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Abstract 

Breast cancer remains one of the most prevalent and life-threatening diseases, requiring early and accurate diagnosis 
to improve survival rates. Traditional diagnostic methods rely on manual interpretation of ultrasound and 
histopathology images, which are time-consuming, prone to variability, and dependent on expert radiologists and 
pathologists. Recent advances in deep learning have shown promise in automating breast cancer detection; however, 
existing models often suffer from overfitting, dataset biases, and poor generalization across different imaging 
modalities. To address these challenges, we propose a novel stacking ensemble-based breast cancer classification model 
integrating EfficientNetB8, RegNet, RepVGG, and MNasNet. Our approach enhances classification robustness by 
leveraging complementary feature extraction capabilities of multiple architectures. We evaluate our model on two 
publicly available datasets—BUSI (ultrasound) and BreaKHis (histopathology)—demonstrating superior performance 
over previous deep learning approaches. Our ensemble model achieves a maximum MCC of 99.31% on the BUSI dataset 
and 99.52% on the BreaKHis dataset, outperforming individual architectures. Additionally, we incorporate Contrast 
Limited Adaptive Histogram Equalization for contrast enhancement and employ data augmentation to mitigate class 
imbalance and improve model generalization. Furthermore, we develop a web-based diagnostic system for real-time 
breast cancer classification, enabling efficient and accessible clinical decision-making. While the proposed approach 
significantly enhances classification accuracy, future research will focus on dataset expansion, real-world validation, 
and explainable AI integration for improved interpretability and clinical adoption.  
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1. Introduction

Breast cancer is the most commonly diagnosed cancer worldwide, with over 2.3 million new cases annually, accounting 
for 12.5% of all newly diagnosed cancers [1]. It remains the leading cause of cancer-related mortality among women, 
contributing to approximately 685,000 deaths each year (GLOBOCAN 2023) [2]. Early detection significantly improves 
survival rates, with studies indicating that timely diagnosis can reduce mortality by up to 40% [3]. Medical imaging 
techniques such as ultrasound and histopathology play a crucial role in breast cancer detection due to their non-invasive 
nature and ability to differentiate malignant from benign tumors [4]. However, traditional manual interpretation of 
medical images remains time-consuming, subjective, and prone to inter-observer variability, necessitating automated 
AI-driven solutions to enhance diagnostic precision, efficiency, and accessibility [5]. Deep learning, particularly CNNs, 
has shown state-of-the-art performance in breast cancer classification, often surpassing human radiologists in 
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sensitivity and specificity [6]. AI-assisted diagnostic tools have demonstrated the potential to improve tumor detection 
rates by up to 20% while reducing false positives, leading to more accurate decision-making in clinical settings [7], [8]. 
However, existing deep learning-based approaches face several critical challenges, including overfitting, dataset biases, 
poor generalization across imaging modalities, and difficulty in handling class imbalances [9], [10]. CNN models trained 
on a specific dataset often struggle to generalize to unseen medical images, leading to inconsistencies in predictions. 
Moreover, the lack of interpretability in deep learning models raises concerns regarding trust and adoption in real-
world clinical applications [11], [12]. 

To address these challenges, this study proposes a stacking ensemble model that integrates EfficientNetB8, RegNet, 
RepVGG, and MNasNet to enhance classification robustness and generalization across datasets [13]. Each architecture 
contributes distinct advantages: EfficientNetB8 optimizes feature extraction through compound scaling, RegNet 
provides structural adaptability, RepVGG ensures computational efficiency, and MNasNet enhances latency-aware 
optimization. By aggregating feature representations from multiple architectures, the ensemble model mitigates 
individual model biases, improves sensitivity for malignant cases, and reduces false positive rates, making it more 
reliable for breast cancer screening. Medical image preprocessing plays a critical role in enhancing classification 
accuracy [14], [15]. This study incorporates Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve 
local contrast, ensuring better differentiation between tumor and non-tumor regions in ultrasound and histopathology 
images. Additionally, data augmentation techniques such as rotation, flipping, and zooming address class imbalances 
and enable better generalization across diverse imaging datasets [16]. These techniques significantly improve the 
model’s ability to distinguish benign from malignant tumors, overcoming common limitations faced by CNN-based 
classification models in medical imaging. Beyond improving classification accuracy, real-world deployment of AI-based 
diagnostic systems remains a key challenge. To bridge the gap between research and clinical applications, this study 
introduces a web-based breast cancer classification system, allowing healthcare professionals to upload ultrasound or 
histopathology images and receive instant AI-driven diagnostic predictions [17]. This interactive platform enables 
faster and more efficient medical decision-making, reducing reliance on manual analysis and improving early 
intervention strategies. The proposed system has the potential to be integrated into clinical decision-support tools, 
enhancing workflow efficiency and facilitating timely, data-driven breast cancer diagnosis in resource-limited settings. 
The key contributions of this research are 

• A novel stacking ensemble model integrating EfficientNetB8, RegNet, RepVGG, and MNasNet, improving 
classification robustness and outperforming individual architectures. 

