
 Corresponding author: Nishanth Reddy Pinnapareddy

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

eBPF for high-performance networking and security in cloud-native environments

Nishanth Reddy Pinnapareddy *

Senior Software Enginner, California, USA.

International Journal of Science and Research Archive, 2025, 15(02), 207-225

Publication history: Received on 21 March 2025; revised on 27 April 2025; accepted on 30 April 2025

Article DOI: https://doi.org/10.30574/ijsra.2025.15.2.1264

Abstract

Originally designed as a packet filtering framework, the extended Berkeley Packet Filter (EBPF) has since become a
flexible and powerful networking, security, and observability tool at high performance in the cloud native ecosystem.
EBPF is explored as this transformative technology has been partly adopted by cloud-native platforms such as
Kubernetes to take advantage of the ability of EBPF in network optimization, security enforcement, and real-time
monitoring without affecting system latency and employing its inefficient, kernel-level packet processing, which
bypasses the bottlenecks of user space networking tools for better network throughput, lower latency, and better load
balancing. EBPF-based security frameworks like Falco, Tetragon, and Tracee provide great capabilities for real-time
threat detection and enforcement of security policy in kernel environments, making them suitable for dynamic cloud
environments. These EBPF solutions are compared to traditional mechanisms such as firewalls or intrusion detection
systems in terms of their effectiveness. It further explores the practices for deploying EBPF in Kubernetes
environments, including micro-segmentation and zero-trust security policies. Besides that, the research compares some
EBPF-based security frameworks and discusses their potential usage in real-world scenarios. This study examines the
technical and practical implications of EBPF towards performance and security improvement for cloud-native
infrastructures geared at cloud architects, security engineers, and DevOps engineers for EBPF. The findings indicate
how EBPF can help tackle the scalability and performance concerns in contemporary distributed systems and ensure
that EBPF will play an integral part in the future of cloud-native networking and security.

Keywords: EBPF (Extended Berkeley Packet Filter); Kubernetes; Cloud-Native Environments; Micro-segmentation;
Security Frameworks

1 Introduction

One of the powerful frameworks in modern operating systems, for example, Linux, is Extended Berkeley Packet Filter
(EBPF), a framework to execute custom code in response to kernel events. While initially used as a tool for packet
filtering within the networking industry, EBPF has matured into a great tool for monitoring, security, and performance
enhancement, which employs the hook mechanism of attaching small programs at various points in the kernel where
they can run upon events, for example, on network packet transmission, system calls and or tracing defined function.
With this architecture, they have high flexibility and efficiency, making EBPF a good approach for high-performance
networking and security use cases. One of the important features of cloud-native environments is their character of
dynamically adding, changing, and removing microservices, containers, and especially orchestration tools such as
Kubernetes, where traditional networking and security mechanisms face scalability, performance problems, EBPF tries
to solve this problem by providing a low overhead and high-performance mechanism of monitoring and controlling the
kernel working without changing the kernel software itself. This is why EBPF is such an ideal tool within cloud native
environments where resource efficiency is a must, as well as being able to respond quickly to changing network and
security conditions.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://ijsra.net/
https://doi.org/10.30574/ijsra.2025.15.2.1264
https://crossmark.crossref.org/dialog/?doi=10.30574/ijsra.2025.15.2.1264&domain=pdf

International Journal of Science and Research Archive, 2025, 15(02), 207-225

208

Apart from the fact that EBPF provides direct access to the network stack, bypassing the traditional user space tools, it
is one of its key advantages. The packet processing is faster, and load balancing is more efficient. In addition to the
above, EBPF enables the implementation of advanced security policies by providing real-time monitoring and
enforcement of the security rules at the kernel level. This is especially important in the case of a cloud-native
environment where security must be simultaneously robust and adaptive enough against the growing number of
threats. As an example, tools like Cilium, which takes advantage of EBPF, show a great performance improvement in
network throughput and latency. With organizations continuously moving toward the adoption of containerized and
managed by platforms like Kubernetes, the need to drive effective networking and security to ensure containerized
applications run correctly becomes more needful, and EBPF is the perfect solution here as it gives us a way to inspect,
manipulate and secure the network traffic and containerized application behavior in real-time. In the context of
Kubernetes, containerized applications commonly require similarly fine-grained security and traffic policies, making
them especially useful. EBPF allows Kubernetes clusters to microsegment safely, perform zero-trust security models,
and provide free network observability.

