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Abstract 

Mental health disorders, including anxiety, depression, and emotional dysregulation, affect hundreds of millions 
globally, yet early diagnosis remains a challenge due to the reliance on subjective assessments such as psychometric 
tests and clinician observations. While EEG-based emotion recognition offers a non-invasive, cost-effective alternative, 
existing approaches are limited by small and imbalanced datasets, handcrafted features, and lack of real-time 
deployability. These gaps hinder the development of scalable and clinically relevant emotion detection systems. To 
address these limitations, this study proposes a machine learning framework for real-time, accurate emotional state 
classification using EEG signal analysis. The dataset comprises EEG recordings from 300 participants (158 male, 142 
female), labeled across four emotional states: Positive, Neutral, Anxiety, and Depression. Signals were collected using 
an 8-channel EEG device and decomposed into frequency bands (alpha, beta, gamma) using Discrete Wavelet Transform 
(DWT), with Shannon Entropy applied for complexity analysis. Data augmentation techniques—Generative Adversarial 
Networks (GAN), SMOTE, and ADASYN—were used to generate 20,000 synthetic instances per method, addressing class 
imbalance and data scarcity. A comparative evaluation was conducted across nine classical and deep learning models, 
including Support Vector Machine, Decision Tree, Random Forest, and a 1D Convolutional Neural Network 
(NeuroEmotionNet). The models were assessed using accuracy, precision, recall, F1-Score, Matthews Correlation 
Coefficient (MCC), and PR AUC, with latency tracked for real-time viability. NeuroEmotionNet achieved the highest 
performance with an F1-Score of 98.16%, MCC of 98.2%, and inference time under 3.2 milliseconds on the combined 
augmented dataset. The novelty of this study lies in its integration of hybrid feature extraction, multi-strategy 
augmentation, and real-time deployment. A fully functional web application was developed, making this the only study 
among comparable works to achieve both high accuracy and practical applicability. This research paves the way for 
scalable, interpretable, and real-time emotion monitoring systems in mental healthcare environments.  
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1. Introduction

Mental health disorders, such as depression, anxiety, and emotional instability, rank among the leading causes of 
disability globally, impacting more than 970 million individuals as of 2022, according to the World Health Organization 
(WHO). Depression alone affects over 280 million people, while anxiety disorders affect around 301 million. Together, 
these conditions contribute to a global economic burden exceeding USD 1 trillion each year due to decreased 
productivity and increased healthcare costs. 
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Despite their widespread prevalence, diagnosing emotional disorders primarily relies on subjective tools, including 
psychometric interviews, behavioral observations, and rating scales. These traditional methods can be influenced by 
observer bias, are constrained by time, and often lack scalability, making early detection and objective monitoring 
difficult. 

Electroencephalography (EEG) presents a non-invasive and cost-effective solution by recording neural activity with 
millisecond-level temporal resolution. EEG signals consist of several frequency bands—delta (0.5–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–150 Hz)—that correspond to various emotional and cognitive states. 
For example, alpha and beta activity is associated with relaxation and alertness, while gamma waves relate to arousal 
and higher-order cognitive functions. However, EEG signals are high-dimensional, non-linear, and sensitive to noise, 
which requires advanced feature extraction and learning techniques to achieve accurate emotional classification. 

Although there has been progress in using machine learning (ML) and deep learning (DL) for EEG-based emotion 
recognition, several limitations remain. First, many studies use limited and imbalanced datasets, which affect model 
generalization and introduce classification bias, especially in multi-class emotion prediction. Second, reliance on 
handcrafted statistical features fails to capture the complex dynamics of EEG signals, leading to underfitting and reduced 
performance. Third, a lack of comprehensive comparisons among various ML and DL algorithms limits understanding 
of model robustness in different data conditions. Additionally, generative augmentation methods, particularly 
Generative Adversarial Networks (GANs), are underused, resulting in insufficient data diversity and poor class 
imbalance management. Finally, many frameworks do not consider latency-aware evaluation, which is crucial for real-
time applications in clinical settings where computational efficiency and predictive accuracy are essential. 

This study aims to develop a machine learning framework for the real-time, accurate, and interpretable classification of 
emotional states through EEG signal analysis. The primary objectives of this study are (1) Develop a robust system that 
combines traditional machine learning models with 1D convolutional neural networks (CNN) to effectively detect four 
emotional states from EEG signals. (2) Utilize Discrete Wavelet Transform (DWT) and Shannon Entropy to extract 
meaningful frequency-domain and complexity features from multiband EEG signals. (3) Address data scarcity and 
imbalance by generating synthetic samples, enabling balanced and diverse training across emotion classes. (4) Ensure 
transparency and trust by selecting models that are low-latency and interpretable, making them suitable for practical 
integration into mental healthcare support systems. 

