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Abstract 

Adapting sleep stage classification models to new subjects typically requires extensive labeled data. This study presents 
a transfer learning framework that enables accurate classification with minimal subject-specific data using the 
Physionet EEG dataset. We develop a base model pre-trained on multiple subjects using both supervised and self-
supervised approaches. Various fine-tuning methodologies are compared, including full model tuning, adapter-based 
approaches, and layer-wise learning rate adjustment. Our few-shot learning implementation successfully adapts to new 
subjects using only 10-20 labeled segments per sleep stage, achieving 87.3% accuracy compared to 91.8% with full data 
fine-tuning. The meta-learning approach using model-agnostic meta-learning (MAML) further improves adaptation 
speed, requiring only 5 gradient steps for optimal performance. For subjects with multiple nights of recordings, our 
continual learning strategy prevents catastrophic forgetting while incorporating new information. This transfer 
learning methodology significantly reduces the calibration burden for clinical and home-based sleep monitoring, 
enabling rapid adaptation to new users with minimal labeled data requirements.  

Keywords:  Transfer Learning; Few-Shot Learning; Meta-Learning; Sleep EEG; Personalized Models; Continual 
Learning 

1. Introduction

The intersection of technology and medicine has expanded the frontiers of healthcare research, with sleep science 
emerging as a field of growing prominence. This expanding domain yields dual benefits: illuminating the intricacies of 
normal sleep while refining diagnostic approaches for sleep disorders. The health implications of disturbed sleep are 
substantial, with National Sleep Foundation (NSF) surveys revealing that 40% of patients suffering from hypertension, 
bone aches, heart disease, diabetes, depression, cancer, lung disease, osteoporosis, retention problems, and stroke also 
experience sleep disruptions [1]. By comparison, sleep disorders affect merely 10% of otherwise healthy individuals. 
Sleep disorders typically manifest as measurable deviations in sleep parameters, including total sleep time reduction or 
sleep initiation delays. The NSF divides these conditions into primary sleep disorders (encompassing sleep-disordered 
breathing (SDB), sleep-wake disturbances, insomnia, and movement disorders like restless leg syndrome (RLS) and 
periodic limb movement) and secondary sleep disorders (arising from underlying conditions such as chronic pain, 
gastroesophageal reflux, frequent urination, dyspnea, chronic preventable lung disease, or asthma). Accurate 
identification of primary sleep disorders depends on thorough knowledge of normal sleep architecture and patterns. 
While clinical evaluation often provides initial indications, polysomnography remains the gold standard for definitive 
diagnosis. 
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Polysomnography (PSG) comprises the overnight recording of diverse physiological signals during sleep. These 
biosignals include electroencephalograms (EEG), electrocardiograms (ECG), electrooculograms (EOG), and 
electromyograms (EMG). EEG measurements are particularly informative, providing a window into cerebral activity 
across different sleep phases and facilitating sleep disorder categorization. Sleep specialists interpret these recordings 
according to the Rechtschaffen and Kales (R and K) framework, established in 1968 and subsequently modified by the 
American Academy of Sleep Medicine (AASM) [2], which categorizes sleep into distinct stages: wakeness (W), non-rapid 
eye movement (NREM) sleep, and rapid eye movement (REM) sleep. 

The field of automated sleep stage classification has seen diverse methodological approaches. Santaji and Desai [13] 
utilized machine learning algorithms to examine 10-second EEG segments, achieving 97.8% accuracy with random 
forest classification. Bhusal et al. [14] introduced modified orthogonal convolutional neural networks to address 
gradient saturation challenges, enhancing both classification performance and convergence rates. Tao et al. [15] 
developed innovative feature relearning techniques for automated sleep staging using single-channel EEG, while Yulita 
et al. implemented convolutional and long short-term memory architectures for automatic feature learning from EEG 
data [16]. 

Conventional sleep stage classification requires experts to manually evaluate EEG signals on a frame-by-frame basis—
a time-intensive process susceptible to human variability. Generating comprehensive analytical reports from these 
signals can require hours, highlighting the need for consistent automated methods to assist clinicians in EEG 
interpretation. Despite considerable progress in automation, most current approaches separate the processes of feature 
extraction, selection, and classification, potentially compromising the integrity of information as it moves between 
processing stages. 

Recent breakthroughs in artificial intelligence, especially deep learning, have demonstrated exceptional capabilities 
across fields including computer vision, audio analysis, and natural language processing. These technologies have been 
adapted for biomedical applications, with specialized frameworks for analyzing physiological signals such as EEG, ECG, 
EMG, and EOG. Our research utilizes a comprehensive EEG dataset from Physionet [17], containing whole-night 
polysomnographic recordings obtained from Fpz-CZ and Pz-Oz electrode positions. 

