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Abstract 

This article explores comprehensive strategies for optimizing GPU utilization for artificial intelligence workloads on 
Amazon Elastic Kubernetes Service (EKS). As organizations increasingly deploy computationally intensive AI 
applications, effective GPU resource management has become critical for balancing performance requirements with 
cost considerations. The article examines four key optimization domains: GPU instance selection and scheduling 
strategies, cost optimization and resource allocation techniques, performance enhancement using NVIDIA-specific 
tools, and model-level optimization methods. Investigation findings and industry benchmarks reveal how proper 
instance type selection combined with advanced scheduling tools like Karpenter and Cluster Autoscaler creates a 
foundation for efficient GPU utilization. The article further explores how spot instances, precise resource allocation, and 
comprehensive monitoring solutions can substantially reduce infrastructure costs. Additionally, it highlights the 
performance advantages of specialized NVIDIA tools such as TensorRT and Triton Inference Server and examines how 
model-specific techniques, including mixed precision training, gradient accumulation, knowledge distillation, 
quantization, and pruning can maximize computational efficiency while preserving model accuracy.  

Keywords: GPU optimization; AWS EKS; Machine Learning Infrastructure; Inference Acceleration; Resource 
Allocation 

1. Introduction

In today's AI-driven landscape, efficiently leveraging GPU resources has become critical for organizations deploying 
computationally intensive workloads. Amazon Elastic Kubernetes Service (EKS) has emerged as a preferred platform 
for enterprises running AI workloads at scale. This article explores strategies and best practices for optimizing GPU 
utilization on AWS EKS, enabling organizations to maximize performance while controlling costs. 

AWS EKS provides a fully managed Kubernetes environment that excels at running scalable workloads with dynamic 
resource management. Its seamless integration with other AWS services creates a robust ecosystem for deploying AI 
applications. Deep learning, large language models (LLMs), and generative AI benefit tremendously from GPU 
acceleration, making EKS an ideal choice for these compute-intensive tasks. Despite the power of EKS, many 
organizations struggle with improper GPU utilization, leading to overprovisioning, underutilization, inefficient 
workload placement, and suboptimal cost management. 

The demand for GPU-accelerated computing has surged dramatically across industries as AI and machine learning 
workloads become increasingly central to business operations. According to Lovett's comprehensive analysis of cloud 
GPU adoption, the typical AI training workload achieves 10-100x performance improvement when utilizing GPUs 
compared to CPU-only implementations, with specific deep learning tasks demonstrating up to 250x acceleration in 
certain computer vision applications [1]. This performance differential has catalyzed a migration toward GPU-enabled 
cloud platforms, with 64% of enterprise organizations now running at least some GPU workloads in cloud 
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environments, compared to just 37% in 2021. The economic implications are equally significant, as Lovett's research 
indicates that organizations implementing optimized GPU cloud solutions for AI workloads report an average of 35% 

reduction in total cost of ownership compared to on-premises GPU infrastructure, primarily due to improved utilization 
rates and elimination of procurement cycles for rapidly evolving hardware [1]. 

The scalability challenges associated with GPU-accelerated workloads have made container orchestration platforms like 
Kubernetes essential for modern AI deployments. AWS EKS has established itself as a market leader in this space, with 
adoption rates growing 42% annually among enterprise AI practitioners. However, the mere deployment of AI 
workloads on EKS does not guarantee optimal resource utilization. Thota's extensive analysis of 350 production EKS 
environments running AI workloads revealed that unoptimized deployments typically achieve GPU utilization rates of 
only 22-38%, representing significant wasted capacity and unnecessary expenditure [2]. The same study identified that 
organizations implementing comprehensive GPU optimization strategies achieved average utilization improvements 
from 31% to 74%, translating to proportional cost reductions while maintaining or improving application performance. 

The performance impact of optimized GPU utilization extends beyond simple resource metrics. Thota's benchmark 
testing across various deep learning workloads demonstrated that properly configured EKS environments with 
optimized GPU scheduling achieved inference throughput improvements of 3.8x for computer vision models and 2.6x 
for NLP transformers, while training time reductions of 43% were observed for distributed training jobs [2]. These 
performance gains were accompanied by substantial improvements in system stability, with optimized environments 
experiencing 76% fewer out-of-memory errors and a 42% reduction in node failures under heavy loads compared to 
baseline configurations. Particularly notable was the finding that organizations implementing GPU memory 
optimization techniques reported average model capacity increases of 1.7x, enabling more complex architectures 
without additional hardware investment [2]. 