To achieve these goals, this study introduces a system for recognizing emotional states using brain signals, utilizing real 
patient data augmented with advanced methods to overcome data limitations. It evaluates various machine learning 
models for accuracy and speed on balanced, diverse datasets (Figure 1). The findings reveal that Decision Tree and 
Multi-Layer Perceptron (MLP) models perform particularly well, making them suitable for real-time mental health 
monitoring. This work marks a significant step forward in developing practical emotion detection systems in healthcare. 
The key contributions of this study are as follows: 

• Presented a clinically relevant EEG dataset comprising 300 subjects, labeled across four emotional states: 
Positive, Neutral, Anxiety, and Depression. This dataset is enriched with gender and age information, allowing 
for personalized modeling. 

• Proposed a robust feature extraction pipeline that utilizes Discrete Wavelet Transform (DWT) and Shannon 
Entropy that captures frequency-specific characteristics and signal complexity across EEG channels. 

• Addressed challenges related to class imbalance and small sample sizes by applying synthetic data generation 
techniques, including Generative Adversarial Networks (GANs), SMOTE (Synthetic Minority Over-sampling 
Technique), and ADASYN (Adaptive Synthetic Sampling).  

• Conducted a comprehensive comparison of nine machine learning and deep learning classifiers, identifying 
Decision Tree and Multi-Layer Perceptron (MLP) as the most effective models. These models achieve 100% 
accuracy with ultra-low latency, ranging from 0.6 to 3.2 milliseconds. 

• Demonstrated that integrating data augmentation with model diversity enables the development of a scalable, 
explainable, and real-time emotion recognition system using EEG. This advancement opens up opportunities 
for practical deployment in intelligent mental healthcare systems. 

The rest of the paper is structured as follows: Section 2 presents related works on plant disease detection and highlights 
existing limitations. Section 3 describes the datasets, preprocessing techniques, and model architecture. Section 4 
reports experimental results, including evaluation metrics and comparisons with state-of-the-art methods. Section 5 
discusses findings, practical implications, and limitations. Finally, Section 6 concludes the paper and outlines future 
directions for research and deployment. 
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2. Related Work 

The scientific community found that EEG signals can capture the activities in the human brain [1]. Therefore, EEG has 
been used to analyze brain activities, functions, and states, e.g., emotional states [2] [3]. It is widely accepted from 
psychological theory that human emotions can be classified into six archetypal emotions: surprise, fear, disgust, anger, 
happiness, and sadness. Humans have more complex emotional cues, which are not easily observable. Facial motion, 
the tone of the speech, body language, and their complex combinations play a significant role in expressing these 
emotions. Humans can recognize these complex forms of emotions by processing information acquired by their visual 
and auditory systems. One of the challenges an EEG-based emotion recognition system faces is differentiating between 
these emotion categories because every individual’s expression of emotion is different depending on the stimuli [4].  

EEG data is rapidly being used to train artificial intelligence systems, notably machine learning (ML) and deep learning 
(DL) algorithms. As a result, significant preprocessing is frequently necessary to eliminate artifacts [5], mainly when 
EEG data is recorded simultaneously. EEG has several limitations that impair analysis and processing performance, 
including a weak signal-to-noise ratio [6], nonlinearity, and nonstationary features [7].  

Various works have been done using the Database for Emotion Analysis using Physiological signals (DEAP), which is 
used for emotion analysis using EEG, physiological, and video signals, to compare performance on emotion recognition 
tasks. The Emotion Recognition Task assesses the ability to recognize six fundamental emotions in a spectrum of facial 
expression intensity.  

Bazgir et al. [8] developed a detection system following the valence/arousal model, leveraging EEG signals, which were 
initially subjected to decomposition into gamma, beta, alpha, and theta frequency bands via discrete wavelet transform 
(DWT), then spectral features were extracted from each of these frequency bands. A dimensionality-preserving 
transformation was employed using Principal Component Analysis (PCA). They used a cross-validated Support Vector 
Machine (SVM) with radial basis function (RBF-SVM) kernel using extracted features of 10 EEG channels on the DEAP 
dataset, achieving 91.1% valence and 91.3% arousal accuracy both within the beta frequency band.  

Balan et al. [9] employed a range of ML and DL models, SVM, k-Nearest Neighbors (kNN), Random Forest Classifier (RF), 
and Linear Discriminant Analysis (LDA) and experimented using both with and without feature selection. They 
recognized and classified fear levels using data from the DEAP dataset, where they characterized fear by low valence, 
high arousal, and low dominance. They proposed two paradigms for estimating fear level, where RF achieved the highest 
F scores of 89.96% and 85.33% for the two paradigms, respectively.  

Nawaz et al. [10] wanted to pinpoint the most discriminating features for identifying emotions by employing a three-
dimensional model of emotion to discern emotions evoked by music videos. The dataset was collected by making the 
participants watch one-minute videos while their EEG activity was recorded. They extracted power, entropy, fractal 
dimension, statistical characteristics, and wavelet energy, then compared the Relief based algorithm and PCA and 
validated the efficacy of the features using SVM, Decision Tree (DT) classifiers, and kNN, with an overall highest 
classification accuracy of 77.62% for valence, 78.96% for arousal, and 77.60% for dominance. 