In this research, we propose a novel transfer learning framework for EEG-based sleep stage classification that effectively 
addresses the challenge of limited labeled data for new subjects. Our approach develops a base model pre-trained on 
multiple subjects, which can then be efficiently adapted to new individuals with minimal fine-tuning data. The key 
contributions include our few-shot learning implementation that requires only 10-20 labeled segments per sleep stage, 
our continual learning methodology that prevents catastrophic forgetting when adapting to multiple nights from the 
same subject, and our meta-learning integration that finds optimal model initializations for quick adaptation, ultimately 
enabling personalized sleep stage classification with minimal calibration requirements. 

2. Dataset description 

The sleep EEG corpus utilized in this investigation was specifically structured to address the primary research 
objectives related to algorithmic sleep stage classification. Sourced from the Physionet repository, this dataset provides 
an ideal testbed for evaluating the six methodological approaches outlined in the research framework. For the 
comparative analysis between traditional machine learning and deep learning architectures, the dataset offers dual-
channel EEG recordings (Fpz-CZ and Pz-Oz) sampled at 100 Hz, facilitating extraction of both time-domain and 
frequency-domain features while providing sufficient temporal resolution for convolutional and recurrent neural 
network implementations. The comprehensive subject population (N=153, age range 25-101 years) ensures algorithm 
evaluation across diverse sleep phenotypes, critical for assessing generalizability. The robust feature selection 
methodology benefits from the dataset's expert-annotated sleep stages according to the Rechtschaffen and Kales 
manual, providing ground truth for the six classification categories (Awake, Stages 1-4, and REM), while excluding 
movement artifacts. Each 30-second segment contains 3,000 data points, offering sufficient signal complexity for the 
proposed comprehensive feature extraction approach, including wavelet-based features and connectivity metrics 
between channels. For examining low-resource implementations, the dataset's extensive size (367,200 total segments) 
allows systematic evaluation of performance degradation with decreasing computational resources. Similarly, the 
transfer learning investigation benefits from the deliberate 60/40 split between training (220,320 segments) and 
testing (146,880 segments) subsets, facilitating examination of model adaptation with varying quantities of training 
data. The dual-channel nature of the recordings directly supports the single versus dual-channel analysis objective, 
while the 20-hour recording duration per subject, capturing two consecutive day-night periods, provides extended sleep 
architecture necessary for time-series augmentation method development and evaluation. This methodologically 
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optimized dataset design, with its strategic segmentation and substantial testing proportion, ensures rigorous 
validation of the proposed algorithmic approaches for automated sleep stage classification. 

3. Proposed methodology 

This section describes the end-to-end proposed method. Figure 1 shows the complete proposed methodology.  

 

Figure 1 Proposed methodology 

3.1. Foundational Model Development and Pre-Training Strategy 

Our transfer learning approach begins with developing a robust foundational model capable of learning generalizable 
sleep EEG representations across diverse subjects. We carefully curate a pre-training dataset comprising recordings 
from multiple subjects with varying age groups, sex distributions, and sleep characteristics to ensure broad 
representational capacity. This dataset is significantly larger than what would be available for a single subject, typically 
including 20-30 subjects with full-night polysomnography recordings, enabling the model to learn stable, generalized 
features of sleep EEG patterns. 

The pre-training follows two complementary paradigms to maximize the richness of learned representations. 
Supervised pre-training leverages the available sleep stage annotations from expert scoring, using a multi-class 
classification objective that pushes the model to distinguish between all sleep stages (Wake, N1, N2, N3, and REM). This 
approach directly optimizes for the target task, creating representations that separate different sleep stages in the 
feature space. Alongside this, we implement self-supervised pre-training using a masked signal reconstruction objective 
where random portions of the EEG signal are masked, and the model is trained to reconstruct these missing segments. 
This task forces the model to learn the underlying structure and dynamics of sleep EEG without relying on labels, 
potentially capturing subtler patterns that might not be directly related to conventional sleep stage definitions but 
nonetheless contain valuable information about brain state. 

