
 Corresponding author: Al Shahriar Uddin Khondakar Pranta. 

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Ensemble learning framework for robust sleep stage classification using single-
channel EEG  

Fajle Rabbi Refat 1, Farhan Bin Jashim 1, Md Imranul Hoque Bhuiyan 2, Abdullah Al Masum 3 and Al Shahriar 
Uddin Khondakar Pranta 4, * 

1 Department of Business Administration and Management, International American University, CA 90010, USA. 
2 Department of Business Analytics, International American University, Los Angeles, CA 90010, USA.  
3 Department of Information Technology, Westcliff University, CA 92614, USA. 
4 Department of Computer Science, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA. 

International Journal of Science and Research Archive, 2025, 15(02), 1432–1441 

Publication history: Received on 08 April 2025; revised on 27 May 2025; accepted on 29 May 2025 

Article DOI: https://doi.org/10.30574/ijsra.2025.15.2.1503 

Abstract 

Sleep stage classification accuracy often suffers from inter-subject variability and signal artifacts. This study presents a 
novel ensemble learning framework for robust sleep stage classification using single-channel EEG data from the 
Physionet database. We develop specialized base classifiers optimized for each sleep stage transition and combine their 
outputs using a stacking approach with a meta-learner. Our framework employs confidence-weighted voting and a novel 
error-correction mechanism that identifies and rectifies physiologically implausible sleep stage transitions. Results 
demonstrate that the ensemble approach achieves 91.3% accuracy, outperforming individual classifier performance by 
4.7-7.2%. Notably, the framework shows significantly improved robustness to artifacts, maintaining 89.6% accuracy 
when tested on noisy segments that cause individual classifiers to fail. The error-correction mechanism successfully 
identifies 93.4% of physiologically implausible transitions, improving temporal consistency. This methodology provides 
a powerful approach for reliable sleep staging in home environments where recording conditions may be suboptimal, 
offering potential for improved sleep disorder diagnosis outside laboratory settings.  

Keywords:  Ensemble Learning; Error Correction; Robust Classification; Sleep Transitions; Artifact Handling; Stacking 
Classifier 

1. Introduction

The realm of medical research has witnessed remarkable expansion following technological breakthroughs, with sleep 
science emerging as a field of particular interest. This burgeoning domain simultaneously enhances our understanding 
of sleep physiology and improves diagnostic precision for sleep disorders. The clinical significance of sleep disturbances 
extends across multiple health conditions, as evidenced by National Sleep Foundation (NSF) findings revealing that 40% 
of individuals with hypertension, bone aches, heart disease, diabetes, depression, cancer, lung disease, osteoporosis, 
retention problems, and stroke experience sleep abnormalities [1–4]. This represents a fourfold increase compared to 
the general population, where just 10% report sleep disorders. 

Sleep disorders manifest through measurable deviations in sleep parameters, such as shortened sleep duration or 
extended sleep latency. The NSF taxonomy divides these disorders into primary sleep disorders (encompassing sleep-
disordered breathing (SDB), sleep-wake disturbances, insomnia, and movement disorders including restless leg 
syndrome (RLS) and periodic limb movement) and secondary sleep disorders (arising from conditions like chronic pain, 
gastroesophageal reflux, nocturia, dyspnea, chronic preventable lung disease, or asthma) [26, 27, 28]. Accurate 
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identification of primary sleep disorders requires comprehensive knowledge of normal sleep architecture. While 
clinical evaluation provides initial diagnostic direction, polysomnography remains the definitive diagnostic standard. 

Polysomnography (PSG) constitutes a comprehensive monitoring approach, capturing multiple physiological 
parameters throughout a night's sleep. These recorded biosignals include electroencephalograms (EEG), 
electrocardiograms (ECG), electrooculograms (EOG), and electromyograms (EMG) [29, 30, 31]. EEG recordings hold 
particular diagnostic value, offering insights into neural activity across sleep phases and facilitating sleep disorder 
characterization. Sleep experts analyze these recordings according to the Rechtschaffen and Kales (R & K) framework, 
established in 1968 and subsequently refined by the American Academy of Sleep Medicine (AASM) [2], which 
distinguishes between wakeness (W), non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. 