Doma and Pirouz [11] analyzed the epoch data from the EEG channels both with and without PCA for dimensionality 
reduction. They utilized Grid search for hyper-parameter optimization to reduce execution times, and compared using 
SVM, kNN, LDA, Logistic Regression, and DT in the DEAP Dataset. The combination of PCA with SVM exhibited the 
highest performance, an F1-score of 84.73% and a recall rate of 98.01% [12], [13].  

Ullah et al. [14] proposed a pyramidal one-dimensional convolutional neural network (P-1D-CNN) with 61% fewer 
parameters than standard CNN models. Using the University of Bonn dataset, P-1D-CNN achieved an accuracy of 99.1%, 
with a minimal deviation of 0.9%, within an extremely short detection time of less than 0.000481 seconds.  

Chakraborty and Mitra [15] proposed a variational mode decomposition (VMD) method, and introduced a novel 
approach based on kurtosis to automatically select the critical parameters, K and α, for the VMD decomposition of EEG 
signals. They applied this to the Bonn University dataset, which after extracting features by bandwidth and spectral 
features, achieved 98.7% accuracy using an RF classifier.  
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3. Methodology 

 

Figure 1 Proposed methodology 

3.1. Data Description 

This study utilizes an EEG dataset collected from 300 individuals (158 male, 142 female), aged between 15 and 60 years, 
to classify four emotional states: Positive, Neutral, Anxiety, and Depression [16], [17]. The EEG signals were acquired 
using an 8-channel EEG machine with electrodes strategically placed on the frontal, parietal, and occipital regions of the 
scalp, capturing frequency information associated with alpha, beta, and gamma bands. Each participant was evaluated 
in an eye-open resting state to ensure consistency in cognitive activation, eliminating delta and theta bands typically 
prominent during sleep or drowsiness. The dataset comprises eight input features: gender, age, and six EEG frequency 
band metrics—low alpha (8–10 Hz), high alpha (10–13 Hz), low beta (13–17 Hz), high beta (17–30 Hz), low gamma 
(30–50 Hz), and high gamma (50–100 Hz). The target variable denotes the emotional state category of the individual. 
Table 1 presents the class distribution, highlighting a degree of imbalance across emotional categories. To address this, 
three data augmentation techniques—Generative Adversarial Networks (GANs), Synthetic Minority Over-sampling 
Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN)—were applied, generating up to 20,000 synthetic 
instances per method [18], [19]. These synthetic datasets were statistically validated using mean, variance, and 
standard deviation analyses, confirming their close approximation to the original data distributions. Ethical approval 
was obtained prior to data collection, and all participants or their guardians provided informed consent. Personally 
identifiable information was anonymized to preserve privacy in accordance with institutional review board (IRB) 
protocols. 

Table 1 Patient Demographics and Emotional State Distribution 

Gender Count Age Range (years) Positive Neutral Anxiety Depression 

Male 158 15–60 24 50 46 38 

Female 142 15–59 44 35 28 35 

Total 300 15–60 68 85 74 73 

3.2. Data Preprocessing 

Raw EEG signals are inherently noisy and susceptible to various artifacts, including those caused by eye movement, 
facial muscle contractions, and ambient electrical interference. To mitigate these effects, a band-pass filter was applied 
to retain only the alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–100 Hz) frequency bands. Delta and theta bands, 
typically associated with sleep and low-arousal states, were excluded due to the eye-open, alert-state nature of the 
recordings. During the EEG acquisition process, participants were instructed to sit still, avoid blinking, and maintain a 
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neutral facial expression to reduce motion-induced signal contamination. Following artifact removal, normalization was 
applied to the numerical EEG features using min-max scaling, ensuring that all values were rescaled to a range between 
0 and 1. This step helped eliminate bias caused by feature magnitude disparities and improved model convergence 
during training. In parallel, statistical analysis was conducted to detect outliers or corrupted samples. Any entries with 
missing values or significant deviations due to faulty sensor readings were discarded to maintain dataset integrity. 
Categorical attributes such as gender were one-hot encoded to facilitate compatibility with machine learning classifiers 
without introducing implicit ordinal relationships [20]. The target variable, denoting the emotional state, was label-
encoded into four classes: Positive (0), Neutral (1), Anxiety (2), and Depression (3), enabling multi-class classification 
across the pipeline. To ensure consistent evaluation, the dataset was partitioned into training (70%), validation (15%), 
and test (15%) sets using stratified sampling.  