This study aims to determine how EBPF may improve network performance and security in cloud-native environments,
specifically with respect to Kubernetes. Specifically, it will explore the technical aspects of EBPF, describe how it can be
used to optimize network operations and limit the exposure of cloud infrastructures to attackers. The rest of the paper
is structured to understand all the fundamentals of EBPF and how it can be used for networking, observability, and
security. It will look at how to overcome challenges and resolve future risks in EBPF and how to give a comprehensive
experience of how EBPF can be employed in modern cloud deployment.

2 EBPF for Network Performance Optimization

2.1 Introduction to Network Performance Optimization

Network performance optimization is a key thing in modern computing, and it becomes even more important in cloud-
aware environments where the applications are spread over different servers and data centers. As microservices
architectures and containerized applications are gaining popularity, high scalable and performance networking is
needed. It comprises reducing latency, improving throughput, improving packet processing efficiency, and balancing
loads. Modern applications require very high throughput and dynamic network traffic. EBPF (Extended Berkeley Packet
Filter), in this context, represents a powerful tool for low latency, high throughput packet processing at a kernel level
while preserving flexibility and security; by attaching a custom program to the kernel functions, EBPF allows
performance enhancement of real-time online networks with very little overhead (Scholz et al., 2018).

Figure 1 An Overview of EBPF

2.2 EBPF-based Tools like Cilium and Katran

To overcome the issues of modern network performance, EBPF-based tools have been developed. EBPF is used by one
of the most popular networking tools distributed within the container world, Cilium, to deliver extremely fast
networking and security capabilities for Kubernetes deployments. Being EBPF-based, Cilium directly implements these
networking policies, load balancing, and network monitoring over traditionally implemented methods and achieves

International Journal of Science and Research Archive, 2025, 15(02), 207-225

209

significant improvements (Kumar, 2019). All this is done inside the Linux kernel as it allows the bypass of all traditional
iptables rules because they are much slower and resource-hungry due to the context switch between user space and
kernel space. High-performance load balancing has also been achieved using another EBPF-based tool, Katran,
produced by Facebook. Katran provides highly efficient, scalable, and programmable load balancing at the kernel level
in both layer 4 (TCP/UDP) and layer 7 (HTTP). It uses EBPF to speed up packet processing and routing decisions, with
reduced latency and overhead that they usually have on traditional load balancing techniques. As Katran can provide
thousands of requests per second and is well fit for large-scale, high-performance environments, Katran can leverage
EBPF.

2.3 Comparison with Traditional Networking Tools (e.g., iptables, IPVS)

Based on EBPF, the solutions geared toward networking are faster, scalable, and more flexible compared to classic
networking tools. Packet traffic filtering, load balancing, and NAT are often managed using traditional networking tools,
tables, and IPVS (IP Virtual Server). Despite these, they suffer from huge performance bottlenecks to a great extent,
especially in high throughput environments since packet processing is completely in user space applications (Karmakar
et al., 2017). It needs to switch between user space and kernel space, which is time-consuming and inefficient. Instead,
EBPF runs from within the kernel, and context switching is unnecessary. It enables network packet processing with
much lower latency but faster. To illustrate, within the kernel itself, EBPF-based tools such as Cilium can do network
security and load balancing without user space apps hopping over the packet, making such operations extremely quick
without the user space applications involved. Together with traditional tools such as tables and IPVS, EBPF is more
flexible and usable and can be dynamically programmed to adapt to the current changing requirements in an application
world, compared to the static approach.

2.4 Impact on Network Latency, Packet Processing, and Load Balancing

EBPF greatly affects network latency, packet processing, and load balancing. As EBPF runs in kernel space, it
circumvents the delays inherent in user-space packet processing. Traditional packet filtering or load balancing
techniques typically comprise many stages that send packets to kernel space to process them and back to user space
until the final action is made. This introduces latency in high-throughput environments. With EBPF, packet processing
is done within the kernel, thus enabling immediate action on incoming packets (Vieira et al., 2020). This reduces
processing time and network latency since packets can be filtered, modified, and forwarded in real time, which is
complicated by the lack of switching time between user and kernel space. For example, removing iptables-based packet
filtering makes decisions on processing network traffic faster in high-performance networking tools such as Cilium.