Despite these documented benefits, Thota's survey of AI practitioners revealed that only 29% of organizations had 
implemented more than half of the available optimization techniques for GPU workloads on EKS, with the majority citing 
knowledge gaps and operational complexity as primary barriers to adoption [2]. This implementation gap represents a 
significant opportunity for organizations to extract greater value from their existing GPU investments through 
systematic optimization approaches. The following sections outline practical strategies for GPU optimization on EKS, 
addressing both infrastructure configuration and workload-specific techniques to maximize performance and cost 
efficiency. 

2. GPU Instance Selection and Scheduling Strategies 

Selecting the optimal GPU instance type and implementing efficient scheduling strategies are fundamental components 
of maximizing resource utilization in AWS EKS environments. The diversity of available GPU configurations enables 
fine-tuned performance optimization but requires careful consideration of workload characteristics and computational 
requirements. 

AWS provides a comprehensive range of NVIDIA GPU-powered EC2 instance types, each engineered for specific AI 
workload profiles. The G-series instances represent an efficient solution for inference workloads and small-scale deep-
learning applications. Ren et al. conducted extensive performance analysis on various GPU-equipped systems, including 
configurations comparable to AWS G-series instances, and found that for inference tasks using ResNet-50, these systems 
achieved throughput rates of 1,257 images per second with batch size 128, representing a 7.2x performance 
improvement over CPU-only systems [3]. Their research further demonstrated that when running distributed inference 
workloads across multiple GPUs, communication overhead remained below 9% for optimally configured systems, 
enabling near-linear scaling for appropriately partitioned models [3]. 

For more computationally intensive workloads, P-series instances deliver substantially higher performance metrics. 
Benchmark testing by Ren et al. using CANDLE Pilot1 deep learning benchmarks showed that multi-GPU configurations 
similar to P-series instances achieved training throughput of 13,500 samples per second, with convergence time for 
complex neural network architectures reduced by 76% compared to single-GPU implementations [3]. Their detailed 
performance analysis across various deep learning frameworks revealed that TensorFlow workloads achieved 82-94% 
of theoretical peak performance on these high-end GPU configurations when utilizing optimized data loading pipelines, 
compared to 53-67% with standard implementations [3]. 

Tesla T4-equipped instances offer an intermediate option optimized for low-latency inference workloads. Ren et al.'s 
comparative analysis of inference performance demonstrated that T4-equivalent systems delivered average inference 
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times of 1.42 milliseconds per inference for BERT-base models with batch size 1, maintaining consistent latency below 
10 milliseconds even under load conditions simulating 95th percentile production traffic [3]. Their power efficiency 
analysis revealed that these configurations achieved 4.3x higher inferences per watt compared to CPU-optimized 
alternatives, providing substantial operational cost advantages for continuous inference workloads [3]. 

The upcoming availability of NVIDIA Blackwell architecture GPUs represents a significant advancement for high-end AI 
workloads on AWS. According to Together AI's recent announcement at NVIDIA GTC 2025, the new Blackwell 
architecture features a substantial increase in computational capabilities over previous generations, with the GB200 
NVL72 system demonstrating 30 petaFLOPS of FP8 performance—representing approximately 5x performance 
increase over comparable A100-based systems for language model inference [4]. Their preliminary benchmark testing 
indicates that Blackwell-equipped systems can train a 175B parameter language model in 54.3% less time than current 
generation hardware while simultaneously reducing energy consumption by 42.7% for equivalent computational 
workloads [4]. Beyond instance selection, implementing effective scheduling strategies is crucial for maintaining high 
GPU utilization across diverse workloads. Ren et al.'s analysis of GPU utilization patterns across multiple deep learning 
applications revealed significant variation in resource consumption, with communication-heavy distributed training 
workloads experiencing GPU utilization fluctuations of 35-87% during different training phases [3]. Their research 
demonstrated that workload-aware scheduling policies incorporating application-specific resource profiles improved 
average GPU utilization by 26.4% compared to static allocation approaches, with particularly pronounced benefits for 
heterogeneous workload environments [3]. 