3.3. Data Augmentation 

Due to the limited size (300 samples) and class imbalance in the original EEG dataset, data augmentation was employed 
to enhance model generalization and improve performance, especially for underrepresented emotional states. Three 
techniques were utilized: Generative Adversarial Networks (GAN), Synthetic Minority Over-sampling Technique 
(SMOTE), and Adaptive Synthetic Sampling (ADASYN). GANs generated entirely new samples by learning the underlying 
data distribution through an adversarial training process between a generator and a discriminator. This approach 
introduced high-diversity synthetic data, reducing overfitting while maintaining signal complexity. In contrast, SMOTE 
created synthetic samples by interpolating between minority class samples and their nearest neighbors, preserving 
local data structure [21]. ADASYN extended SMOTE by focusing on more difficult-to-learn instances, adaptively 
generating samples based on the density of minority classes. Each method contributed 20,000 new instances, resulting 
in five datasets: the original, original + GAN, original + SMOTE, original + ADASYN, and a combined dataset using all 
three techniques. Statistical measures—mean, variance, and standard deviation—were computed for all EEG features 
to validate the synthetic data. The distributions closely matched the original dataset, confirming the reliability and 
consistency of the generated samples. Together, these augmentation strategies significantly increased dataset diversity 
and balance, enabling more robust training of both classical and deep learning models in emotional state classification 
tasks.  

3.4. Feature Extraction 

Effective feature extraction is critical for analyzing EEG signals, which are inherently non-stationary, high-dimensional, 
and subject to noise [22]. In this study, key frequency-domain features were extracted from alpha (8–13 Hz), beta (13–
30 Hz), and gamma (30–100 Hz) bands using the Discrete Wavelet Transform (DWT), a widely used method for time-
frequency signal decomposition (Figure 2). DWT enables multi-resolution analysis by separating signals into 
approximation (low-frequency) and detail (high-frequency) components, capturing both transient and periodic 
patterns across scales. The EEG signal was decomposed into six frequency-based features: low and high alpha, beta, and 
gamma. These features correspond to different mental states—alpha bands are associated with relaxation and cognitive 
readiness, beta with alertness and stress, and gamma with higher-level cognition and sensory integration. Additional 
demographic features, including age and gender, were included to account for individual variability. Following wavelet 
decomposition, Shannon Entropy was computed for each EEG feature to quantify the signal’s unpredictability and 
complexity, serving as an indicator of cognitive or emotional state fluctuations. The entropy values, combined with 
frequency band statistics (mean, standard deviation, variance), provided a robust, low-dimensional feature 
representation suitable for machine learning. 
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Figure 2 Feature Extraction with DWT (Discrete Wavelet Transform) 

3.5. Experimental Models 

3.5.1. Baseline Models 

To classify EEG-based emotional states, a suite of machine learning models was implemented, each selected for its ability 
to handle complex, non-linear biomedical data. Hyperparameter tuning was conducted using grid search and 5-fold 
cross-validation across five dataset variants: the original dataset and those augmented with GAN, SMOTE, ADASYN, and 
their combination. Support Vector Machine (SVM) with an RBF kernel was employed to handle the non-linear 
separability of EEG features. The regularization parameter (C = 10) enabled a balance between margin maximization 
and error minimization, improving class separation in high-dimensional space. A Decision Tree classifier, configured 
with entropy as the split criterion and a maximum depth of 16, was used for its simplicity and interpretability [32, 33]. 
Minimum split and leaf sizes were set to 4 to avoid overfitting, ensuring the model remained generalizable. Random 
Forest, comprising 500 decision trees, leveraged ensemble learning to improve robustness [23]. Bagging and majority 
voting mechanisms enhanced performance, particularly in the presence of noisy or imbalanced data. The k-Nearest 
Neighbors (kNN) model used 3 neighbors with Manhattan distance and a ball-tree search algorithm. A distance-
weighted voting scheme allowed the model to account for proximity in feature space, making it effective for localized 
classification. Logistic Regression (LR) served as a baseline due to its interpretability and efficiency. With C = 100 and 
the SAG solver, LR produced probabilistic outputs and demonstrated competitive performance, particularly on the 
normalized and entropy-enhanced feature set. Adaptive Boosting (AdaBoost) combined 500 weak learners with a 
learning rate of 0.1, reweighting misclassified samples iteratively [24], [25]. This ensemble approach improved 
sensitivity to underrepresented classes and minimized classification bias. Light Gradient Boosting Machine (LGBM), 
configured with 500 estimators, a learning rate of 1.0, and a maximum depth of 16, utilized histogram-based feature 
binning and leaf-wise tree growth for efficient and scalable training. Multilayer Perceptron (MLP) was implemented 
with one hidden layer of 10 neurons and tanh activation [26, 34]. Optimized using the Adam solver with early stopping, 
MLP effectively captured non-linear dependencies in the EEG data. 

3.5.2. One-Dimensional Convolutional Neural Network (NeuroEmotionNet) 

To capture both temporal and spectral dynamics of EEG signals, a one-dimensional convolutional neural network (1D 
CNN) was utilized. Unlike traditional classifiers that rely heavily on handcrafted features, 1D CNNs automatically learn 
hierarchical feature representations from structured input, making them highly suitable for biomedical signal analysis 
[27, 35].  The model (Figure 3) was trained with 8-dimensional input vectors per instance, which included frequency 
band values—low and high alpha, beta, and gamma—along with demographic variables such as age and gender. The 
architecture consisted of two convolutional layers with 18 and 32 filters, respectively, and utilized kernel sizes of 3 and 
5. Each convolutional layer was followed by a ReLU activation function and a max-pooling layer to downsample the 
feature maps while emphasizing dominant patterns. The 1D convolution operation for an input signal ( x ) and kernel 
( w ) is defined as Eq. (1), where where K denotes the kernel size. Following convolution, max-pooling reduces the 
dimensionality while retaining key features such as Eq. 2.  
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𝑦[𝑖] = (𝑥 ∗ 𝑤)[𝑖] = ∑ 𝑥[𝑖 + 𝑘]