• An optimized preprocessing pipeline incorporating CLAHE and advanced data augmentation techniques to 
enhance contrast, mitigate class imbalance, and improve model generalization. 

• A real-time web-based breast cancer classification system that enables instant AI-driven tumor detection, 
facilitating seamless integration into clinical workflows. 

• Comprehensive evaluation and benchmarking on BUSI (ultrasound) and BreaKHis (histopathology) datasets, 
demonstrating superior performance over previous state-of-the-art deep learning models. 

The remainder of this paper is organized as follows: Section II reviews related works on breast cancer classification 
using deep learning, Section III details the methodology, including data collection, preprocessing, and model 
development, Section IV presents experimental results, and Section V discusses findings, limitations, and future 
research directions. 

2. Related Work 

Deep learning has played a transformative role in breast cancer detection, segmentation, and classification by leveraging 
medical imaging and automated feature extraction. Various studies have focused on CNNs, ensemble learning, and 
generative models to enhance accuracy, yet challenges such as dataset imbalance, lack of web-based deployment, and 
model generalization persist.  

Abhisheka et al. [18] provided a comprehensive study of deep learning-based breast cancer detection across multiple 
imaging modalities, including mammography, ultrasound, MRI, CT, PET, and histopathology. They analyzed public 
datasets such as DDSM, INbreast, and MIAS, highlighting the evolution from manual to CNN-based detection methods. 
The study emphasized ensemble learning techniques and pre-processing strategies, achieving classification accuracies 
up to 99.7%. However, the review noted the lack of web-based applications for real-time diagnosis and inconsistencies 
in dataset standardization, which limit model adaptability. Raza et al[19] introduced Deep Breast Cancer Net, a 24-layer 
deep learning model for breast cancer detection using ultrasound images. The architecture incorporated convolutional 
and inception modules, trained on 1030 ultrasound images across benign, malignant, and normal classes. The model 
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achieved a classification accuracy of 99.35% and 99.63% for binary classification. Despite its high performance, the 
study relied on small, imbalanced datasets, limiting the model’s ability to generalize across diverse clinical 
environments. Additionally, the absence of advanced ensemble strategies reduced the robustness of predictions in 
complex cases. 

Sharmin et al. [20] proposed a hybrid model integrating deep feature extraction with ensemble-based machine learning 
techniques. Using ResNet50V2, the study extracted features from the IDC histopathology dataset, consisting of 2000 
images and 277,524 patches. LightGBM outperformed other classifiers, achieving 95% accuracy. While the study 
demonstrated the effectiveness of ensemble learning, it did not explore model stacking techniques, which could further 
enhance prediction reliability. Furthermore, the approach focused solely on IDC classification, limiting its applicability 
to broader breast cancer subtypes [21]. 

Asadi et al. [22] developed a cascade deep learning framework for breast cancer detection, integrating UNet for tumor 
segmentation and ResNet50 for classification. The study utilized 2780 mammography images from ImageNet, achieving 
98.61% classification accuracy and a 97.30% F1-score for segmentation. While the method effectively combined 
segmentation and classification, segmentation errors and tumor morphology variations affected generalization. 
Additionally, the model lacked data augmentation strategies to address class imbalances, which could further refine its 
robustness. 

Sulaiman et al. [23] introduced an attention-based U-Net model for breast cancer segmentation using the BUSI 
ultrasound dataset. By incorporating attention gates in the decoder blocks, the model achieved 98% accuracy, 97% 
precision, and a dice score of 92%. However, the study relied on limited training data, which may lead to overfitting. 
Moreover, no advanced augmentation strategies were implemented to mitigate data imbalance, and the approach did 
not consider web-based deployment for real-time clinical use. 

Aumente-Maestro et al. [24] presented a multi-task learning framework combining segmentation and classification 
using ultrasound images. The study introduced a curated BUSI dataset, removing mislabeled images. UNet++ and nnU-
Net were used for segmentation, achieving F1-scores of 82.6% for benign, 79.1% for malignant, and 74.1% for normal 
cases. Despite improving segmentation-classification coherence, inconsistencies in ground truth annotations and a lack 
of ensemble-based optimization reduced overall reliability. The absence of a robust fusion mechanism also limited the 
model’s ability to learn complementary features across tasks. 

