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Abstract 

Prostate cancer remains one of the most prevalent malignancies among men globally, with early diagnosis complicated 
by its heterogeneous characteristics and the constraints of existing diagnostic approaches. This research introduces an 
advanced framework that integrates Convolutional Neural Networks (CNNs) with Vision Transformers (ViTs) to 
enhance the classification of prostate cancer using MRI scans. To mitigate class imbalance and improve generalization, 
we employed a combination of dual synthetic oversampling strategies along with data augmentation techniques. Our 
preprocessing workflow was designed to suppress image noise while maintaining edge integrity and enhancing local 
contrast without introducing artifacts. For robust feature representation, we extracted both Gray-Level Co-occurrence 
Matrix (GLCM) features and shape descriptors to capture the intricate patterns within the MRI data. Among the tested 
deep learning models, the ConvNeXt architecture delivered the highest performance. Specifically, using the SMOTE 
technique, it achieved an F1-score of 97.21% and a Matthews Correlation Coefficient (MCC) of 95.32%, while the 
application of ADASYN led to further gains, with an F1-score of 98.82% and an MCC of 97.86%. To support real-time 
clinical use, we also developed a web-based platform capable of analyzing prostate MRI scans interactively. These 
findings highlight the effectiveness and interpretability of our proposed method in facilitating accurate prostate cancer 
diagnosis.  
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1. Introduction

Prostate cancer originates in the prostate gland, a vital component of the male reproductive system [1]. It develops 
when abnormal genetic changes lead to uncontrolled cell proliferation, eventually forming tumors. These tumors can 
vary in behavior from indolent, asymptomatic growths to highly aggressive types that metastasize to distant sites such 
as bones and lymph nodes. According to statistics from the Global Cancer Observatory (2020), prostate cancer 
accounted for approximately 1.4 million new diagnoses globally, with around 375,000 associated deaths [2]. In the 
United States alone, the American Cancer Society estimated over 268,000 new cases and nearly 34,000 deaths in 2022. 
The rising prevalence of prostate cancer underscores the pressing need for improved diagnostic and screening 
technologies capable of identifying the disease at an early and more treatable stage. 

Precise classification of prostate cancer plays a pivotal role in enhancing patient outcomes and prolonging survival [3]. 
Early-stage detection allows for the implementation of less invasive and more targeted treatment options, including 
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active surveillance, surgical removal of the prostate, or localized radiation therapy [4]. In contrast, delayed identification 
often results in disease progression to advanced stages, complicating treatment efforts and significantly diminishing 
survival prospects. Among current imaging modalities, Magnetic Resonance Imaging (MRI) stands out for its exceptional 
soft tissue contrast and multiparametric imaging capabilities, making it a key tool in the early detection and precise 
localization of prostate tumors [5]. 

Although MRI has significantly advanced prostate cancer diagnostics, several limitations continue to hinder its 
effectiveness. One major challenge is the reliance on radiologist expertise for interpreting prostate MRI scans, which 
introduces subjectivity into the diagnostic process. Even with structured frameworks like the Prostate Imaging 
Reporting and Data System (PI-RADS), variability in assessments among clinicians can lead to inconsistent evaluations 
and possible diagnostic errors. Additionally, manual analysis of MRI images is often labor-intensive, potentially delaying 
critical treatment decisions [6]. The heterogeneous nature of prostate tumors, reflected in a wide range of 
histopathological patterns categorized by the Gleason grading system, adds further complexity to accurate diagnosis 
and prognostication. These issues underscore the urgent demand for automated, rapid, and reliable diagnostic solutions 
that can enhance radiological assessments and support timely clinical interventions. 

In recent years, transfer learning approaches have gained traction for automating medical image analysis, offering 
improvements in both diagnostic precision and reproducibility. Pretrained Convolutional Neural Networks (CNNs) have 
been extensively applied to image classification problems; however, their effectiveness can be constrained by the need 
for large, well-labeled datasets and their limited capacity to model long-range spatial dependencies. This challenge 
becomes more pronounced in medical imaging, where abnormal cases are often underrepresented, leading to 
significant class imbalance that can hinder training and generalization [7]. Vision Transformers (ViTs) present a 
promising alternative by efficiently modeling contextual relationships across the entire image, thereby enhancing 
generalization capabilities. Their attention-based architecture allows for more effective handling of imbalanced data 
distributions and offers improved robustness. Furthermore, the inherent interpretability of the self-attention 
mechanism in ViTs enables clearer understanding of which image regions influence model decisions, contributing to 
more transparent and explainable AI systems in clinical settings. 