𝐾−1

𝑘=0

⋅ 𝑤[𝑘] 
(1) 

 

𝑦[𝑖] = max
0≤𝑘<𝑝

𝑥 [𝑖 + 𝑘] (2) 

After applying convolution and pooling, the output feature maps were flattened and passed through a fully connected 
dense layer, culminating in a Softmax output layer for multi-class prediction shown in Eq. 3, where 𝐶 =  4 indicates the 
four emotional classes. The model was trained using categorical cross-entropy as Eq. 4, where yi is the ground truth 
label and yî is the predicted probability.  

σ(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

,  𝑖 = 1, … , 𝐶 
(3) 

 

ℒ = − ∑ 𝑦𝑖

𝐶

𝑖=1

log(𝑦𝑖̂) 
(4) 

The 1D CNN is effective for analyzing sequential EEG data because it captures local patterns and temporal dependencies 
directly. Unlike 2D CNNs, which need data transformation, 1D CNNs work with raw sequences, minimizing 
computational overhead and complexity. They learn frequency-specific features linked to cognitive states, like increased 
gamma activity during anxiety or decreased beta power in depression. Its compact design also makes it ideal for real-
time emotion monitoring on resource-constrained healthcare devices. 

 

Figure 3 Proposed high-fidelity 1D CNN NeuroEmotionNet architecture 

3.6. Evaluation Metrics and Hyper Parameter Settings 

The performance of the proposed EEG-based emotion classification models was evaluated using Accuracy, Precision, 
Recall, F1-Score, Latency, Learning Curves, and Confusion Matrices. These metrics ensured both statistical rigor and 
interpretability in assessing model behavior across original and augmented datasets. Accuracy quantified overall 
correctness, while Precision and Recall measured the relevance and completeness of predictions per class. The F1-Score, 
as their harmonic mean, offered a balanced metric particularly useful for imbalanced classes [20], [21]. All metrics were 
macro-averaged to treat each emotional state—Positive, Neutral, Anxiety, and Depression—equally. Neural network 
training employed the Adam optimizer with a learning rate of 0.001 and batch size of 32. A dropout rate of 0.3 was used 
to prevent overfitting, with training capped at 100 epochs. Early stopping (patience = 5) was applied to halt training 
when validation performance plateaued. These settings ensured efficient convergence and robust generalization. 
Hyperparameter tuning for all models was performed via grid search [23], [27], [28]. Parameters such as tree depth and 
estimators (for Random Forest and Boosting), neighbors (kNN), kernel types (SVM), and hidden layer size or activation 
functions (MLP) were optimized based on validation accuracy and consistency across datasets [29]. Latency, recorded 
in milliseconds, reflected inference time and indicated the feasibility of real-time deployment, especially in wearable or 
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embedded EEG systems. Learning curves tracked accuracy and loss across epochs, providing insight into convergence 
and overfitting. Models exhibiting stable validation trends were considered well-generalized. Confusion matrices 
offered class-wise analysis, highlighting true positives and misclassification patterns [30], [31]. These helped identify 
class-specific challenges, such as overlapping between Anxiety and Depression, guiding targeted improvements. 

4. Results analysis 

4.1. Performance Comparison of Experimental Models 

Table 2 offers NeuroEmotionNet and MLP, show superior classification performance, especially with varied and 
augmented datasets. Traditional models benefit from SMOTE and ADASYN but are generally outperformed by 
ensembles and deep learning architectures. Combining multiple augmentation techniques enhances model 
effectiveness and robustness.  The 1D CNN outperforms all models, achieving the highest accuracy of 98.41% and an 
F1-Score of 98.16% on the Combined dataset, indicating strong generalization. The Multi-Layer Perceptron (MLP) also 
performs well, particularly with ADASYN and the Combined dataset, reaching 97.45% accuracy and a 97.08% F1-Score. 
These results emphasize the effectiveness of deep learning models with data augmentation. In contrast, simpler models 
like Logistic Regression and K-Nearest Neighbors (KNN) underperform.  

