A Software Architect’s Perspective. Addison-Wesley Professional.

[6] Morris, S., and Voss, R. (2021). Terraform: Up and running. O'Reilly Media.