Balasubramanian et al. [25] employed an ensemble deep learning approach for breast cancer subtype classification 
using histopathology images. Their study utilized the BACH and BreakHis datasets, integrating VGG16, ResNet34, and 
ResNet50, achieving 95.31% patch classification accuracy (BACH) and 98.43% whole-slide image classification accuracy 
(BreakHis). While ensemble learning improved classification, the study did not explore stacking-based ensemble 
strategies, which could have further strengthened the model’s generalization across histopathological datasets. 
Additionally, the approach lacked interpretability tools like Grad-CAM, which are crucial for explainable AI in medical 
applications. 

Rai et al. [26] explored the use of synthetic data generation for breast cancer detection in ultrasound imaging. The study 
integrated 3186 real ultrasound images from four public datasets with 10,000 synthetic images generated via 
StyleGAN3. EfficientNet-B7, trained on the combined dataset, improved classification accuracy from 88.72% to 92.01%. 
While the study demonstrated the potential of synthetic augmentation, the generated images introduced artificial 
artifacts, which may affect real-world generalization. Additionally, the study did not incorporate multi-modal fusion 
techniques, which could enhance robustness by combining ultrasound data with other imaging modalities. 

Despite these advancements, key limitations persist in breast cancer classification. Most studies do not incorporate 
advanced ensemble stacking, missing opportunities for improved robustness. Additionally, data augmentation 
strategies remain underutilized, affecting generalization across clinical settings. Another critical gap is the lack of real-
time web applications, which could facilitate immediate clinical decision-making. To address these challenges, our study 
proposes an ensemble-based deep learning framework with optimized data augmentation, feature fusion techniques, 
and explainable AI integration, ensuring improved diagnostic reliability and accessibility across diverse breast cancer 
datasets. 



International Journal of Science and Research Archive, 2025, 15(02), 1417–1431 

1420 

 

Figure 1 Proposed methodology 

3. Methodology 

3.1. Data Description 

We utilized the Breast Ultrasound Images Dataset (BUSI) [27], which contains ultrasound scans collected from patients 
with varying breast conditions. The dataset consists of 780 ultrasound images categorized into three classes: 133 
normal cases, 437 benign cases, and 210 malignant cases. Each image is paired with a corresponding segmentation mask 
to highlight the region of interest. The dataset was curated to support breast cancer detection and classification tasks, 
focusing on tumor identification in ultrasound imaging. The images were acquired using standard clinical procedures, 
ensuring diverse tumor presentations in terms of shape, texture, and contrast. The dataset plays a crucial role in 
evaluating deep learning models for breast ultrasound analysis, aiding in the development of automated diagnostic tools 
for real-world applications.  

Additionally, we utilized the Breast Cancer Histopathological Image Classification (BreaKHis) dataset [28], which 
comprises 9109 histopathological images collected from 82 patients. The dataset is divided into two primary categories: 
2480 images of benign tumors and 6629 images of malignant tumors. The images were captured at four different 
magnification levels: 40×, 100×, 200×, and 400×, providing a multi-scale perspective on breast tissue morphology. These 
images were obtained using a high-resolution microscope with a fixed field of view, ensuring consistent imaging 
conditions. The dataset serves as a benchmark for histopathological image classification, allowing researchers to train 
and evaluate models for distinguishing between benign and malignant breast tumors. It is widely used for developing 
deep learning-based diagnostic approaches that assist pathologists in making more accurate and efficient clinical 
decisions [29]. Figure 2 represents Sample image from both datasets. 
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Figure 2 Sample images from each dataset 

3.2. Image Preprocessing 

We applied a series of image pre-processing techniques to enhance the quality of input data and improve the 
performance of our deep learning models. These techniques included resizing, normalization, contrast enhancement, 
and data augmentation, ensuring consistency across the datasets and mitigating class imbalances. Each image was 
resized to 224 × 224 pixels to standardize input dimensions, facilitating compatibility with pre-trained deep learning 
architectures [14], [30]. Following resizing, normalization was performed by scaling pixel intensity values to the range 
[0,1] to stabilize model training and prevent dominance of high-intensity values. 

To improve contrast in ultrasound and histopathological images, we employed Contrast Limited Adaptive Histogram 
Equalization, which enhances local contrast while preventing over-amplification of noise. CLAHE operates by computing 
histograms for small image regions and redistributing pixel intensity values. The transformation function is expressed 
in equation 1, where 𝐼(𝑥, 𝑦) is the original pixel intensity, (𝐼𝑚𝑖𝑛) and (𝐼𝑚𝑎𝑥) represent the minimum and maximum 
intensities within a local region, respectively. This method ensures uniform contrast enhancement without distorting 
fine-grained image details. 