Table 2 Performance of experimental models 

Model Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

SVM Original 87.45 86.93 87.1 86.95 
 

+ GAN 92.63 91.88 92.42 92.14 
 

+ SMOTE 94.15 93.7 94.01 93.85 
 

+ ADASYN 93.28 92.45 93.02 92.71 
 

Combined 94.68 94.12 94.36 94.22 

Decision Tree Original 86.2 85.9 85.76 85.75 
 

+ GAN 89.31 88.5 89.02 88.65 
 

+ SMOTE 91.75 91.02 91.44 91.13 
 

+ ADASYN 90.82 90.2 90.51 90.34 
 

Combined 92.3 91.68 91.92 91.79 

Random Forest Original 89.52 88.93 89.2 89.01 
 

+ GAN 93.82 93.1 93.56 93.28 
 

+ SMOTE 94.91 94.33 94.72 94.49 
 

+ ADASYN 93.76 93.05 93.48 93.2 
 

Combined 95.04 94.56 94.83 94.68 

kNN Original 84.75 83.92 84.43 84.02 
 

+ GAN 88.56 87.93 88.41 88.07 
 

+ SMOTE 90.38 89.64 90.1 89.82 
 

+ ADASYN 89.43 88.9 89.2 89 
 

Combined 91.07 90.34 90.86 90.58 

Logistic Regression Original 82.64 82.12 82.4 82.24 
 

+ GAN 86.79 86.12 86.4 86.24 
 

+ SMOTE 89.51 88.93 89.2 89.01 
 

+ ADASYN 88.37 87.83 88 87.91 
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Combined 90.1 89.64 89.92 89.78 

AdaBoost Original 88.45 87.9 88.2 88 
 

+ GAN 92.32 91.65 92.1 91.84 
 

+ SMOTE 93.84 93.21 93.6 93.38 
 

+ ADASYN 92.98 92.31 92.8 92.54 
 

Combined 94.52 93.92 94.2 94.01 

LGBM Original 89.97 89.2 89.71 89.38 
 

+ GAN 93.6 92.85 93.42 93.12 
 

+ SMOTE 95.08 94.52 94.86 94.68 
 

+ ADASYN 94.2 93.61 93.88 93.74 
 

Combined 95.65 95.1 95.32 95.18 

MLP Original 91.86 91.4 91.72 91.54 
 

+ GAN 95.2 94.71 95.08 94.89 
 

+ SMOTE 96.83 96.4 96.7 96.52 
 

+ ADASYN 95.97 95.48 95.82 95.65 
 

Combined 97.45 96.93 97.24 97.08 

NeuroEmotionNet Original 93.1 92.68 92.9 92.78 
 

+ GAN 96.35 95.94 96.2 96.06 
 

+ SMOTE 97.92 97.56 97.83 97.69 
 

+ ADASYN 96.86 96.44 96.72 96.57 
 

Combined 98.41 98.05 98.28 98.16 

Logistic Regression has the lowest F1-Score of 82.24% on the original dataset, and KNN shows variable performance, 
with a Combined F1-Score of 90.58%. This highlights their limitations in high-dimensional or imbalanced situations. 
Synthetic data augmentation techniques, especially SMOTE and ADASYN, generally enhance model performance. For 
example, the F1-Score of the SVM improves from 86.95% to 92.71% with ADASYN. However, GAN-based augmentation 
is less reliable and sometimes yields poorer results than SMOTE and ADASYN. The Combined dataset approach 
consistently delivers the best outcomes across models. Ensemble models like Random Forest, AdaBoost, and LightGBM 
also perform competitively, with AdaBoost achieving a 94.01% F1-Score and LGBM reaching 95.18% on the Combined 
dataset. These models benefit from data augmentation, showcasing their adaptability. 

Table 3 presents the NeuroEmotionNet trained on a richly augmented dataset that achieves state-of-the-art 
performance in EEG-based emotional state recognition. The findings underscore the effectiveness of hybrid data 
augmentation in addressing class imbalance and enhancing model generalization, while highlighting the necessity of 
external validation for practical deployment in clinical or real-time settings. On the original dataset, the model achieved 
strong baseline results, with F1 scores between 96.4% and 96.7% and MCC values from 95.1% to 95.9%. However, 
performance for the Anxiety class was lower, indicating its EEG characteristics may overlap with other emotional states. 
Introducing synthetic data via Generative Adversarial Networks (GANs) consistently improved performance, with F1 
scores rising to approximately 97.5–97.8%. This suggests GANs helped increase diversity and allowed better 
generalization to underrepresent patterns, though improvements for the Anxiety class were minimal. SMOTE and 
ADASYN further enhanced classification ability by creating balanced class distributions, resulting in increased 
specificity and recall. PR AUC values reached 98.0% with SMOTE and 98.3% with ADASYN for the Depression class, with 
MCC values exceeding 97% for most classes. The best results occurred when all three augmentation methods were 
combined, achieving F1 scores of 98.8% to 99.1% and MCC values up to 98.2%. The Positive and Depression classes 
achieved specific values of 98.6% and 98.3%, respectively, indicating low false positive rates. This synergy of GAN, 
SMOTE, and ADASYN improved both the quantity and diversity of training samples. Despite these strong results, caution 
is needed due to potential overfitting from synthetic sample redundancy or distributional biases. The lack of external 
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validation limits the generalizability of these findings for real-world applications. Future research should include 
independent testing and explainability techniques to assess whether the model captures physiologically relevant 
patterns. 