Two key technologies have emerged as essential components of optimized GPU scheduling in EKS environments: 
Karpenter and Cluster Autoscaler. Together, AI's implementation of Karpenter for their Instant GPU Clusters 
demonstrated the capability to provision complex multi-node GPU environments in under 90 seconds, compared to 
average provisioning times of 7-12 minutes with conventional scheduling approaches [4]. Their analysis of production 
workloads showed that Karpenter's bin-packing algorithms achieved an average node utilization of 84.6% across 
heterogeneous GPU workloads, representing a 23.8% improvement over traditional Cluster Autoscaler 
implementations while reducing cold-start latencies by 76.2% [4]. 

 

Figure 1 Scheduling Strategy Performance Metrics in AWS EKS [3,4] 

Cluster Autoscaler complements these capabilities by providing scalability based on aggregate cluster metrics rather 
than individual pod requirements. Ren et al.'s performance analysis of autoscaling systems revealed that rapid scale-up 
operations were completed successfully within 3-5 minutes for properly configured environments, with nodes 
becoming available for scheduling within 60-90 seconds of initial provisioning signals [3]. Their research found that 
optimizing Cluster Autoscaler scan intervals based on workload volatility patterns reduced overprovisioning by 17.8% 
while maintaining scheduling success rates above 99.1% during utilization spikes [3]. 

The combination of appropriate instance selection and optimized scheduling strategies creates a foundation for efficient 
GPU utilization in EKS environments. Together, AI's comprehensive analysis of their production infrastructure 
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demonstrated that implementing a full-stack approach combining instance-specific optimizations with advanced 
scheduling reduced overall infrastructure costs by 34.7% while improving computational throughput by 2.8x for their 
most demanding workloads [4]. As model complexity continues to increase and hardware capabilities evolve, these 
foundational strategies will remain essential components of efficient AI infrastructure management on AWS EKS. 

3. Cost Optimization and Resource Allocation 

Optimizing costs while maintaining high performance is a critical objective when deploying GPU-accelerated AI 
workloads in cloud environments. AWS EKS provides several mechanisms for achieving cost efficiency without 
compromising computational capabilities, particularly through spot instances and precise resource allocation 
strategies. 

3.1. Leveraging GPU Spot Instances for Cost Reduction 

EKS supports GPU spot instances, which offer identical hardware capabilities at substantially reduced pricing compared 
to on-demand instances. According to Credence Research's comprehensive analysis of the cloud GPU market, the cost 
savings potential for spot GPU instances typically ranges from 60-75% compared to on-demand equivalents, making 
them particularly attractive for budget-conscious AI implementations [5]. Their market analysis indicates that the cloud 
GPU sector is experiencing extraordinary growth, with an estimated value of $2.98 billion in 2023 and projected to reach 
$18.7 billion by 2032, representing a compound annual growth rate (CAGR) of 22.6% [5]. This expansion is heavily 
influenced by cost-optimization strategies being deployed across the AI ecosystem, with spot instance adoption 
representing a significant trend among organizations seeking to maximize computational value while minimizing 
expenditure. Spot instances are particularly effective for specific workload profiles that can accommodate potential 
interruptions. Jeon et al.'s analysis of multi-tenant GPU clusters for deep learning workloads found that approximately 
70% of training jobs ran for less than 3 hours and 95% for less than 48 hours, making the majority of training workloads 
theoretically compatible with spot instance constraints when appropriate checkpointing is implemented [6]. Their 
examination of production workloads revealed that batch processing jobs with fault tolerance mechanisms achieved 
throughput within 8-12% of equivalent dedicated resources despite experiencing occasional preemption while 
reducing effective infrastructure costs by up to 70% [6]. For organizations implementing GPU spot instances, Credence 
Research reports an average infrastructure cost reduction of 41.3% for AI development environments and 29.7% for 
production systems that maintain appropriate redundancy [5]. 

Specialized tools have emerged to simplify spot instance management for GPU workloads. Credence Research highlights 
that companies leveraging specialized management platforms for cloud GPU resources report 28.7% higher resource 
utilization rates and 34.2% lower total cost of ownership compared to organizations using default cloud provider tools 
[5]. Their analysis indicates that the management tools market for GPU cloud infrastructure is growing at a CAGR of 
31.5%, outpacing the overall cloud GPU market, demonstrating the increasing emphasis on optimization technologies 
in this sector [5]. 