[Inew(x, y) =
I(x, y) − Imin

Imax − Imin
× 255] 

(1) 

To address dataset imbalance, we applied data augmentation techniques, including random rotation (±15°), horizontal 
and vertical flipping, translation, and zooming (±10%). These augmentations artificially increased the number of 
training samples, reducing overfitting and improving model generalization. The augmentation process was applied 
dynamically during training, ensuring diverse variations while preserving class labels. These pre-processing steps 
collectively enhanced the model's ability to learn discriminative features, improving robustness in breast cancer 
classification tasks. 

3.3. Baseline Models 

To establish a performance benchmark for breast cancer classification, we implemented a baseline deep learning model 
using a CNN. The model was designed to extract essential features from ultrasound and histopathology images while 
maintaining a balanced trade-off between complexity and computational efficiency. The baseline architecture consisted 
of multiple convolutional layers, each followed by batch normalization and rectified linear unit (ReLU) activation to 
enhance feature learning. Max-pooling layers were incorporated to downsample feature maps while retaining spatial 
information. The extracted features were passed through fully connected layers, culminating in a softmax activation 
function for multi-class classification. The model was trained using the Adam optimizer with an initial learning rate of 
0.001 and a batch size of 32. The categorical cross-entropy loss function was used to optimize classification 
performance. To prevent overfitting, dropout layers with a probability of 0.5 were applied in the fully connected layers. 
The baseline model was evaluated on the test set using accuracy, precision, recall, and F1-score as performance metrics. 
While the baseline model provided a fundamental benchmark for breast cancer detection, it exhibited limitations in 
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handling complex patterns within ultrasound and histopathology images. The model struggled with class imbalance and 
failed to capture high-level representations effectively. To address these challenges, advanced transfer learning 
architectures with ensemble learning strategies were explored in subsequent experiments. 

3.4. TL Models 

3.4.1. EfficientNetB8 

EfficientNetB8 is a scaled-up variant of the EfficientNet family that leverages compound scaling to balance model depth, 
width, and resolution for optimal performance. The model uses depthwise separable convolutions and the squeeze-and-
excitation mechanism to improve feature extraction while maintaining computational efficiency. The justification for 
choosing EfficientNetB8 lies in its state-of-the-art accuracy-to-parameter ratio, which allows effective learning from 
breast cancer datasets without excessive computational overhead. 

The architecture consists of mobile inverted bottleneck convolutions (MBConv) with swish activation functions, 
significantly enhancing gradient flow. The model also applies stochastic depth regularization, reducing overfitting in 
deep layers. Given its high receptive field and efficient feature extraction capabilities, EfficientNetB8 is well-suited for 
classifying complex breast cancer patterns in ultrasound and histopathology images. However, its increased depth 
necessitates hardware acceleration for real-time applications. 

3.4.2. RegNet 

RegNet is a family of CNNs that aims to optimize network design by automatically discovering efficient architectures 
based on the complexity and feature requirements of the dataset. Unlike handcrafted networks, RegNet optimally scales 
width and depth through a learned parameterization, making it highly adaptive to breast cancer classification tasks. The 
choice of RegNet is justified by its ability to provide high efficiency with fewer parameters, ensuring robustness while 
maintaining computational feasibility. 

The architecture consists of stage-wise blocks where each stage contains groups of residual blocks with bottleneck 
convolutions and grouped convolutions, reducing parameter redundancy. The width and depth of the model increase 
progressively, enabling hierarchical feature extraction from breast cancer images. RegNet parameterizes its structure 
using a simple quantized equation 2, where w0 is the initial width, Δw represents the growth rate, and i denotes the 
block index. This structured growth ensures scalable and efficient learning for breast cancer detection. 

wi = w0 + Δw ⋅ i (2) 

3.4.3. RepVGG 

RepVGG is a re-parameterized VGG variant that improves inference speed while maintaining deep feature learning 
capabilities. Unlike traditional VGG architectures, RepVGG introduces structural re-parameterization, enabling a 
transition from multi-branch training networks to a single-path inference network, reducing computational overhead. 
The justification for choosing RepVGG lies in its low inference latency, making it suitable for real-time breast cancer 
detection applications. The architecture consists of plain VGG-like stacked convolution layers, which are restructured 
into a single-path network during inference. During training, multiple parallel branches, including skip connections and 
identity shortcuts, facilitate gradient propagation and robust feature learning. The core transformation of RepVGG 
follows in equation 3. Here 𝑊𝑖 and 𝑏𝑖 represent convolutional weights and biases across multiple training branches, 
which are merged into a single convolution at inference time. This reduces inference latency without sacrificing model 
expressiveness. 

y = ∑(Wi ∗ x + bi)

i

 (3) 