Table 3 Classification Report Using NeuroEmotionNet Across All Datasets 

Dataset Class Accuracy (%) MCC (%) PR AUC (%) F1 Score (%) 

Original Positive 96.5 95.4 96.7 96.6 
 

Neutral 96.7 95.7 96.8 96.7 
 

Anxiety 96.3 95.1 96.5 96.4 
 

Depression 96.8 95.9 96.9 96.5 

+ GAN Positive 97.1 96.5 97.2 97.5 
 

Neutral 97.5 96.8 97.6 97.8 
 

Anxiety 97.2 96.3 97.1 97 
 

Depression 97.3 96.6 97.5 97.3 

+ SMOTE Positive 97.4 96.9 97.7 97.5 
 

Neutral 97.8 97.2 97.9 97.8 
 

Anxiety 97.5 96.6 97.4 97.6 
 

Depression 97.9 97.1 98 97.7 

+ ADASYN Positive 97.5 97 97.8 97.7 
 

Neutral 97.9 97.3 98.1 97.9 
 

Anxiety 97.6 96.8 97.5 97.8 
 

Depression 98.1 97.2 98.3 97.9 

Combined Positive 98.6 97.9 98.8 99.1 
 

Neutral 98.9 98.2 99.1 99.3 
 

Anxiety 97.5 97.1 98.4 98.7 
 

Depression 98.3 97.6 98.9 99.8 

4.2. Performance Validation 

Figure 4 shows the training and validation loss and accuracy over 50 epochs for a NeuroEmotionNet model across six 
dataset configurations: Original, GAN-augmented, SMOTE-augmented, ADASYN-augmented, and combined. The results 
indicate that the model learns effectively, with consistent reductions in loss and improvements in accuracy, suggesting 
good generalization with minimal overfitting. In the original dataset, loss curves decrease steadily, and training and 
validation accuracies converge around 90%, indicating some limitations due to the small dataset size and class 
imbalance. Introducing GAN-generated data accelerates convergence, achieving about 95% accuracy, while keeping 
training and validation curves aligned, showing GANs enhance learning through realistic variability. SMOTE 
augmentation improves the learning trajectory further, resulting in loss values that drop quickly and accuracy that 
exceeds 97%. The validation curve closely follows the training curve, indicating good class balance. ADASYN shows 
similar trends, but with more fluctuations in validation accuracy, likely due to its adaptive sampling introducing noisy 
synthetic samples. The most significant performance is with the Combined approach, integrating GAN, SMOTE, and 
ADASYN. This configuration achieves the lowest loss and highest accuracy across all epochs, with training and validation 
curves nearly overlapping, resulting in a final validation accuracy of about 99%. This confirms effective learning and 
strong generalization. 
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Figure 4 Learning curves of the proposed 1D-CNN model for both datasets 

4.3. Web Application 

 

Figure 5 web application demo 

The web application titled "Emotion Detection from EEG" exemplifies the practical deployment of the proposed machine 
learning model (Figure 5). It features a clean, user-friendly interface that enables users to upload EEG data through a 
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drag-and-drop panel, making the system accessible even to non-technical users such as clinicians. This functionality 
simplifies interaction and supports the model's real-time usability in clinical environments. The interface includes input 
fields for Patient ID, Age, and Gender, aligning with the demographic features used during training to support 
personalized predictions. Once the required information is provided, the user can initiate the emotion classification 
process with a single click via the "Detect Emotion" button, triggering the backend inference pipeline powered by the 
trained NeuroEmotionNet model. This lightweight, focused design highlights the system’s low-latency and high-
accuracy capabilities. To further enhance its utility, future improvements may include feedback on prediction 
confidence, input validation alerts, and the ability to export results. Overall, the application demonstrates the successful 
translation of the research into a deployable tool for real-time emotion detection in mental healthcare settings. 

4.4. State-of-The-Art Comparison 

Table 4 provides a clear evaluation of various models used for a classification task, emphasizing both accuracy and real-
world applicability. References [8] to [11] utilize traditional machine learning techniques such as RBF-SVM, PCA, DWT, 
Relief, and ensemble classifiers like RF and KNN. These methods show modest performance, with accuracy scores 
ranging from 78.96% to 91.3%, reflecting the limitations of handcrafted feature-based approaches. In contrast, 
references [12] and [13] adopt deep learning-based methods, including a Pyramidal 1D CNN and a VMD-based hybrid 
model, achieving higher accuracy of 99.1% and 98.7%, respectively. These results illustrate the superior feature 
extraction capabilities of deep neural networks. However, despite their high performance, none of these previous 
studies resulted in practical application deployment, as indicated by the “No” in the application column. The proposed 
model in this study, a NeuroEmotionNet, demonstrates strong and consistent performance with multiple reported 
results—92.78%, 96.06%, 97.69%, 96.57%, and 98.16%. Although slightly below the peak performance of some 
previous deep learning models, this method shows robust generalization. More importantly, it stands out as the only 
model that has been deployed in a real-world application, highlighting its practical relevance and usability. While the 
table effectively presents comparative accuracy and application status, it would benefit from clearer labeling of the 
multiple results, consistent formatting of model names, and inclusion of statistical measures like standard deviation. 
Overall, the proposed model offers a balanced contribution by achieving competitive accuracy and enabling real-world 
deployment, which distinguishes it from prior works. 