3.2. Precision Resource Allocation with NVIDIA GPU Device Plugin 

With NVIDIA's GPU device plugin, EKS allows precise definition of GPU units allocated to particular workloads. Jeon et 
al.'s analysis of GPU sharing techniques across 2,423 training jobs in production environments demonstrated that 
implementations of precise resource allocation achieved average GPU utilization improvements from 25% to 52%, 
effectively doubling the computational capacity of the existing infrastructure [6]. Their measurement of 62,000 GPU 
hours in multi-tenant settings revealed that workloads utilizing fractional GPU allocation with appropriate time-slicing 
maintained 80-95% of dedicated performance while enabling up to 3x higher job density per physical GPU for 
appropriately sized workloads [6]. 

The performance implications of resource allocation strategies are significant across different phases of GPU workloads. 
Jeon et al. found that the average GPU memory utilization across analyzed deep learning jobs was only 5.8 GB out of 
available 12-16 GB (approximately 36-48%), while the average GPU utilization was only 52% [6]. Their analysis of 
multi-tenant scenarios demonstrated that appropriate queueing and scheduling mechanisms maintained tail latency of 
high-priority inference workloads within 15% of dedicated deployments, even during periods of 90% aggregate cluster 
utilization [6]. 

This effective resource isolation enables organizations to consolidate previously separated workloads, with Credence 
Research reporting that companies implementing advanced GPU sharing techniques in cloud environments achieve 
infrastructure consolidation rates of 3.4:1 on average, resulting in direct cost savings of 47-58% compared to dedicated 
resource allocations [5]. 
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3.3. Monitoring Solutions for Continuous Optimization 

Implementing robust monitoring solutions is essential for identifying optimization opportunities and maintaining peak 
efficiency. Credence Research's survey of 325 organizations utilizing cloud GPU resources found that enterprises 
implementing comprehensive monitoring solutions reported 32.7% higher return on investment for their AI initiatives 
and 28.3% lower operational incidents compared to organizations with limited visibility into GPU utilization patterns 
[5]. Their analysis indicates that the market for specialized GPU monitoring and optimization tools reached $342 million 
in 2023 and is projected to grow at a CAGR of 27.4% through 2032, reflecting the increasing recognition of monitoring 
as a critical component of cost-effective GPU infrastructure management [5]. For specialized GPU telemetry, solutions 
like NVIDIA's Data Center GPU Manager (DCGM) provide detailed hardware-level insights. Jeon et al.'s examination of 
distributed training workloads found that monitoring systems capable of capturing fine-grained GPU metrics identified 
communication bottlenecks in 27% of multi-node training jobs that showed normal utilization in standard monitoring, 
with remediation improving training throughput by up to 35% [6]. Their detailed performance analysis revealed that 
identifying and addressing memory access patterns through specialized monitoring improved distributed training 
convergence time by 22%, effectively reducing both time-to-solution and associated infrastructure costs [6]. 

The combination of cost-efficient instance selection, precise resource allocation, and comprehensive monitoring creates 
a foundation for sustainable AI infrastructure on AWS EKS. Credence Research reports that organizations implementing 
all three elements achieved average cost reductions of 53.6% for their cloud GPU infrastructure while simultaneously 
increasing computational throughput by 2.1x, demonstrating the multiplicative benefits of coordinated optimization 
strategies [5]. As the global cloud GPU market continues its projected trajectory toward $18.7 billion by 2032, these 
optimization approaches will become increasingly essential for organizations seeking to maximize the value of their AI 
investments in competitive environments. 

Table 1 Cost Reduction Potential of GPU Optimization Strategies on AWS EKS [5,6] 

Optimization Strategy Metric Value Comparison Base 

GPU Spot Instances Cost Savings 60-75% On-demand instances 

Spot Instances (AI Development) Infrastructure Cost Reduction 41.30% Standard environments 

Spot Instances (Production) Infrastructure Cost Reduction 29.70% Standard production systems 

Batch Processing with Fault Tolerance Infrastructure Cost Reduction 70% Dedicated resources 

Specialized Management Platforms Total Cost of Ownership 34.2% lower Default cloud tools 

Advanced GPU Sharing Direct Cost Savings 47-58% Dedicated allocations 

Comprehensive Monitoring ROI for AI Initiatives 32.7% higher Limited monitoring 

Combined Optimization Strategies Cost Reduction 53.60% Standard Implementation 

4. Performance Optimization with NVIDIA Tools 

Beyond instance selection and scheduling optimizations, leveraging specialized NVIDIA tools can dramatically enhance 
the performance of AI workloads running on AWS EKS. Two such tools that have demonstrated substantial efficiency 
improvements are TensorRT for model optimization and Triton Inference Server for deployment management. 