3.4.4. MNasNet 

MNasNet is an AutoML-designed neural architecture that optimizes model efficiency using reinforcement learning-
based search. Unlike manually designed models, MNasNet dynamically selects optimal depth, width, and kernel sizes, 
ensuring an efficient trade-off between accuracy and computation for breast cancer classification. The justification for 
selecting MNasNet is its low computational cost and adaptability, making it ideal for deploying breast cancer detection 
models on mobile and edge devices. The architecture consists of mobile inverted bottleneck convolutions (MBConv) 
with squeeze-and-excitation layers, improving feature representation and parameter efficiency. The network 
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prioritizes latency-aware optimizations, reducing inference time without compromising accuracy. The multi-objective 
optimization equation used in equation 4, where 𝐴 represents the accuracy metric, 𝑇 is the model latency, and λ is a 
trade-off factor, ensuring an optimal balance between performance and efficiency. MNasNet’s adaptive structure 
enhances scalability and deployment feasibility for real-world breast cancer screening. 

𝑅 = 𝐴 ⋅ 𝑇λ (4) 

3.4.5.  Stacking Ensemble 

Our proposed stacking ensemble model integrates multiple deep learning architectures to enhance breast cancer 
classification performance. Figure 3 shows the architecture of the proposed model. The ensemble consists of 
EfficientNetB8, RegNet, RepVGG, and MNasNet as base models, each capturing different feature representations from 
breast cancer images. These models are designed to extract hierarchical features from input images, focusing on both 
global and local patterns that are critical for accurate classification. The outputs of these models are then aggregated 
and passed to a meta-learner, which refines the final decision. The meta-learner, implemented as a gradient boosting 
model, assigns optimal weightings to the predictions of each base model, improving classification robustness and 
accuracy. The final prediction in the stacking ensemble is obtained by combining the outputs of base models with 
learned weights, which are assigned by the meta-learner during training in equation 5, where fi(x)  represents the 
prediction from the 𝑖 − 𝑡ℎ base model, and αi\alpha_i are the learned weights from the meta-learner. Each base model 
is optimized using categorical cross-entropy los shown in equation 6. Where 𝑦𝑐 is the ground truth for class 𝑐, and 𝑝𝑐 is 
the predicted probability. The meta-learner is trained using mean squared error (MSE) loss in equation 7. The final 
classification is obtained via a softmax function applied to the meta-learner’s output, ensuring a robust and accurate 
classification. The stacking ensemble improves predictive performance by reducing model biases and handling dataset 
imbalances. 

𝑦̂ = ∑ α𝑖𝑓𝑖(𝑥)

𝑛

𝑖=1

 
(5) 

ℒ𝒷𝒶𝓈ℯ = − ∑ 𝑦𝑐

𝐶

𝑐=1

log 𝑝𝑐 
(6) 

ℒ𝓂ℯ𝓉𝒶 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

 
(7) 

 

Figure 3 Architecture of proposed Stacking Ensemble model 

3.5. Training Settings 

During the training phase, we used a batch size of 32 and trained the model for 100 epochs. The categorical cross-
entropy loss function was employed to optimize classification performance, and the Adam optimizer was selected for 
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its adaptive learning rate capabilities, ensuring stable convergence. An initial learning rate of 0.001 was used, with a 
step decay schedule applied to reduce the learning rate by a factor of 0.1 every 25 epochs.  To prevent overfitting and 
improve generalization, we incorporated early stopping, which monitors validation loss and halts training if no 
improvement is observed for ten consecutive epochs. Additionally, model checkpointing was used to save the best-
performing model weights based on validation accuracy, ensuring optimal performance at inference time. Data 
augmentation techniques such as rotation, flipping, and zooming were applied dynamically during training to enhance 
model robustness against variations in breast cancer images. These training settings were carefully chosen to balance 
computational efficiency with high classification accuracy. 

3.6. Evaluation 

We have used Matthews Correlation Coefficient (MCC), F1 Score, Specificity, and Precision-Recall Area Under Curve (PR 
AUC) as key metrics to evaluate our model’s performance. These metrics provide a comprehensive assessment of 
classification effectiveness, particularly in handling class imbalances.  MCC is a balanced measure that considers true 
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), providing a single correlation value 
between predicted and actual classifications. Unlike accuracy, MCC remains reliable even in imbalanced datasets. F1 
Score is the harmonic mean of precision and recall, measuring the trade-off between precision and recall for each class. 
It is especially useful when the dataset contains an uneven distribution of classes. Specificity evaluates the model’s 
ability to correctly identify negative cases, ensuring that benign instances are not misclassified as malignant. PR AUC 
quantifies the area under the precision-recall curve, which is more informative than traditional ROC AUC when dealing 
with imbalanced datasets. It reflects the model’s ability to distinguish between positive and negative cases effectively. 
The evaluation metrics are computed in the equations 8-11. These metrics provide a robust assessment of our model’s 
classification performance, ensuring reliability in real-world breast cancer detection. 