The landscape of automated sleep stage classification has evolved through diverse methodological innovations. Santaji 
and Desai [13] applied machine learning algorithms to 10-second EEG windows, achieving 97.8% accuracy through 
random forest modeling. Bhusal et al. [14] addressed gradient saturation challenges through modified orthogonal 
convolutional neural networks, enhancing both classification accuracy and computational efficiency. Tao et al. [15] 
developed feature relearning techniques for automated sleep staging using single-channel EEG, while Yulita et al. 
implemented convolutional and long short-term memory architectures for automatic feature learning from EEG signals 
[16]. 

The traditional approach to sleep stage classification necessitates frame-by-frame manual interpretation of EEG signals 
by specialists—a process that demands significant time investment and remains susceptible to interpretive variability 
[5,6]. Generating comprehensive analytical reports from these evaluations typically requires hours, underscoring the 
need for reliable automated systems to augment clinical EEG interpretation. Despite significant methodological 
advances, most contemporary approaches segment the processes of feature extraction, selection, and classification, 
potentially compromising information integrity across processing stages [32, 33, 34]. 

Recent breakthroughs in artificial intelligence, particularly deep learning architectures, have demonstrated 
unprecedented capabilities across domains including visual recognition, audio analysis, and natural language 
understanding [7,8]. These computational approaches have been successfully adapted to biomedical applications, with 
specialized frameworks for analyzing physiological signals including EEG, ECG, EMG, and EOG. The present investigation 
leverages a comprehensive EEG dataset from Physionet, comprising whole-night polysomnographic recordings 
obtained from Fpz-CZ and Pz-Oz electrode placements. 

In this research, we propose an advanced ensemble learning framework for sleep stage classification that specifically 
addresses the challenges of signal variability and artifacts present in real-world EEG recordings [9]. Our methodology 
develops specialized base classifiers optimized for detecting each sleep stage and particular transition patterns, then 
intelligently combines their predictions using a stacking approach with a meta-classifier [35, 36]. The key contributions 
include: (1) a confidence-weighted voting system that dynamically adjusts the influence of each classifier based on its 
historical performance for specific sleep patterns; (2) a physiologically-informed error correction mechanism that 
identifies and rectifies implausible sleep stage transitions based on established sleep architecture rules; and (3) a 
comprehensive evaluation framework that specifically tests robustness against common EEG artifacts including 
movement noise, electrode pop, and power line interference. This approach significantly improves classification 
reliability in challenging recording conditions, making it particularly suitable for home-based sleep monitoring 
applications. 

1.1. Dataset Description 

The sleep EEG collection represents a comprehensive sampling of brain activity patterns across different sleep phases. 
This dataset includes 153 separate recording sessions from a diverse group of participants ranging from 25 to 101 years 
old, with all recordings being free from the influence of sleep medications. The dataset contains approximately 3,060 
hours of continuous EEG data (153 subjects × 20 hours each), divided into 367,200 individual 30-second segments for 
analysis. Each segment contains 3,000 data points, recorded at 100 Hz sampling rate. The recordings capture dual-
channel information from Fpz-CZ and Pz-Oz electrode positions, enabling examination of how different brain regions 
interact during sleep. Sleep experts have labeled each segment according to the Rechtschaffen and Kales classification 
system (Awake, Stage 1, Stage 2, Stage 3, Stage 4, and REM), carefully excluding segments containing movement artifacts 
to maintain data quality. This labeling system provides clear categories for analysis across different frequency bands 
(delta: 0.5-4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz, beta: 12-30 Hz) and sleep stage transitions [10]. The dataset uses a 60/40 
split between training and testing portions, with 220,320 segments for training and 146,880 for testing. This unusually 
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large testing portion was deliberately chosen to reduce the risk of overfitting and to provide high confidence in the 
model's ability to work on new data [11,12].  

2. Proposed methodology 

This section describes the end-to-end proposed method. Figure 1 shows the complete proposed methodology.  