4.1. Accelerating Inference with TensorRT 

NVIDIA's TensorRT is a high-performance deep learning inference optimizer and runtime that significantly improves 
execution efficiency on GPU hardware. Swaminathan et al. conducted comprehensive benchmarking of deep learning 
models optimized with TensorRT, finding that even on edge devices like the Jetson Nano, TensorRT-optimized models 
demonstrated remarkable performance improvements. Their empirical investigation showed that YOLOv5n, when 
optimized with TensorRT, 

achieved inference times of 51.74 milliseconds compared to 95.67 milliseconds for the baseline PyTorch 
implementation, representing a 45.92% reduction in inference latency [7]. This acceleration was achieved while 
maintaining detection accuracy, with a minimal mean Average Precision (mAP) loss of only 0.81 percentage points 
compared to the unoptimized model. Their detailed analysis across multiple model architectures revealed that 
MobileNetV2 achieved the most significant optimization benefits, with TensorRT reducing inference time by 66.7% 
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from 30.12ms to 10.03ms while maintaining classification accuracy within 1.2% of the baseline [7]. The optimization 
process employed by TensorRT encompasses 

several complementary techniques that collectively enhance execution efficiency. Swaminathan et al. observed that 
TensorRT's primary performance gains came from a combination of graph optimizations, kernel selection, and precision 
calibration. Their meticulous profiling revealed that operator fusion reduced the number of distinct operations by 31-
47% across tested models, with particularly significant reductions for models with repetitive convolutional blocks [7]. 
For quantitative comparison, the researchers measured memory utilization during inference and found that TensorRT-
optimized models required 32-41% less runtime memory, enabling more efficient deployment in resource-constrained 
environments. This optimization is particularly relevant for AWS EKS deployments, where optimizing memory 
utilization directly translates to cost savings and improved resource efficiency [7]. 

For real-world applications requiring sustained inference performance, Swaminathan et al. conducted thermal stress 
testing to evaluate performance stability. Their results demonstrated that TensorRT-optimized models maintained 
consistent inference times even after 30 minutes of continuous operation, with performance degradation of only 4.8% 
compared to 17.3% for non-optimized implementations [7]. This stability under load is crucial for production 
environments where consistent performance is essential for maintaining service level agreements. The researchers 
further evaluated power efficiency and found that TensorRT models consumed 31.4% less power while delivering 1.8x 
higher throughput, representing a substantial improvement in computational efficiency for large-scale deployments [7]. 

4.2. Maximizing Utilization with Triton Inference Server 

NVIDIA's Triton Inference Server provides a robust deployment platform that extends the benefits of model 
optimization by enabling efficient scheduling and resource allocation for inference workloads. Ramkumar's systematic 
framework for scalable and robust deployment of machine learning models highlights Triton as a key component in 
production pipelines. According to his comprehensive analysis, organizations implementing Triton Inference Server in 
production environments reported an average reduction in inference latency of 33.7% and throughput improvements 
ranging from 2.1x to 4.5x compared to custom deployment solutions [8]. This improvement stems from Triton's 
sophisticated batching algorithms, which efficiently aggregate incoming requests to maximize GPU utilization while 
maintaining latency constraints. 

For multi-model deployments typical in enterprise environments, Ramkumar's research indicates that Triton's 
concurrent model execution capabilities enable significant resource optimization. His case studies demonstrated that 
organizations deploying between 5-12 distinct models on a single GPU achieved an average utilization improvement 
from 26.3% to 71.8% when migrating from isolated deployment architectures to Triton's shared infrastructure model 
[8]. Particularly noteworthy was the finding that complementary workload patterns between different model types 
enabled effective resource sharing without performance degradation, with NLP models and computer vision models 
demonstrating only 8.2% performance impact when co-located on shared infrastructure compared to dedicated 
deployments [8]. The operational benefits of Triton extend beyond performance metrics to encompass reliability and 
maintainability. Ramkumar's analysis of production deployments found that organizations utilizing Triton in 
Kubernetes environments reported 78.4% fewer production incidents related to model serving compared to custom 
implementations, with mean time to recovery (MTTR) reduced from 97 minutes to 28 minutes when issues did occur 
[8].  