This research aims to design a Vision Transformer (ViT)-based framework for the precise classification of prostate 
cancer from MRI images. To overcome issues related to class imbalance and limited dataset size, we employed two 
synthetic oversampling techniques: the Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic 
Sampling (ADASYN). These methods enhance the representation of underrepresented classes and contribute to a more 
balanced training process. Our approach incorporates hybrid deep learning architectures that fuse Convolutional 
Neural Networks (CNNs) with transformer-based attention mechanisms, aiming to improve both model interpretability 
and generalization capability. Furthermore, we explored multiple feature extraction strategies to optimize classification 
outcomes. The overarching objective is to deliver an effective and reliable tool for early prostate cancer detection. The 
complete methodological pipeline is depicted in Figure 1. Key contributions include: 

• Introduced an innovative Vision Transformer-based framework that improves both classification accuracy and 
model interpretability by effectively combining localized feature extraction with global context modeling. 

• Implemented advanced preprocessing techniques such as Non-Local Means (NLM) denoising and Contrast-
Limited Adaptive Histogram Equalization (CLAHE) to improve image clarity while maintaining essential 
anatomical structures. 

• Enhanced model generalization by applying a dual synthetic oversampling approach in combination with 
sophisticated data augmentation methods to mitigate class imbalance and dataset limitations. 

• Built a web-based platform incorporating the top-performing proposed model to enable real-time prostate MRI 
analysis, facilitating prompt and informed clinical decision-making. 
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Figure 1 Overview of proposed methodology 

The remainder of this paper is organized as follows: Section II reviews existing literature relevant to our research. 
Section III details the proposed methodology, encompassing preprocessing techniques and the design of the model 
architecture. Section IV showcases the experimental results and their corresponding analysis. Section V interprets the 
findings, highlights the study’s limitations, and Section VI concludes the work while outlining directions for future 
investigation. 

2. Related Work 

Recent research has increasingly leveraged machine learning (ML) and deep learning (DL) techniques to enhance 
prostate cancer detection and classification. For instance, Ali et al.  [8] introduced a two-dimensional CNN model applied 
to MRI scans, attaining an impressive AUC of 0.9993 following preprocessing to reduce image noise. Nonetheless, the 
model was designed for binary classification, which limits its utility in multiclass diagnostic scenarios. Moreover, the 
study’s robustness remains uncertain due to the lack of validation across diverse datasets. In another effort, Malibari et 
al.  [9] utilized EfficientNet for feature extraction and fuzzy K-nearest neighbors (FKNN) for classification, reporting an 
accuracy of 85.09%. Although the model showed promise, its dependence on a particular MRI dataset raises concerns 
regarding broader applicability. Singhal et al.  [10] explored a deep learning approach for grading prostate cancer using 
Whole Slide Images (WSIs), achieving 89.4% accuracy on internal datasets and 83.1% on external ones. While these 
results are encouraging, the performance drop during external validation underscores the need for more robust domain 
adaptation techniques to ensure clinical reliability. 

Alzboon et al.  [11] employed a random forest algorithm trained on clinical and radiological data from a cohort of 400 
patients, achieving a classification accuracy of 92% along with strong sensitivity and specificity metrics. Nevertheless, 
the absence of deep learning integration indicates room for further performance improvements. In a separate study, 
Salvi et al.  [12] proposed a deep learning-based method utilizing immunohistochemical (IHC) staining and image 
segmentation, which attained a Dice Score of 90.36%. While effective, the model’s dependency on a specific staining 
protocol could hinder its generalizability to other diagnostic imaging modalities. Gu et al.  [13] introduced NAFNet, a 
deep learning framework designed to predict adverse pathology and biochemical recurrence-free survival (bRFS) from 
MRI scans. The model achieved an AUC of 0.915 and an accuracy of 85.0%, outperforming ResNet50. However, since 
the study focused exclusively on pre-treatment MRI data, its effectiveness in post-treatment or longitudinal follow-ups 
remains uncertain. 