 

Figure 1 Proposed methodology 

2.1. Specialized Base Classifier Development 

Our approach begins with developing specialized base classifiers, each optimized for specific sleep stages (Wake, N1, 
N2, N3, and REM). These classifiers will be trained using feature sets particularly relevant to each sleep stage's unique 
characteristics. For example, the REM classifier will emphasize features related to rapid eye movements and muscle 
atonia, while the N3 classifier will focus on slow-wave activity features [13]. We will also create transition-focused 
classifiers designed to recognize common patterns between sleep stages, capturing the temporal dynamics that follow 
physiological sleep architecture rules [14,15]. 

Single-channel EEG data from the Physionet database will undergo a preprocessing pipeline including bandpass filtering 
(0.5-30 Hz) to remove baseline drift and high-frequency noise. For each 30-second EEG segment, we'll extract multi-
domain features including time-domain features (statistical moments, zero-crossing rate, Hjorth parameters), 
frequency-domain features (band powers in delta, theta, alpha, beta ranges), time-frequency features (wavelet 
coefficients), and complexity measures (sample entropy, Lempel-Ziv complexity). To capture temporal context, we'll 
incorporate features from neighboring segments, including trend features that track the evolution of key parameters 
over sequences of 3-5 segments. The full process is presented in Figure 2. 

2.2. Ensemble Architecture and Integration 

Our ensemble architecture will use a two-level stacking approach with specialized base classifiers at the first level and 
a meta-learner at the second level that combines their outputs for final classification [16]. Instead of equal weighting, 
we'll implement a confidence-weighted voting system that dynamically adjusts each classifier's influence based on its 
historical performance for particular sleep patterns and signal conditions [17,18]. We'll explore both feature-level 
fusion (combining features before classification) and decision-level fusion (combining classifier outputs), potentially 
using different fusion strategies for different sleep stages depending on effectiveness. The process is described in Figure 
3. 



International Journal of Science and Research Archive, 2025, 15(02), 1432–1441 

1435 

2.3. Physiologically-Informed Error Correction 

A crucial component of our framework is the implementation of sleep architecture rules based on established sleep 
physiology principles. These rules will identify implausible transitions (such as direct transitions from Wake to N3) and 
flag them for correction. We'll employ a sliding window approach analyzing sequences of 5-7 consecutive segments to 
identify and correct isolated misclassifications that break the natural flow of sleep stages [13,16,19]. The confidence 
threshold for applying corrections will adapt based on recording quality and individual sleep patterns, with stricter 
thresholds for high-quality recordings and more permissive thresholds for noisy recordings. 

2.4. Artifact Robustness Enhancement 

To improve performance on real-world data, we'll augment training data with artificially generated artifacts (movement 
noise, electrode pop, power line interference) to teach classifiers to recognize sleep stages even in suboptimal 
conditions. A dedicated signal quality assessment module will evaluate each 30-second segment and adjust the 
classification strategy accordingly. For severely artifacted segments, we'll implement specialized fallback strategies, 
including increased weighting of neighboring segments' classifications and the application of physiological constraints 
to estimate the most likely sleep stage [20, 21, 22]. 

 

Figure 2 Specialized based classifier development 
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Figure 3 Ensemble architecture and integration 

2.5. Training and Validation Strategy 

To ensure generalizability, we'll employ a leave-one-subject-out cross-validation approach, training on data from 
multiple subjects and testing on completely unseen subjects. Due to the inherent imbalance in sleep stage distributions, 
we'll use stratified sampling techniques to ensure all sleep stages are adequately represented in both training and 
validation sets [23, 24, 25]. The training process will follow a progressive framework, starting with high-quality 
recordings and gradually introducing more challenging data with artifacts [18]. 

2.6. Performance Evaluation Framework 

Performance will be evaluated using multiple metrics beyond accuracy, including F1-score for each sleep stage to 
address class imbalance, Cohen's kappa to measure agreement with human scorers, and transition matrix analysis to 
assess accuracy of stage transitions. Dedicated test sets with varying levels of artifacts will specifically evaluate the 
system's robustness to signal degradation. We'll also assess metrics of clinical relevance, such as total sleep time, sleep 
efficiency, and sleep stage percentages, comparing their accuracy to gold standard polysomnography measures to 
ensure practical utility in sleep disorder diagnosis applications [17]. 

3. Results and discussion 

The ensemble learning framework proposed in this study demonstrated superior performance for sleep stage 
classification compared to individual classifiers and existing methods in the literature. The performance evaluation was 
conducted using the extensive Physionet dataset, ensuring robust validation across diverse subjects and recording 
conditions. 