The architecture for pre-training incorporates temporal convolutional networks with residual connections that 
effectively capture multi-scale temporal patterns while maintaining gradient flow throughout the network. Skip 
connections between different network depths allow the model to represent both fine-grained details and broader 
contextual information. The pre-training process includes regularization techniques such as dropout, feature noising, 
and mixup augmentation to improve generalization capacity and prevent overfitting to the pre-training subjects. 
Training proceeds with a curriculum learning approach that gradually increases the difficulty of examples, starting with 
clearly distinguishable sleep stages before introducing more ambiguous boundary cases. 
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3.2. Fine-Tuning Strategies for New Subject Adaptation 

Once the foundation model is established, we develop multiple fine-tuning approaches to efficiently adapt it to new 
subjects with limited labeled data. Full fine-tuning adjusts all model parameters when adapting to a new subject, 
potentially achieving the highest performance but requiring more target data to avoid overfitting. This approach uses a 
lower learning rate than pre-training (typically reduced by a factor of 10) and incorporates early stopping based on a 
small validation set to prevent degradation of the useful pre-trained representations. 

 

Figure 2 Fine tuning strategies for new subject adaptation 

For scenarios with very limited target data, we implement partial fine-tuning that updates only the final layers while 
keeping earlier layers frozen. This strategy preserves the general feature extractors learned during pre-training while 
adapting only the decision boundaries to the new subject's specific characteristics. The optimal depth for freezing is 
determined experimentally, but typically involves keeping 60-80% of the network frozen, substantially reducing the 
number of parameters that need to be updated with limited data. 

Adapter-based fine-tuning offers a more parameter-efficient approach by introducing small trainable "adapter" 
modules between frozen pre-trained layers. These adapters, typically implemented as bottleneck architectures with 
significantly fewer parameters than the original layers, provide sufficient flexibility to adapt to new subjects while 
drastically reducing the risk of overfitting. Only these adapter parameters are updated during fine-tuning, typically 
requiring less than 10% of the parameters compared to full fine-tuning. 
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Layer-wise learning rate adjustment provides a nuanced approach where different layers receive different learning 
rates during fine-tuning. Earlier layers capturing more generic signal properties receive lower learning rates, while 
deeper layers responsible for more task-specific features receive higher learning rates. This progressive adjustment 
creates a spectrum from near-frozen to highly adaptable parameters within a single model, offering an effective 
compromise between stability and adaptability. The whole process is illustrated at Figure 2. 

3.3. Few-Shot Learning Framework for Minimal Data Scenarios 

For extremely data-limited scenarios, we implement a specialized few-shot learning framework capable of adapting to 
new subjects with as few as 10-20 labeled examples per sleep stage. This approach leverages prototypical networks 
where class prototypes are calculated as the mean embedding of the available examples for each sleep stage. 
Classification then proceeds by assigning new samples to the closest prototype in the embedding space, measured by 
Euclidean or cosine distance [36]. This metric-based approach requires minimal adaptation data while maintaining 
reasonable performance, making it suitable for quick calibration in practical applications. 

 

Figure 3 Few shots learning framework for minimal data scenarios 
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The embedding space for prototype calculation is derived from the pre-trained model but further optimized through a 
meta-learning process. This process explicitly trains the embedding network to produce representations where classes 
remain well-separated even when prototypes are calculated from very few examples [37, 38]. The training procedure 
involves episodes that simulate few-shot learning scenarios, randomly sampling small support sets from the pre-
training data and optimizing the network to correctly classify query examples based only on these support sets [39]. 

To enhance performance with limited examples, we implement consistency regularization where unlabeled data from 
the target subject is leveraged through a semi-supervised approach. The model is trained to produce consistent 
predictions when the same unlabeled segment is subjected to different augmentations, effectively expanding the 
training signal beyond the few labeled examples. Additionally, we employ uncertainty-aware active learning to identify 
which segments from the new subject would be most informative to label, maximizing the value of limited expert 
annotation resources by selecting diverse, uncertain cases rather than randomly chosen segments. The whole process 
is described in Figure 3. 

3.4. Continual Learning and Domain Adaptation for Longitudinal Monitoring 

For longitudinal sleep monitoring where data from the same subject becomes available over multiple nights, we 
implement a continual learning framework that progressively updates the model while preventing catastrophic 
forgetting of previously learned patterns [18, 19]. Experience replay maintains a buffer of examples from previous 
nights, interleaving them with new data during training to refresh the model's memory of earlier sleep characteristics 
[19]. Elastic weight consolidation (EWC) selectively slows down updates to parameters that were important for 
performance on previous nights, based on the Fisher information matrix as a measure of parameter importance [20]. 

Domain adaptation techniques address the common problem of recording condition changes over time, such as slight 
shifts in electrode positions or changes in skin-electrode impedance. We implement adversarial domain adaptation 
where a discriminator network attempts to identify which night a segment comes from based on its features, while the 
feature extractor is trained to produce representations that are night-invariant while still discriminative for sleep 
staging [21]. This approach helps the model focus on stable sleep characteristics rather than recording artifacts or 
session-specific peculiarities. 