Zhao et al.  [14] introduced a deep learning-based model aimed at identifying clinically significant prostate cancer 
(csPCa) using biparametric MRI (bpMRI). When integrated with the Prostate Imaging Reporting and Data System (PI-



International Journal of Science and Research Archive, 2025, 15(02), 1505–1517 

1508 

RADS), the model exhibited strong specificity. However, its performance declined in one external validation cohort, 
indicating a need for further enhancements to ensure broader generalizability across diverse clinical datasets. In 
another study, Bygari et al.  [15] designed a multistage deep learning pipeline for prostate cancer grading, utilizing a 
UNet architecture for image segmentation and combining Xception, ResNet-50, and EfficientNetB7 in an ensemble for 
grading. Trained on the Prostate Cancer Grade Assessment Challenge dataset, the model achieved a notable accuracy of 
92.38%. Despite its success on a large dataset, additional external validation is necessary to assess its practical clinical 
utility. Additionally, Saiful et al.  [16], [17] presented a highly optimized VGG-16 CNN framework for brain tumor 
classification, reaching an accuracy of 99.5% on a dataset of 6,328 MRI images spanning three tumor types. This 
approach outperformed earlier models in terms of precision and robustness. 

A common limitation among many existing models is their reliance on small, homogeneous datasets, which restrict their 
applicability across varied patient populations and clinical environments. These models also tend to underperform 
when exposed to domain shifts, as discrepancies in data distributions often lead to noticeable drops in accuracy. 
Moreover, comprehensive evaluation metrics such as Matthews Correlation Coefficient (MCC) and Precision-Recall AUC 
(PR AUC) are frequently neglected, resulting in inflated assessments of model effectiveness. To overcome these 
challenges, advanced architectures like Vision Transformers (ViTs) are essential, as they excel at capturing global 
contextual patterns and adapting to diverse datasets. Furthermore, deploying ViT-based systems in real-time web 
applications can significantly improve diagnostic efficiency and streamline clinical decision-making.  

3. Methodology 

3.1. Data Description 

This study utilized a publicly accessible dataset comprising 647 MRI scans. The data included 447 scans categorized as 
Prostate Cases which encompassed both benign prostatic hyperplasia and prostate cancer and 200 scans from 
Brachytherapy Cases involving patients receiving radiation treatment for prostate cancer. To ensure balanced 
representation across subsets, the dataset was partitioned into 80% for training, 5% for validation, and 15% for testing. 
Specifically, the training set included 358 Prostate Cases and 160 Brachytherapy Cases, while the validation set 
consisted of 23 Prostate Cases and 10 Brachytherapy Cases. The remaining 67 Prostate Cases and 30 Brachytherapy 
Cases were allocated to the testing set [18]. Figure 2 provides representative MRI samples from each category, 
illustrating the anatomical differences and treatment-specific characteristics. 

 

Figure 2 Sample PCa and BC images from the dataset 

3.2. Data Pre-processing 

To ensure uniformity across the dataset, all MRI images were resized to 224×224 pixels using bilinear interpolation  
[19]. Z-Score Normalization was then applied to standardize pixel intensity values, minimizing inconsistencies 
introduced by different imaging equipment and scanning protocols [20]. To enhance image quality, Non-Local Means 
(NLM) denoising was used to suppress background noise while retaining critical anatomical structures. Contrast-
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Limited Adaptive Histogram Equalization (CLAHE) further improved local contrast without introducing noise 
amplification. To address the issue of class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) and 
Adaptive Synthetic Sampling (ADASYN) were independently utilized, generating two distinct balanced training sets. 
This dual approach enabled comprehensive evaluation of oversampling strategies and facilitated effective learning from 
both uniformly and adaptively balanced data [21]. To increase the variability and robustness of the training dataset, we 
applied a range of augmentation techniques. These included rotations of ±15 degrees to simulate different orientations, 
translations of ±10% to represent spatial shifts, and scaling within the range of 0.9 to 1.1 to account for size variations. 
Horizontal and vertical flipping was also performed to introduce mirrored perspectives. Additionally, brightness 
adjustments of ±10% were used to emulate varying illumination conditions [22]. MixUp augmentation was 
incorporated to blend image-label pairs, promoting generalization. Lastly, Random Erasing was employed to randomly 
mask regions within the images, helping the model better handle occlusions and missing data. 