Figure 2 An Illustration of How EBPF Works

When load balancing is required, EBPF kernel-level packet flow management capability makes load balancing more
efficient and scalable than using EBPF-based tools such as Katran to route flow to multiple servers. It can make routing
decisions at the kernel level with negligible latency. It decreases network congestion odds and generally improves
overall application performance. EBPF also allows for fine-grained control over load balancing, thus making this
distribution more dynamic and better concerning conditions like server health and capacity instead of complex
configuration changes.

International Journal of Science and Research Archive, 2025, 15(02), 207-225

210

2.5 Real-world Applications and Case Studies

EBPF has a broad range of real applications in network performance optimization. EBPF-based tools in data centers and
cloud-native environments like Cilium and Katran have made observation and troubleshooting in large-scale data
centers and cloud-native environments extremely scalable and performant. The case study focuses on Cilium, which is
used for networking and security in highly dynamic environments at companies like Netflix and Cloudflare. With the
help of EBPF, these companies have obtained superlative performance at the network layer without compromising
security and observability. One example is Netflix, where Cilium sped up the adoption of its microservices
communication and lowered latency in microservices communication. Netflix was able to keep strict security standards
whilst retaining performance by being able to enforce security policies at the kernel level (Marinos, 2018). Like
Cloudflare, servers on its infrastructure have been instrumented with EBPF tools to improve further its load balancing
infrastructure, allowing it to serve millions of requests per second with low latency. In addition to these two case
studies, other organizations stated that they achieved improvements in network observability and the ability to
effectively change networking policies at runtime to accommodate applications that may change their workloads over
time. In the Kubernetes environment, EBPF has been a great success story as it allows better performance and favors
more efficient network policy enforcement. Increased production use of EBPF-based tools is already a sign of their
ability to optimize network performance in highly modernized, cloud-native infrastructures.

3 EBPF vs. Traditional Security Mechanisms

3.1 Security in Cloud-Native Environments

Der Cloud ist mit der Entwicklung, Bereitstellung und Unterhaltung von Anwendung und Services erheblich geworden.
These environments are microservices and containers where flexibility and scalability happen. They also pose quite a
security challenge. For dynamic, distributed cloud-native architecture, the traditional security models that solely
depend on firewalls and IDS are generally unsuitable (Samuel & Jessica, 2019). Workloads are spun up and down
frequently; services interact on dynamically assigned IP addresses, and traditional security tools are struggling to scale
up with the changes to this environment that are happening very quickly. New, more flexible, and scalable security
solution(s) are therefore required — extensive enough to address the fluid nature of the cloud-native ecosystem but
small enough to operate at the kernel level. Extended Berkeley Packet Filter (EBPF) is just what it seeks.

3.2 Traditional Security Mechanisms: Firewalls, Intrusion Detection, and Access Control

Throughout the scale of many years, traditional mechanisms for protecting network security, such as firewalls, IDS, and
access control lists (ACLs), have made up the bulk of network security (Nyati, 2018). Depending on the predefined
security rules, several firewalls control traffic flow between network segments. The intrusion detection and prevention
system monitor network traffic for signs of suspicious activity or known patterns of attack. Access control mechanisms
are based on predefined user permissions to the resources and restrict access to them.

These mechanisms are essential, but they are limited in modern cloud-native environments. An example would be that
the firewalls are static and generally work on the perimeter. Therefore, securing individual microservices or containers
that frequently change their IP address or configurations is not easy. Now commonly offered as stand-alone software,
traditional IDS solutions focus on a pattern or signature of known attacks, which make records against new or intelligent
threats. The centralized nature of access control mechanisms becomes ineffective in highly dynamic and decentralized
cloud-native architecture. The challenge involves the need for such agile, lightweight security solutions.