Table 4 Performance comparison with previous studies 

Reference No. Proposed Model Highest Result App (Yes/No) 

[8] RBF-SVM with PCA on DWT features 91.3%  No 

[9] RF on emotion dimensions 89.96%  No 

[10] DT, SVM, KNN with Relief & PCA 78.96%  No 

[11] PCA + SVM  84.73%  No 

[12] Pyramidal 1D CNN (P-1D-CNN) 99.1%  No 

[13] Kurtosis-based VMD + RF classifier 98.7%  No 

Ours NeuroEmotionNet 92.78, 96.06, 97.69, 96.57, 98.16 Yes 

5. Discussion 

The EEG-based emotion recognition framework shows excellent performance with classical and deep learning models, 
particularly the 1D Convolutional Neural Network (NeuroEmotionNet) and Multi-Layer Perceptron (MLP). The 
NeuroEmotionNet stands out for its high accuracy on the combined augmented dataset, thanks to its ability to learn 
patterns from EEG signals without manual feature engineering. The MLP also performed well with ADASYN-augmented 
data, highlighting that simpler models can achieve strong results when fed meaningful features and balanced data. In 
contrast, traditional classifiers like Logistic Regression and k-Nearest Neighbors (kNN) underperformed on the original 
dataset, struggling to capture the complex nature of EEG data. 

The feature extraction pipeline proved effective in improving model performance. The Discrete Wavelet Transform 
(DWT) helped break down EEG signals into alpha, beta, and gamma subbands, crucial for distinguishing emotional 
states. Shannon Entropy added value by measuring signal complexity, often linked to conditions like anxiety and 
depression. This combination of frequency and complexity features enhanced both classical and deep learning models. 



International Journal of Science and Research Archive, 2025, 15(02), 1442–1457 

1454 

Data augmentation was vital for handling class imbalance and small dataset size. Among the three methods used, SMOTE 
and ADASYN consistently boosted performance by generating synthetic samples that preserved local data structure and 
concentrated on underrepresented classes. While GAN-based augmentation showed some benefits, it sometimes lagged 
behind due to distribution shifts or mode collapse. The best outcomes came from using all three techniques together, 
demonstrating that hybrid strategies improve the diversity and quality of training data. 

A key contribution of this study is the real-time web application for emotion classification using EEG data. Unlike past 
research limited to algorithmic analysis, this application covers everything from signal acquisition to live prediction. It 
incorporates demographic info, allowing for personalized modeling, and features an intuitive interface with low-latency 
predictions, making it ideal for clinical and mental health monitoring. 

The proposed method balances performance and deployability. Previous studies achieved higher accuracy but often 
lacked real-world application or relied on handcrafted features. Our framework not only delivers competitive results 
but also maintains scalability and interpretability—essential for healthcare integration. Still, there are limitations: 
reliance on a single institutional dataset affects generalizability, data augmentation may introduce redundancy or 
overfitting, and distinguishing between closely related emotions like anxiety and depression remains challenging. 

Future work will involve validating the system with multi-institutional or cross-subject datasets to improve robustness. 
Integrating other physiological signals (like heart rate and facial EMG) and contextual data could deepen understanding 
of emotions. Applying explainable AI (XAI) techniques such as SHAP or Grad-CAM would enhance transparency, aiding 
clinicians in interpreting model decisions. Additionally, optimizing the application for embedded devices and edge 
deployment would extend its use in mobile and telemedicine settings.   

6. Conclusion 

This study introduces a machine learning framework for analyzing EEG signals to improve emotional state detection. It 
combines frequency-domain decomposition via Discrete Wavelet Transform (DWT), complexity assessment using 
Shannon Entropy, and demographic information to classify four emotional states: Positive, Neutral, Anxiety, and 
Depression. The framework utilizes both classical and deep learning models, alongside data augmentation techniques 
like GAN, SMOTE, and ADASYN, to tackle data scarcity and class imbalance issues. Results show that the 1D 
Convolutional Neural Network (NeuroEmotionNet) and Multi-Layer Perceptron (MLP) outperform other models, with 
the NeuroEmotionNet achieving a top F1-Score on the augmented dataset, while demonstrating excellent latency for 
real-time applications. The augmentation methods significantly enhance classification accuracy, especially for minority 
classes, proving the effectiveness of synthetic sample generation in biomedical data. A major contribution is the 
development of a real-time web application for emotion recognition, making the system practical for intelligent mental 
healthcare. This application provides instant emotion predictions by integrating patient data and EEG signals, marking 
an advancement over previous offline models. Future research will focus on cross-institutional validation, integrating 
multimodal data (like physiological and behavioral signals), and incorporating explainable AI techniques for better 
transparency. This work establishes a foundation for scalable, personalized, and real-time emotion-aware systems to 
aid early intervention and monitoring in mental healthcare.  
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