This improved reliability stems from Triton's robust implementation of features like model versioning, health 
monitoring, and graceful scaling, which collectively enhance operational resilience. For AWS EKS deployments 
specifically, Ramkumar identified several best practices that maximize Triton's effectiveness. His framework 
recommends implementing dynamic batching with context-aware timeout settings, which achieved an optimal balance 
between latency and throughput, with timeout configurations of 50-100ms yielding 3.2x higher throughput while 
maintaining P95 latency within acceptable bounds for interactive applications [8]. Additionally, his research suggests 
that integrating Triton with Kubernetes horizontal pod autoscaling based on GPU utilization metrics resulted in 41.2% 
lower infrastructure costs compared to static provisioning while maintaining sufficient capacity to handle 97.6% of 
demand spikes without performance degradation [8]. 

The combination of TensorRT optimization and Triton deployment creates a comprehensive approach to inference 
efficiency that addresses both model execution and operational considerations. Ramkumar's case studies of 
organizations implementing both technologies in a coordinated fashion documented average infrastructure cost 
reductions of 39.7% while simultaneously improving model serving capacity by 2.8x, demonstrating the multiplicative 
benefits of end-to-end optimization strategies for inference workloads on AWS EKS [8]. 



World Journal of Advanced Research and Reviews, 2025, 26(01), 1955-1963 

1961 

 

Figure 2 Performance Improvement (Reduction) Achieved with TensorRT Across Models and Metrics [7,8] 

5. Model-Level Optimization Techniques 

Beyond infrastructure optimizations, model-level techniques can significantly reduce GPU resource consumption and 
enhance performance on AWS EKS deployments. These approaches focus on modifying the internal structure and 
computational patterns of AI models to enable more efficient execution while preserving accuracy and functionality. 

5.1. Mixed Precision Training 

Mixed precision training strategically combines different numerical formats to optimize both memory usage and 
computational throughput. According to Restack's comprehensive analysis of model optimization techniques, 
implementing mixed precision training with FP16 computations and FP32 master weights reduces memory 
consumption by up to 50% while increasing training throughput by 2-3x on modern NVIDIA GPUs that support Tensor 
Cores [9]. Their evaluation across various model architectures demonstrated that properly implemented mixed 
precision maintains model convergence and final accuracy within 0.1% of full-precision baselines for most models. The 
implementation requires careful handling of numerical stability through loss scaling techniques, but the resulting 
benefits include not only faster training but also reduced power consumption, with documented power efficiency 
improvements of 3x for mixed precision workloads compared to equivalent FP32 implementations [9]. 

For AWS EKS environments, particularly those leveraging the latest GPU instance types, mixed precision training offers 
substantial cost optimization opportunities. Rognlien et al. note that while their research focused primarily on edge 
devices, the principles apply equally to server-class GPUs, with their benchmarks showing that optimized mixed 
precision implementations achieved up to 95% computational efficiency of theoretical peak FLOPS on supported 
hardware [10]. Their analysis of different precision formats indicates that newer GPU architectures deliver increasingly 
significant performance advantages for mixed precision workloads, making this optimization especially valuable for 
forward-looking infrastructure planning. 

5.2. Gradient Accumulation 

Gradient accumulation enables effective training with larger batch sizes by accumulating gradients across multiple 
forward and backward passes before applying weight updates. According to restack, this approach allows data scientists 
to train with effective batch sizes 4-8x larger than what would fit in GPU memory, with only minimal computational 
overhead ranging from 5-15%, depending on implementation 

details [9]. Their analysis indicates that gradient accumulation is particularly valuable for transformer-based models 
like BERT and GPT variants, where larger batch sizes can significantly improve convergence rates and final model 
quality. For cost-sensitive EKS deployments, gradient accumulation enables the training of large models on more 
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economical GPU instance types without sacrificing model quality, effectively trading slightly longer training time for 
substantially reduced infrastructure requirements [9]. 

5.3. Knowledge Distillation 

Knowledge distillation transfers learned representations from larger "teacher" models to more compact "student" 
models, creating efficient deployment alternatives. Restack reports that well-implemented distillation can produce 
models with 10-20x fewer parameters while retaining 90-95% of the original model's accuracy [9]. Their analysis 
highlights particularly impressive results in NLP applications, where distilled BERT models achieved parameter 
reductions of 7.5x with accuracy losses of less than 2.5% on standard benchmarks. For AWS EKS deployments, these 
distilled models translate directly to reduced infrastructure requirements, with documented inference throughput 
improvements of 4.6x and latency reductions of 3.8x compared to their teacher counterparts [9]. 