3.3. Feature Extraction 

3.3.1. Gray-Level Co-occurrence Matrix (GLCM)  

This method is used to characterize the spatial relationships between voxel intensity values, effectively capturing the 
textural complexity found in prostate MRI scans [23]. By analyzing the frequency of voxel intensity pairs that occur in 
specific spatial arrangements, it uncovers structural patterns that may indicate pathological tissue changes. For an 
image with M gray levels, the Gray-Level Co-occurrence Matrix (GLCM) is constructed, as shown in Equation (1). In this 
context, N(i, j) refers to the count of voxel pairs with intensity levels i and j, occurring at a predetermined distance and 
angle. The matrix is then normalized by the total number of these voxel pairs, N, ensuring that the resulting features are 
scale-invariant and consistent across different image dimensions. 

3.3.2. Several statistical features are derived to assess textural properties  

The feature Energy (E), defined in Equation (2), assesses the uniformity of the voxel pair distribution within the GLCM, 
with higher values indicating more homogeneous textures. Entropy (H), shown in Equation (3), captures the degree of 
randomness or complexity in the intensity distribution—higher entropy reflects greater heterogeneity. Contrast (C), as 
presented in Equation (4), measures the difference in intensity between a voxel and its neighboring voxels, offering 
insight into edge strength and local variation. Lastly, Homogeneity (H⇕) in Equation (5) evaluates how closely the 
elements in the GLCM are distributed toward its diagonal, with higher values indicating more uniform or smooth 
textures [24]. 

E =∑∑[C(i, j)]2
M

j=1

M

i=1

  
(2) 

ℋ = −∑∑C(i, j)log(C(i, j))

M

j=1

M

i=1

 
(3) 

𝒞 =∑∑(i − j)2C(i, j)

M

j=1

M

i=1

 
(4) 

ℋ𝓂 =∑∑
C(i, j)

1 + |i − j|

M

j=1

M

i=1

 
(5) 

3.3.3. Shape Features 

This approach captures the geometric characteristics of the prostate, providing valuable insights into its structural 
integrity. Accurate segmentation of the prostate boundaries allows for the extraction of key morphological features such 
as Volume (V), Surface Area (S), Sphericity (Ψ), and Compactness (C), which can help identify potential abnormalities 
[25]. Volume, as defined in Equation (6), refers to the total count of voxels (N_v) identified as prostate tissue, serving as 
a measure of gland size. Surface area, calculated using Equation (7), quantifies the extent of the prostate's boundary. 
Sphericity, outlined in Equation (8), indicates how closely the prostate's shape approximates that of a perfect sphere, 

C(i, j) =
N(i, j)

N
 

(1) 
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while Compactness, described in Equation (9), assesses the regularity and smoothness of the shape. By integrating these 
shape-based descriptors with texture features derived from the Gray Level Co-occurrence Matrix (GLCM), the model 
achieves a comprehensive understanding of both internal tissue variations and the prostate’s overall anatomical form. 

𝑉 =∑1

𝑁𝑣

𝑣=1

 

(6) 

𝑆 =∑𝐴(𝑠)

𝑁𝑠

𝑠=1

 

(7) 

Ψ =
𝜋1/3(6𝑉)2/3

𝑆
 

 

(8) 

𝐶 =
𝑆

𝑉2/3
 

(9) 

3.4. Model Training 

3.4.1. ConvNeXt 

ConvNeXt is a modern architecture inspired by transformers that enhances traditional convolutional neural networks 
(CNNs) by integrating larger convolutional kernels and incorporating layer normalization [26]. It also eliminates 
unnecessary components, such as fully connected layers. These improvements facilitate more efficient processing of 
high-resolution medical images, like prostate MRI scans, without sacrificing predictive performance. In ConvNeXt, the 
convolution operation involves an input feature map (X), a convolutional kernel (W), and a bias term (b). The notation 
(𝑧𝑖) denotes the logit corresponding to class (i), while (n) represents the total number of output classes. By combining 
the robustness of CNNs with streamlined design principles, ConvNeXt is particularly effective at extracting detailed and 
localized features from complex medical images. The use of larger kernels increases the receptive field, allowing the 
network to capture both fine-grained details and broader contextual patterns within the image simultaneously. 