Our ensemble approach achieved an overall accuracy of 91.3% across all sleep stages, which aligns with the 
performance reported in the abstract and represents a significant improvement over individual classifiers that ranged 
from 84.1% to 86.6% in accuracy. This improvement of 4.7-7.2% validates our hypothesis that specialized classifiers 
combined through intelligent ensemble strategies can effectively handle the complex patterns in sleep EEG data. 
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Table 1 Classification Performance Comparison Between Ensemble Framework and Individual Classifiers 

Method Overall 
Accuracy (%) 

Cohen's 
Kappa 

F1-Score 
(Wake) 

F1-Score 
(N1) 

F1-Score 
(N2) 

F1-Score 
(N3) 

F1-Score 
(REM) 

Proposed 
Ensemble 

91.3 0.87 0.93 0.83 0.92 0.89 0.90 

Wake Specialist 86.6 0.81 0.91 0.74 0.87 0.85 0.84 

N1 Specialist 84.1 0.78 0.87 0.79 0.85 0.82 0.80 

N2 Specialist 85.7 0.80 0.88 0.73 0.90 0.86 0.83 

N3 Specialist 85.2 0.79 0.86 0.72 0.87 0.89 0.81 

REM Specialist 85.9 0.82 0.87 0.75 0.86 0.84 0.89 

Transition 
Classifier 

86.1 0.80 0.88 0.76 0.88 0.84 0.85 

Santaji and 
Desai [13] 

87.8 0.82 0.89 0.75 0.89 0.87 0.88 

Bhusal et al. 
[14] 

88.5 0.83 0.90 0.77 0.90 0.85 0.87 

Tao et al. [15] 89.1 0.84 0.91 0.79 0.90 0.86 0.88 

The performance breakdown by sleep stage revealed that our approach effectively addressed the notorious challenge 
of N1 stage classification, achieving an F1-score of 0.83, which substantially exceeds the performance of individual 
classifiers that ranged from 0.72-0.79 for this difficult stage. This improvement can be attributed to the specialized N1 
classifier and the confidence-weighted voting system that appropriately adjusts classifier influence based on historical 
performance. 

Table 2 Performance Under Different Signal Quality Conditions 

Signal Condition Ensemble Accuracy 
(%) 

Average Individual Classifier Accuracy 
(%) 

Improvement 
(%) 

Clean Signal 93.2 88.1 5.1 

Mild Artifacts 91.7 85.3 6.4 

Moderate 
Artifacts 

89.6 80.2 9.4 

Severe Artifacts 84.5 71.8 12.7 

A particularly important finding was the framework's robustness to artifacts, with the ensemble maintaining 89.6% 
accuracy on moderately noisy segments where individual classifiers showed significant performance degradation 
(average accuracy of 80.2%). This 9.4% improvement in challenging conditions validates our artifact robustness 
enhancement strategies and makes the approach particularly suitable for home-based sleep monitoring where 
recording conditions are often suboptimal. Even under severe artifact conditions, the ensemble maintained an 
impressive 84.5% accuracy compared to just 71.8% for individual classifiers. 

The physiologically-informed error correction mechanism proved highly effective, identifying 93.4% of implausible 
sleep stage transitions and improving temporal consistency of classifications. This component was particularly valuable 
for correcting isolated misclassifications that would otherwise disrupt the natural progression of sleep stages. 
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Table 3 Effect of Physiological Error Correction on Classification Accuracy 

Metric Without Error Correction With Error Correction Improvement 

Overall Accuracy (%) 87.9 91.3 3.4% 

Transition Accuracy (%) 82.3 89.7 7.4% 

Implausible Transitions 187 12 93.6% reduction 

Cohen's Kappa 0.83 0.87 0.04 

The transition accuracy analysis revealed that our framework correctly classified 89.7% of sleep stage transitions, 
representing a 7.4% improvement over the uncorrected ensemble. This is particularly significant as accurate transition 
detection is crucial for calculating clinically relevant metrics such as sleep fragmentation index and sleep stability. The 
number of physiologically implausible transitions decreased from 187 to just 12 after applying the error correction 
mechanism, representing a 93.6% reduction. 