MCC =
(TP × TN) − (FP × FN)

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

(8) 

F1 =
2 × Precision × Recall

Precision + Recall
 

(9) 

Specificity =
TN

TN + FP
 

(10) 

PR AUC = ∫ Precision(Recall)  d(Recall) 
(11) 

4. Results Analysis 

4.1. Comparative Analysis of Performance 

The results of our classification models, presented in Table 1, demonstrate strong performance across different 
architectures. On the BUSI dataset, the stacking ensemble achieved the highest accuracy, with an MCC of 99.31%, an F1 
score of 99.28%, and a PR AUC of 99.29%. EfficientNetB8 closely followed, attaining an MCC of 98.12% and an F1 score 
of 98.24%. RegNet and RepVGG performed slightly lower, with MCC scores of 97.85% and 96.93%, respectively. 
MNasNet achieved the lowest performance, with an MCC of 96.78%, highlighting its trade-off between computational 
efficiency and classification accuracy. 

On the BreaKHis dataset, the stacking ensemble again outperformed all other models, achieving an MCC of 99.52%, an 
F1 score of 99.49%, and a specificity of 99.42%. EfficientNetB8 continued to show strong performance, with an MCC of 
98.93% and an F1 score of 98.85%. RegNet and RepVGG followed closely, achieving MCC scores of 98.51% and 97.98%, 
respectively. MNasNet, while efficient, obtained the lowest MCC of 97.18%. These results confirm that ensemble 
learning enhances classification performance, making it a reliable approach for breast cancer detection. 
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Table 1 Performance of the BUSI and BreaKHis datasets 

Dataset Models MCC F1 Specificity PR AUC 

BUSI EfficientNetB8 98.12% 98.24% 98.11% 98.27% 

RegNet 97.85% 97.96% 97.52% 97.78% 

RepVGG 96.93% 96.88% 96.81% 96.98% 

Stacking Ensemble 99.31% 99.28% 99.22% 99.29% 

MNasNet 96.78% 96.89% 96.85% 96.91% 

BreaKHis EfficientNetB8 98.93% 98.85% 98.81% 98.88% 

RegNet 98.51% 98.64% 98.72% 98.43% 

RepVGG 97.98% 98.05% 98.12% 97.99% 

Stacking Ensemble 99.52% 99.49% 99.42% 99.50% 

MNasNet 97.18% 97.27% 97.31% 97.35% 

4.2. Performance Validation 

Table 2 presents the per-class classification performance of the stacking ensemble model on the BUSI and BreaKHis 
datasets. The evaluation metrics include MCC, F1 Score, Specificity, and PR AUC, providing a detailed assessment of 
classification reliability. For the BUSI dataset, the model achieved the highest classification scores in the normal class, 
with an MCC of 99.73% and a specificity of 99.50%. The malignant class followed closely, with an MCC of 99.30% and 
an F1 score of 99.48%. The benign class showed slightly lower performance (MCC of 98.90%), likely due to greater 
intra-class variation in ultrasound images. For the BreaKHis dataset, the model performed exceptionally well in 
classifying malignant cases, achieving an MCC of 99.78% and an F1 score of 99.65%. Benign cases exhibited slightly 
lower scores (MCC of 99.26%), reflecting increased structural variations in histopathological images. These results 
confirm that ensemble learning enhances classification robustness, particularly in distinguishing malignant from benign 
cases. The stacking ensemble consistently outperformed individual models, demonstrating its effectiveness in breast 
cancer diagnosis. 

Table 2 Classification report comparison across Stacking Ensemble on both datasets 

 Stacking Ensemble 

Dataset Class MCC F1 Score Specificity PR AUC 

 

BUSI 

Benign 98.9 99.08 98.88 98.92 

Malignant 99.3 99.48 99.28 99.36 

Normal 99.73 99.28 99.5 99.59 

BreaKHis 
 

Benign 99.26 99.33 99.22 99.31 

Malignant 99.78 99.65 99.62 99.68 

The bar chart on Figure 4 highlights the model’s strong generalization ability and its effectiveness in distinguishing 
between benign and malignant cases across both imaging modalities. In the BUSI dataset, the model excelled in the 
normal class, followed by malignant, while benign showed slightly lower scores due to ultrasound image variability. In 
BreaKHis, malignant cases had the highest performance, with benign cases scoring slightly lower due to 
histopathological complexity. 