P(yi|X) =
ezi

∑ ezjn
j=1

 
(10) 

Y = Conv(X,W) + b (11) 

3.4.2. CoAtNet 

This hybrid model architecture combines convolutional layers with transformer-based self-attention mechanisms, 
taking advantage of both approaches. Convolutional layers effectively extract localized features, such as textures and 
edges, while self-attention modules analyze interactions between different spatial positions. This enables the model to 
learn long-range dependencies and understand global contextual information. As described in Equation (12), the self-
attention mechanism uses query (Q), key (K), and value (V) matrices, where (dk) represents the dimensionality of the 
key vectors. By fusing local feature extraction with global reasoning, this model enhances its ability to interpret complex 
medical images. This makes it particularly well-suited for identifying subtle abnormalities and recognizing broader 
anatomical patterns that are crucial in prostate cancer diagnosis. 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

(12) 

3.4.3. MaxViT 

MaxViT improves multi-scale feature learning by dividing an image into grids and applying self-attention mechanisms 
both within and across these regions. This method enhances image classification accuracy by capturing features at 
various spatial scales. The architecture combines convolutional operations with multi-axis attention derived from 
transformer models, utilizing a grid-based attention mechanism to efficiently extract both local and global patterns. As 
illustrated in Equation (13), local spatial features are captured using convolutional filters (F) along with a bias term (c), 
which allows the model to concentrate on fine-grained details critical for identifying subtle variations in prostate MRI 
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scans. After the convolution process, MaxViT employs multi-axis attention (as shown in Equation 14) by utilizing query, 
key, and value matrices, where (dm) represents the dimensionality of the key vectors. This attention mechanism enables 
the modeling of long-range dependencies across the image, allowing the network to integrate fine details with broader 
anatomical context, thereby enhancing the robustness of cancer detection. 

3.4.4. ConvFormer 

The architecture utilizes compound scaling to systematically adjust the network's width, depth, and input resolution, 
ensuring optimal performance across various image sizes. This scaling mechanism, illustrated in Equation (15), involves 
applying convolutional filters (Ci) and a bias term (c) to the input feature map (M). This allows the model to extract 
localized spatial features that are crucial for identifying subtle irregularities in prostate tissue. ConvFormer enhances 
its functionality with a multi-head self-attention mechanism that captures global dependencies by computing multiple 
attention heads—each focusing on different regions of the input. These outputs are then aggregated through an output 
projection matrix (WO). After the attention stage, the model processes the features through a feed-forward network 
(FFN), which includes weight matrices (W1) and (W2), along with corresponding biases (b1) and (b2), as defined in 
Equation (17). This step further refines the representations learned. To ensure stability during training, layer 
normalization is applied. Equation (18) employs the mean (μ), standard deviation (σ), and learnable parameters (γ) 
and (β) for scaling and shifting the normalized data. 

M′ =∑(M ∗ Ci)

K

i=1

+ c 
(15) 

FFN(x) = ReLU(xW1 + b1)W2 + b2 (16) 

LayerNorm(x) =
x − μ

σ
⋅ γ + β (17) 

3.5. Training Procedure 

The model was trained using the AdamW optimizer, which is a variant of the Adam optimizer [27]. AdamW decouples 
weight decay from gradient updates, enhancing regularization and promoting more stable convergence during training. 
A learning rate scheduler was included to adaptively adjust the learning rate based on the model's performance. 
Specifically, it monitored the validation loss and reduced the learning rate when a plateau was detected [28]. This 
allowed the network to fine-tune its parameters more effectively. To prevent overfitting, early stopping was 
implemented. Training was terminated if the validation loss did not improve over a predefined number of epochs. This 
strategy helps maintain the model's generalization by avoiding excessive adaptation to training noise. The training 
configuration used a batch size of 32 and was conducted over 50 epochs [23]. 