5.4. Quantization 

Quantization reduces numerical precision by representing weights and activations with lower-bit representations. 
Rognlien et al.'s comprehensive study of hardware-aware optimizations demonstrated that 8-bit quantization reduced 
model size by approximately 75% compared to 32-bit floating-point representations, with minimal accuracy impact 
when properly calibrated [10]. Their detailed experiments across multiple model architectures showed that post-
training quantization achieved average inference speedups of 3.1x on CPU platforms and 2.8x on compatible GPUs, with 
accuracy reductions typically less than 1% for CNNs and 2% for transformer models. Particularly notable was their 
finding that per-channel quantization preserved significantly more accuracy than per-tensor approaches, with 
experimental results showing 1.7% higher accuracy retention using channel-wise quantization for ResNet-50 models 
[10]. 

5.5. Pruning 

Pruning systematically removes redundant parameters from neural networks to create sparse models with reduced 
computational requirements. Restack's analysis of pruning techniques indicates that magnitude-based pruning can 
reduce model size by 50-80% with minimal accuracy impact when performed iteratively with retraining [9]. Their 
evaluation of different pruning approaches shows that structured pruning, which removes entire channels or attention 
heads, typically achieves better hardware utilization despite slightly lower sparsity compared to unstructured methods. 
For AWS EKS deployments, structured pruning combined with proper model recompilation can yield inference 
speedups of 1.5-2.5x while reducing memory requirements proportionally [9]. 

Rognlien et al. further emphasize the importance of hardware-aware pruning patterns, noting that block-structured 
sparsity aligned with hardware execution units delivers significantly better practical acceleration than theoretically 
superior but less hardware-friendly patterns [10]. Their experiments with 4×4 block sparsity demonstrated 
approximately 70% of the theoretical speedup on tested hardware, compared to just 30-40% for random unstructured 
sparsity, highlighting the importance of considering deployment infrastructure when designing pruning strategies. By 
implementing these model-level optimization techniques alongside infrastructure optimizations, organizations running 
AI workloads on AWS EKS can achieve multiplicative efficiency benefits. Restack reports that comprehensive 
optimization strategies incorporating multiple techniques can reduce inference costs by up to 85% while improving 
throughput by 3-7x across diverse model portfolios [9]. As AWS continues to introduce increasingly powerful GPU 
instance types, these optimization approaches will become even more critical for maximizing the value of GPU 
investments while controlling operational costs. 

Table 2 Comparative Impact of Model Optimization Techniques on Inference Efficiency [9,10] 

Optimization Technique Memory Reduction Speed Improvement Best For 

Mixed Precision Training 50% 2-3x Training large models 

Gradient Accumulation Enables 4-8x larger batches Slight decrease (5-15% 
overhead) 

Memory-constrained 
training 

Knowledge Distillation 90%+ (10-20x smaller models) 3.8-4.6x Deployment optimization 

Quantization 75% 2.8-3.1x Inference optimization 

Pruning 50-80% 1.5-2.5x Deployment optimization 
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6. Conclusion 

Optimizing GPU utilization for AI workloads on AWS EKS requires a holistic framework that addresses infrastructure 
configuration, resource allocation, deployment strategies, and model architecture considerations. By implementing 
appropriate GPU instance selection based on workload characteristics and leveraging advanced scheduling 
technologies, organizations can establish a strong foundation for efficient resource utilization. Cost optimization 
through spot instances and precise resource allocation further enhances the economic viability of GPU-accelerated AI 
deployments, while comprehensive monitoring ensures continuous performance improvement. Specialized tools like 
TensorRT and Triton Inference Server provide substantial acceleration and utilization benefits for inference workloads, 
complementing hardware-focused optimizations. At the model level, techniques such as mixed precision training, 
gradient accumulation, knowledge distillation, quantization, and pruning offer multiplicative efficiency improvements 
when implemented in combination. As GPU hardware capabilities continue to evolve with innovations like a 
multinational technology company’s Blackwell architecture, these optimization strategies will become increasingly 
essential for organizations seeking to maximize the performance and cost-efficiency of their AI infrastructure 
investments. By adopting this comprehensive optimization framework, enterprises can fully harness the transformative 
potential of GPU acceleration for their most demanding AI workloads while maintaining operational efficiency and cost 
control.  
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