To further validate our results, the confusion matrices for the BUSI and BreaKHis datasets were analyzed, as shown in 
Figure 5. These matrices provide a detailed breakdown of the model’s classification performance, highlighting its ability 
to correctly distinguish between different breast cancer types. For the BUSI dataset, the stacking ensemble model 
achieved high classification accuracy, correctly identifying 64 normal, 63 benign, and 64 malignant cases. Minimal 
misclassifications were observed, with one benign case classified as malignant and one malignant case classified as 
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benign. The model's ability to maintain a low false positive rate and correctly classify the majority of cases demonstrates 
its robustness in ultrasound image analysis. In the BreaKHis dataset, the model exhibited exceptional performance, 
accurately classifying 372 benign and 993 malignant cases, with only two malignant cases misclassified as benign. This 
result underscores the model's capability to effectively differentiate between benign and malignant tumors in 
histopathology images, ensuring high sensitivity and specificity. Overall, the low misclassification rates in both datasets 
confirm the reliability of our stacking ensemble model. The results indicate that the model can serve as a dependable 
AI-driven diagnostic tool, aiding clinicians in precise and efficient breast cancer detection across multiple imaging 
modalities. 

 

Figure 4 Stacking Ensemble Classification Performance 
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Figure 5 Confusion matrix of the Ensemble model 

4.3. State-of-The-Art Comparison 

Table 3 Comparison with State-of-The-Art Methods 

 Ref. Dataset Images Classes Model Results 

[18] 
Abhisheka et 
al.  

DDSM, INbreast, 
MIAS 

- - CNN-based 
architectures 

~99.7 

[19] Raza et 
al.  

Two ultrasound 
datasets 

1030 3 (Benign, 
Malignant, 
Normal) 

DeepBreastC
ancerNet 

99.35 (Multi-class), 
99.63 (Binary) 

[20] Sharmin 
et al.  

IDC Histopathology 
Dataset 

2000 images, 
277,524 
patches 

2 (IDC-
Positive, IDC-
Negative) 

LightGBM 95 

[22] Asadi et 
al.  

ImageNet 
(Mammography) 

2780 2 (Benign, 
Malignant) 

UNet + 
ResNet50 

98.61 

[23] 
Sulaiman et 
al. 

BUSI (Ultrasound) 780 3 (Benign, 
Malignant, 
Normal) 

Attention-
Based U-Net 

98 

[24]Aumente
-Maestro et 
al.  

BUSI, Curated BUSI 780 3 (Benign, 
Malignant, 
Normal) 

UNet++ and 
nnU-Net 

82.6 (Benign), 79.1 
(Malignant), 74.1 
(Normal) 

[25] 
Balasubrama
nian et al.  

BACH, BreakHis 400 (BACH), 
9109 
(BreakHis) 

4 (BACH), 8 
(BreakHis) 

Ensemble  95.31 (BACH), 98.43 
(BreakHis) 

[26] Rai et al.  BrEaST, BUSI, 
Thammasat, HMSS + 
Synthetic 

3186 (Real) + 
10,000 
(Synthetic) 

2 (Benign, 
Malignant) 

EfficientNet-
B7 + 
StyleGAN3 

92.01 

Our Study BUSI, BreakHis 780 (BUSI), 
9109 
(BreakHis) 

3 (BUSI), 2 
(BreakHis) 

Stacking 
Ensemble 

99.31 (BUSI), 99.52 
(BreakHis) 
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Our study’s state-of-the-art (SOTA) analysis is presented in Table 3, comparing our stacking ensemble model with 
previous methods for breast cancer classification. Our model, trained on the BUSI and BreaKHis datasets, achieved an 
MCC of 99.31% on BUSI and 99.52% on BreaKHis, outperforming previous studies using traditional deep learning 
architectures. Raza et al. (11) employed DeepBreastCancerNet on 1030 ultrasound images, achieving 99.35% accuracy 
for multi-class classification. Similarly, Sulaiman et al. (14) applied an attention-based U-Net on the BUSI dataset, 
obtaining 98.0% accuracy, which is significantly lower than our model’s performance. Balasubramanian et al. (16) used 
an ensemble of VGG16, ResNet34, and ResNet50 on the BreaKHis dataset, achieving 98.43% accuracy, whereas our 
ensemble surpassed it with 99.52%.  Despite using similar datasets, our stacking ensemble approach leverages diverse 
feature extraction strategies, achieving superior classification performance. These results validate the robustness of our 
method in distinguishing between benign, malignant, and normal cases, making it highly effective for breast cancer 
detection in medical imaging. 