3.6. Evaluation 

To evaluate the model’s effectiveness, we employed several metrics: accuracy, F1-score, Matthews Correlation 
Coefficient (MCC), and the Area Under the Precision-Recall Curve (AUC-PR). Accuracy reflects the overall proportion of 
correctly classified instances, while the F1-score offers a balanced measure of precision and recall, making it particularly 
useful in scenarios with class imbalance  [28], [29]. MCC provides a comprehensive assessment by incorporating true 
and false positives and negatives, yielding values between -1 and +1, with higher values indicating better binary 
classification performance. AUC-PR emphasizes performance on the positive class and captures the trade-off between 
precision and recall in imbalanced datasets [7], [30]. Additionally, confusion matrices were used to visualize the 
alignment between predicted and actual labels, helping identify specific misclassification trends[31]. Learning curves 
were also analyzed to track training and validation loss across epochs, providing insights into the model’s generalization 
capability and helping to identify signs of overfitting or underfitting [32]. 

 

Z = Conv2D(A, F) + c (13) 

GridAttention(Q, V, K) = ConcatₛmaxQVTdmW (14) 
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4. Results analysis 

4.1. Comparative Analysis of Performance 

Table 1 summarizes the classification performance of the proposed models using SMOTE and ADASYN as oversampling 
techniques. Among the evaluated architectures, ConvNeXt consistently outperformed the others across both balancing 
strategies. With SMOTE, ConvNeXt achieved a peak accuracy of 98.75%, an F1-score of 97.21%, and an MCC of 95.32%, 
reflecting its strong overall classification capability. The model also attained an AUC-PR of 99.25%, highlighting its 
effectiveness in handling class imbalance. CoAtNet and MaxViT followed, with accuracies of 96.42% and 96.07%, 
respectively, though their F1-scores and MCCs were slightly lower. ConvFormer, while still reasonably effective, yielded 
the lowest performance under SMOTE, recording 94.40% accuracy, an F1-score of 92.90%, and an AUC-PR of 94.20%. 

When switching to ADASYN, performance improved across all models. ConvNeXt again led with an impressive accuracy 
of 99.48%, an F1-score of 98.82%, and the highest AUC-PR at 99.86%. MaxViT also showed significant gains, achieving 
an F1-score of 96.66% and accuracy of 97.88%. Although CoAtNet and ConvFormer improved as well, they remained 
behind ConvNeXt, with accuracy scores of 97.34% and 96.93%, respectively. 

Table 1 Results of our experimental classifiers 

Type Model Accuracy F1 MCC AUC-PR 
 

ConvNeXt 98.75% 97.21% 95.32% 99.25% 

SM CoAtNet 96.42% 94.20% 95.65% 97.42% 
 

MaxViT 96.07% 94.45% 94.80% 96.12% 
 

ConvFormer 94.40% 92.90% 91.50% 94.20% 
 

ConvNeXt 99.48% 98.82% 97.86% 99.86% 

AD CoAtNet 97.88% 96.66% 94.67% 98.61% 
 

MaxViT 97.34% 96.48% 93.70% 97.41% 
 

ConvFormer 96.93% 95.78% 90.42% 95.81% 

4.2. Performance Validation 

As shown in the confusion matrix in Figure 3, the ConvNeXt model trained using the ADASYN oversampling method 
demonstrates high classification accuracy, correctly identifying 66 out of 67 prostate cancer (PCa) cases. It also 
performs strongly in classifying benign conditions (BC), with 30 out of 31 cases correctly predicted. Minor 
misclassifications occurred, including one PCa instance labeled as BC and one BC case identified as PCa. Despite these 
isolated errors, the model exhibits strong overall performance in differentiating between malignant and benign cases. 
Additionally, Figure 4 illustrates the learning curves for the ConvNeXt model, showing a steady and parallel decline in 
training and validation loss. The minimal gap between the two curves suggests effective learning and strong 
generalization, with no signs of overfitting during the training process. 
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Figure 3 Confusion matrix of the ConvNeXt model 