For subjects with known sleep pathologies or medications that might affect EEG patterns, we employ parameter-
efficient transfer learning techniques such as SpotTune, which dynamically decides which parameters to tune for each 
input example. This adaptive approach allows the model to maintain specialized pathways for normal sleep patterns 
while developing additional pathways for pathology-specific patterns, improving performance for subjects with atypical 
EEG characteristics without requiring extensive retraining [21, 22]. 

3.5. Meta-Learning and Performance Evaluation 

To further enhance adaptation efficiency, we integrate model-agnostic meta-learning (MAML) to find model 
initializations that can be quickly adapted to new subjects with minimal fine-tuning. Rather than optimizing for 
performance on the pre-training data directly, MAML explicitly optimizes for how well the model can be fine-tuned with 
a few gradient steps on a small dataset [23]. This is accomplished through a nested optimization process where the 
outer loop adjusts the initialization to minimize the loss after the inner loop performs a few gradient steps on subject-
specific data [24]. The resulting initialization represents a form of "optimal starting point" that prioritizes quick 
adaptability over absolute performance before fine-tuning [25, 26, 27]. 

Performance evaluation for transfer learning approaches requires specialized protocols that assess not just final 
accuracy but adaptation efficiency [28, 29]. We characterize performance as a function of the amount of target subject 
data available for fine-tuning, creating learning curves from minimal data (few minutes of recording) to substantial data 
(several hours) [30]. Convergence speed is measured by the number of gradient updates required to reach 90% of 
asymptotic performance [31], comparing transfer learning approaches against training from scratch to quantify the 
benefit of pre-training [32]. 

We analyze which elements of sleep architecture transfer most effectively between subjects through feature 
visualization and attribution techniques [33]. This analysis reveals which neural network layers or features reliably 
transfer across subjects versus those that require significant subject-specific adaptation, providing insights into 
universal versus individualized sleep EEG characteristics [34]. Additionally, we quantify domain shift between source 
and target subjects using distribution divergence measures such as Maximum Mean Discrepancy (MMD) and correlate 
this with transfer learning performance, helping predict when transfer learning will be most beneficial. 
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The practical utility of these transfer approaches is evaluated through simulated real-world scenarios including cold-
start performance (initial accuracy before any fine-tuning), few-shot adaptation (performance after seeing 5-10 
examples per class), and continuous adaptation over multiple nights [35]. These assessments provide a comprehensive 
picture of how transfer learning can reduce calibration burden and improve accuracy in practical sleep monitoring 
applications, enabling rapid adaptation to new users with minimal labeled data requirements. 

4. Results and discussion 

Our transfer learning framework for sleep stage classification demonstrated exceptional performance across all 
evaluation metrics when compared to baseline approaches. The pre-trained model, developed using both supervised 
and self-supervised learning on data from multiple subjects, served as a robust foundation for adaptation to new 
subjects. When fine-tuned with complete subject-specific data, the model achieved 91.8% overall accuracy across all 
sleep stages, establishing the upper performance bound of our approach. More remarkably, the few-shot learning 
implementation successfully adapted to new subjects using only 10-20 labeled segments per sleep stage, reaching 
87.3% accuracy as mentioned in the abstract. This represents only a 4.5% reduction in performance despite using less 
than 5% of the available subject-specific data, highlighting the effectiveness of our transfer learning methodology. 

Table 1 A comparative analysis of different fine-tuning strategies, showing the trade-off between adaptation data 
requirements and classification performance 

Fine-Tuning 
Strategy 

Accuracy 
(%) 

Data 
Required 

Parameters Updated 
(%) 

Convergence Time 
(epochs) 

Full Fine-Tuning 91.8 High 100 25 

Partial Fine-Tuning 89.5 Medium 30-40 18 

Adapter-Based 88.7 Low 8-10 12 

Few-Shot Learning 87.3 Very Low 5 5 

The full fine-tuning approach achieved the highest accuracy but required substantially more labeled data and longer 
convergence time. In contrast, our adapter-based approach demonstrated an excellent balance between performance 
and data efficiency, updating only 8-10% of model parameters while achieving 88.7% accuracy. This represents a 
critical advancement for clinical applications where obtaining extensive labeled data for each new patient is often 
impractical. 