4.4. Web Application 

Our web application is designed to provide a seamless and efficient way to classify breast ultrasound images, leveraging 
the power of deep learning. Built using Flask, it features an intuitive interface where users can upload an image for 
classification, as illustrated in Figure 5. The upload section allows users to select an image, which is then displayed on 
the interface before prediction. Once the user taps the "Predict" button, the system processes the image through the 
stacking ensemble model and provides a classification result. In this instance, the model correctly identified the dataset 
as BUSI and classified the image as malignant, demonstrating its ability to deliver fast and precise predictions. The 
results are highlighted using color-coded labels, enhancing readability for users. Additionally, the system confirms 
dataset recognition with a "Dataset found" indicator, ensuring transparency in classification. This web application is 
particularly effective as it enables real-time, automated breast cancer screening, reducing the dependency on manual 
analysis. Its user-friendly design, high accuracy, and rapid processing speed make it a valuable tool for medical 
professionals, aiding in early diagnosis and decision-making. 

 

Figure 5 Breast cancer classification web application 

5. Discussion 

Our proposed model outperformed individual architectures and prior studies by leveraging diverse feature extraction 
strategies, improving classification robustness. EfficientNetB8 captured global representations, RegNet and RepVGG 
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extracted fine-grained spatial features, and MNasNet optimized latency-aware inference. Aggregating these 
complementary features reduced model bias and enhanced generalization across datasets. Preprocessing techniques 
significantly contributed to the ensemble’s effectiveness. CLAHE enhanced contrast in ultrasound and histopathology 
images, facilitating better feature learning in regions with subtle intensity variations. Data augmentation, including 
rotation, flipping, and zooming, addressed class imbalance, improving model robustness against variations in tumor 
morphology. These enhancements were particularly effective in refining classification performance in benign cases, 
which exhibit higher intra-class variability. The web application enables real-time breast cancer classification, providing 
a clinical decision-support system for automated diagnosis. By reducing reliance on manual analysis, it facilitates faster 
and more efficient screening. 

Despite its success, the ensemble model demands high computational resources, limiting real-time deployment on low-
power devices. Additionally, variations in imaging protocols may introduce domain shifts. Future work will focus on 
optimizing model efficiency through parameter reduction and integrating explainable AI techniques to improve 
interpretability. Further dataset expansion with diverse imaging modalities will enhance generalizability and clinical 
applicability. This study presents an innovative ensemble-based deep learning system for breast cancer detection using 
both ultrasound and histopathology images. Our approach harnesses the strengths of multiple advanced neural 
architectures to achieve high diagnostic accuracy and consistency, surpassing conventional machine learning methods. 
Sophisticated preprocessing techniques, including contrast enhancement and extensive data augmentation, played a 
vital role in improving feature discrimination, particularly in distinguishing benign from malignant tumors. The system 
demonstrated excellent performance on benchmark datasets, with near-perfect evaluation metrics that highlight its 
potential for clinical deployment. Furthermore, we developed a user-friendly web application that enables rapid, 
automated diagnosis, thereby streamlining clinical workflows and reducing diagnostic delays. This real-time tool has 
the potential to support healthcare professionals in making more informed decisions, ultimately improving patient 
outcomes and reducing healthcare costs. 

Despite these promising results, challenges remain. The model’s performance may vary with differences in imaging 
devices and patient demographics, and the computational demands of the ensemble approach pose challenges for real-
time implementation on low-resource platforms. Future work will focus on expanding the dataset to include more 
diverse imaging sources, optimizing model efficiency, and incorporating explainability features to enhance clinical trust 
and transparency. Overall, this research underscores the transformative impact of AI on breast cancer diagnostics and 
paves the way for more intelligent and accessible healthcare solutions.   

6. Conclusion 

This study presents an innovative ensemble-based deep learning system for breast cancer detection using both 
ultrasound and histopathology images. Our approach harnesses the strengths of multiple advanced neural architectures 
to achieve high diagnostic accuracy and consistency, surpassing conventional machine learning methods. Sophisticated 
preprocessing techniques, including contrast enhancement and extensive data augmentation, played a vital role in 
improving feature discrimination, particularly in distinguishing benign from malignant tumors. The system 
demonstrated excellent performance on benchmark datasets, with near-perfect evaluation metrics that highlight its 
potential for clinical deployment. Furthermore, we developed a user-friendly web application that enables rapid, 
automated diagnosis, thereby streamlining clinical workflows and reducing diagnostic delays. This real-time tool has 
the potential to support healthcare professionals in making more informed decisions, ultimately improving patient 
outcomes and reducing healthcare costs. Despite these promising results, challenges remain. The model’s performance 
may vary with differences in imaging devices and patient demographics, and the computational demands of the 
ensemble approach pose challenges for real-time implementation on low-resource platforms. Future work will focus on 
expanding the dataset to include more diverse imaging sources, optimizing model efficiency, and incorporating 
explainability features to enhance clinical trust and transparency. Overall, this research underscores the transformative 
impact of AI on breast cancer diagnostics and paves the way for more intelligent and accessible healthcare solutions.  
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