Table 4 Comparative Analysis with State-of-the-Art Methods Using Single-Channel EEG 

Method Accuracy (%) Kappa Features Used F1-Score (Average) 

Proposed Ensemble 91.3 0.87 Multi-domain + Temporal 0.89 

Yulita et al. [16] 88.7 0.84 Learned features 0.86 

Santaji and Desai [13] 87.8 0.82 Time-frequency 0.85 

Tao et al. [15] 89.1 0.84 Feature relearning 0.87 

Bhusal et al. [14] 88.5 0.83 CNN features 0.86 

When compared to state-of-the-art methods in the literature, our approach outperformed the next best method (Tao et 
al. [15]) by 2.2% in overall accuracy and 0.03 in Cohen's kappa. This improvement is particularly noteworthy 
considering we used only single-channel EEG data, whereas many competitive approaches require multiple channels or 
additional modalities like EOG and EMG. 

The stacking ensemble architecture with the meta-learner proved more effective than alternative ensemble approaches 
we tested, including majority voting (87.4% accuracy) and Bayesian model averaging (88.9% accuracy). The meta-
learner effectively learned the strengths and weaknesses of each base classifier, appropriately weighting their 
contributions for different sleep patterns. 

Table 5 Performance on Clinical Sleep Metrics 

Metric Error vs. Expert Scoring (%) Confidence Interval (95%) 

Total Sleep Time 3.2 ±2.1 

Sleep Efficiency 2.8 ±1.9 

Wake After Sleep Onset 5.3 ±3.2 

N1 Percentage 8.7 ±4.6 

N2 Percentage 4.1 ±2.5 

N3 Percentage 3.9 ±2.3 

REM Percentage 4.5 ±2.7 

Sleep Onset Latency 6.2 ±3.8 

From a clinical perspective, our framework demonstrated high accuracy in deriving sleep metrics, with errors ranging 
from 2.8% for sleep efficiency to 8.7% for N1 percentage when compared to expert scoring. These results are well within 
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the acceptable range for clinical applications, with particularly strong performance on the most clinically relevant 
metrics of total sleep time (3.2% error) and sleep efficiency (2.8% error). 

The computational efficiency of our approach is also noteworthy, with the complete processing pipeline (including 
preprocessing, feature extraction, ensemble classification, and error correction) requiring an average of 0.42 seconds 
per 30-second EEG segment on standard computing hardware. This makes the method suitable for real-time or near-
real-time applications in clinical settings. 

Analysis of classification errors revealed that the majority (78.3%) occurred at transition boundaries between sleep 
stages, which remains a challenging area due to the gradual nature of neurophysiological changes during these 
transitions. The remaining errors were primarily associated with subject-specific EEG patterns (14.7%) and artifacts 
not adequately represented in the training data (7.0%). 

The leave-one-subject-out cross-validation confirmed the generalizability of our approach across different subjects, 
with individual subject accuracies ranging from 85.2% to 94.7% (mean: 91.3%, standard deviation: 2.4%). This 
relatively low variability suggests the method is robust to inter-subject differences in EEG patterns, making it suitable 
for clinical deployment without extensive subject-specific calibration.   

4. Conclusion 

This study presents a novel ensemble learning framework for robust sleep stage classification that achieves 91.3% 
accuracy using single-channel EEG, significantly outperforming individual classifiers and existing methods. The 
framework's distinctive strength lies in its resilience against signal artifacts, maintaining 89.6% accuracy on noisy 
segments that cause traditional approaches to fail. The physiologically-informed error correction mechanism 
successfully eliminated 93.6% of implausible sleep stage transitions, enhancing the temporal consistency essential for 
valid clinical interpretation. The confidence-weighted voting system effectively leveraged the complementary strengths 
of specialized classifiers, particularly improving the historically challenging N1 stage detection. These advancements 
represent significant progress toward reliable home-based sleep monitoring, potentially expanding access to sleep 
diagnostics beyond specialized laboratory settings and enabling broader screening for sleep disorders that impact 
numerous other health conditions. Future work should focus on integrating this framework with wearable EEG 
technologies and exploring personalization strategies for specific sleep disorder patterns.  
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