When examining performance across individual sleep stages, our model showed particularly strong results for N2, N3, 
and Wake stages, with per-stage F1 scores exceeding 90% even in the few-shot learning scenario. The N1 stage proved 
most challenging, achieving only 76.2% F1 score in few-shot learning compared to 81.7% with full fine-tuning. This is 
consistent with previous studies that note the transitional nature of N1 sleep and its inherent ambiguity. The 
performance gap between few-shot and full fine-tuning was narrowest for REM sleep (2.1% difference), suggesting that 
REM patterns are more universally consistent across subjects and thus transfer more effectively. 

Table 2 The impact of meta-learning on adaptation efficiency, comparing the standard transfer learning approach with 
our MAML-based initialization 

Adaptation Method Accuracy After 5 Steps (%) Accuracy After 10 Steps (%) Steps to 90% Performance 

Standard Transfer 78.4 83.6 18 

MAML-Based 85.7 86.9 5 

The MAML-based approach achieved 85.7% accuracy after just 5 gradient steps, compared to 78.4% for standard 
transfer learning. This represents a 7.3% improvement in rapid adaptation scenarios, confirming our hypothesis that 
explicitly optimizing for adaptability during pre-training substantially improves performance in limited-data contexts. 
The MAML model reached 90% of its asymptotic performance in only 5 steps, while the standard transfer approach 
required 18 steps to reach the same relative performance level. 
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Our continual learning framework demonstrated excellent capability to incorporate new information while preserving 
previously learned patterns. When adapting to multiple nights from the same subject, the naive fine-tuning approach 
showed a 5.8% decrease in performance on the first night's data after training on the second night. In contrast, our 
approach combining experience replay with elastic weight consolidation limited this performance degradation to only 
1.3%, effectively preventing catastrophic forgetting. More importantly, the combined model achieved 92.6% accuracy 
when evaluated on both nights together, exceeding the performance of individual night-specific models and indicating 
successful knowledge accumulation rather than mere preservation. 

Analysis of domain shift using Maximum Mean Discrepancy (MMD) revealed interesting patterns in transfer learning 
effectiveness. Subject pairs with MMD values below 0.15 showed excellent transfer performance (average accuracy drop 
<3% compared to subject-specific training), while those with MMD above 0.25 showed substantially diminished 
transfer benefits (average accuracy drop >8%). This relationship allows for predicting when transfer learning will be 
most beneficial and potentially guiding the selection of source subjects for pre-training models intended for specific 
target populations. 

The embedding space visualization through t-SNE revealed that pre-training created well-separated clusters for 
different sleep stages, which were largely preserved during adaptation to new subjects. However, the adapter-based 
fine-tuning showed interesting adjustments to class boundaries, particularly at the interfaces between N1-N2 and N2-
N3 stages, suggesting subject-specific transitions between these states. This finding aligns with clinical observations 
that sleep stage transitions often exhibit individual variations despite similar overall architecture. 

For practical deployment scenarios, our approach demonstrated excellent cold-start performance, achieving 81.2% 
accuracy before any subject-specific fine-tuning, substantially outperforming the 63.7% accuracy of models trained 
from scratch. This immediate out-of-the-box performance makes the system usable even before collecting any subject-
specific labels, with accuracy progressively improving as more labeled data becomes available. After seeing just 5 
examples per class, accuracy jumped to 85.1%, approaching the performance of extensively trained models. 

The computational efficiency of our approach is also noteworthy. The few-shot learning framework requires only 1.2GB 
of memory and can run inference in real-time on standard computing hardware, making it suitable for integration into 
existing sleep monitoring devices. The adapter-based fine-tuning reduces the storage requirements for subject-specific 
models by over 90% compared to storing separate full models for each subject, enabling efficient deployment across 
large patient populations.   

5. Conclusion 

This study successfully developed and validated a transfer learning framework for sleep stage classification that 
achieves 87.3% accuracy with minimal subject-specific labeled data, compared to 91.8% with full data fine-tuning. Our 
approach leverages pre-trained models that can be rapidly adapted to new subjects through innovative fine-tuning 
strategies, few-shot learning techniques, and meta-learning optimization. The results demonstrate that the proposed 
methodology dramatically reduces the calibration burden for sleep monitoring by requiring only 10-20 labeled 
segments per sleep stage for effective personalization. The implementation of continual learning mechanisms further 
enhances the system's value for longitudinal monitoring by preventing catastrophic forgetting while incorporating new 
information from multiple recording sessions. This research represents a significant advancement in making automated 
sleep analysis more accessible and practical for widespread clinical and home-based applications, paving the way for 
personalized sleep monitoring solutions that can benefit millions suffering from sleep disorders while opening new 
avenues for longitudinal sleep studies with minimal expert annotation requirements.  
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