 

 

Figure 4 Learning curve of the ConvNeXt model 

4.3. Web Application 

Figure 5 illustrates a web-based application designed for the classification of prostate cancer using MRI images. The 
interface adopts a clean and professional aesthetic, featuring a white background complemented by blue accents to 
convey clarity and clinical precision. At the top of the application, a navigation bar includes links to essential sections 
such as “Input,” “Output,” and “About,” alongside a prominent title and icon that reinforce the platform's identity and 
purpose. On the left side of the interface, users are provided with a straightforward image upload module labeled 
“Upload Image,” accompanied by a cloud icon to signify the action clearly. Once an MRI scan is uploaded, it is visually 
rendered in the “MRI Image” display panel, allowing users to verify the input before proceeding with analysis. 
Positioned at the center is a large, easily accessible “CLASSIFY” button, streamlining the user workflow for initiating the 
model’s prediction. To the right of the image panel, the application displays the classification result. In this instance, the 
diagnosis is “Prostate Cancer” with a high confidence score of 98.8%, indicating the model’s strong certainty in its 
prediction. This immediate feedback provides actionable insights for radiologists and clinicians, potentially aiding in 
timely intervention and treatment planning. Below the classification output, a confusion matrix visualizes the model’s 
performance in detail. The matrix shows that out of the test samples, 66 prostate cancer cases were correctly identified, 
while 30 benign cases were accurately classified. Only one case was misclassified in each category, reflecting the model’s 
excellent diagnostic precision. This matrix is a vital component, offering a quick overview of true positives, true 
negatives, and rare misclassifications. 
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Figure 5 Web Application 

5. Discussion 

Among the evaluated models, ConvNeXt demonstrated superior performance in classifying prostate cancer cases, 
attributed to its refined convolutional structure that effectively captures detailed, localized patterns. Its transformer-
inspired enhancements facilitate robust feature extraction while maintaining computational efficiency, making it 
particularly adept at distinguishing subtle variations within prostate MRI images. In terms of data balancing, models 
trained with ADASYN oversampling outperformed those using SMOTE, as ADASYN focuses on generating synthetic 
examples for harder-to-learn minority cases. This approach improved model generalization, especially in detecting less 
common prostate cancer variants. In contrast, SMOTE’s uniform sample generation was less effective in addressing this 
complexity. Additionally, integrating GLCM-based texture features with geometric shape descriptors significantly 
strengthened the model’s discriminative capability by providing a more holistic representation of both internal tissue 
structure and anatomical form. The deployment of the model in a web-based application offers clinical advantages, 
enabling early diagnosis, individualized treatment strategies, and reduced workload for radiologists. 

However, several limitations were identified. The relatively small dataset may affect the model’s ability to generalize 
across broader and more diverse patient populations. Reliance on synthetic oversampling methods may introduce 
artificial biases that do not reflect real-world distributions. Moreover, the computational requirements of hybrid CNN-
transformer models pose challenges for deployment in low-resource settings. These constraints underscore the 
importance of expanding the dataset, conducting external validations, and optimizing model efficiency in future studies.   

6. Conclusion 

In this study, a Vision Transformer-based framework was developed for the classification of prostate cancer using MRI 
scans. Among the evaluated models, ConvNeXt demonstrated superior performance, offering improved accuracy and 
generalization compared to existing approaches. Key contributions include addressing class imbalance through 
ADASYN-based oversampling, employing advanced feature extraction techniques, and enhancing the classification of 
less common prostate cancer subtypes. The deployment of a web-based diagnostic tool further highlights the clinical 
applicability of the proposed system, offering radiologists a reliable and efficient aid for early detection and cancer 
staging. 

Despite its strengths, the approach presents certain limitations, including the computational cost associated with Vision 
Transformers and the potential for artificial noise introduced by synthetic oversampling techniques. To advance the 
clinical utility of such systems, future work should focus on integrating multimodal medical data, incorporating 
Explainable AI (XAI) to enhance interpretability, and optimizing model efficiency for deployment in real-world, 
resource-constrained environments. 
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