3.3 EBPF-Based Security Solutions (e.g., Falco, Tetragon, Tracee)

EBPF-based security solutions offer more flexible and efficient cloud-native security solutions. These tools work by
attaching EBPF programs to different kernel hooks that let them monitor and enforce security policies at the finest
grain, all inside the kernel. This allows for the detection and enforcement of real-time security events without the need
for a change to complex infrastructure. Falco is a runtime security tool with the help of EBPF that monitors system calls
and access files in the kernel for suspicious activity (Aich, 2021). It can detect anomalous behavior indicative of a
compromise, such as an unauthorized process attempting to access sensitive files or a network connection to an
untrusted host. EBPF, as a technology that comes up with Tetragon, can offer security observability across containers
and Kubernetes itself. It has features such as behavior monitoring to detect that they are taking malicious actions and
to ensure protection from security policies. EBPF-based tools also include the trace tool, which provides in-depth
tracing and monitoring of system calls. This can be useful in understanding what happens when a security event occurs
or identifying suspicious behavior. These EBPF-based tools provide some advantages over traditional security
mechanisms. This allows them to sit at the kernel level and monitor and enforce security policies per container or

International Journal of Science and Research Archive, 2025, 15(02), 207-225

211

service level, regardless of whether the network configuration or container lifecycle changes dynamically. In addition,
EBPF lowEBPFead also means that these tools can run in the wild without poking too much of a hole in the system's
system.

Table 1 Comparison of Traditional Security Mechanisms and EBPF-Based Security Solutions in Cloud-Native
Environments

Aspect Traditional Security Mechanisms EBPF-Based Security Mechanisms

Security in Cloud-
Native Environments

Depend on static, perimeter-based
security models that cannot scale in
cloud-native environments.

More flexible and scalable, providing dynamic,
kernel-level monitoring and enforcement in
cloud-native environments.

Traditional Security
Mechanisms

Firewalls control traffic based on
predefined rules. IDS/IPS monitor for
known attack patterns. ACLs restrict
access based on permissions.

Tools like Falco, Tetragon, and Tracee work at the
kernel level, offering finer security monitoring of
system calls, network traffic, and file operations.

EBPF-Based Security
Solutions

Limited in dynamically changing
environments. Cannot scale to meet the
fluid nature of cloud-native ecosystems.

Operate at the kernel level for deeper insight into
system activity and behavior, even during
dynamic container lifecycles and IP address
changes.

Advantages of EBPF in
Security Enforcement

Essential for securing basic network
boundaries and enforcing static policies,
but not enough for dynamic cloud-native
environments.

Allow fine-grained, real-time security
enforcement and monitoring at the
container/service level with minimal
performance overhead.

Comparative Analysis
of EBPF Security
Frameworks

Lack fine-grained visibility at the kernel
level. Cannot dynamically adapt to
changes in cloud-native environments.

Operate at the kernel level, providing deep
observability and quick response to incidents,
with support for micro-segmentation and more
adaptive security policies.

3.4 Advantages of EBPF in Security Enforcement

The main advantage of using EBPF in security enforcement is that it lets them see things deep in the kernel. As a result,
it allows EBPF-based tools to monitor real-time activities that would miss the view of traditional security mechanisms,
including system calls, network traffic, and file operations. EBPF can respond to security incidents more quickly by
operating directly in the kernel and functioning as a speedy shock absorber against attacks. EBPF supports fine-grained
security policies that can be based on context. EBPF can realize micro-segmentation so that containers or services can
communicate only with trusted endpoints. On the other hand, typical firewalls cannot enforce such fine-grained controls
within a dynamic and containerized environment.

One of the key advantages of EBPF is enhanced observability. EBPF tools will trace and log system behavior live to
security teams for insight into security incidents and correcting breach causes. Post-incident analysis, and future
improvement of the overall security posture will prove invaluable in finding and correcting things like this. EBPF offers
a much more efficient monitoring/enforcement solution than traditional solutions. Unlike signature-based IDS systems
that rely on a huge database of attack signatures, EBPF tools can detect anomalies in system activity. Their efficacy
against unknown threats is higher (Izzillo & Pellegrini, 2021). EBPF runs in kernel space and allows users to avoid
cumbersome and resource-expensive userspace tools.

3.5 Comparative Analysis of EBPF Security Frameworks

When compared to traditional security mechanisms such as PAM, SGE, and SELinux, there are some differentiators
when comparing two EBPF-based security frameworks like Falco, Tetragon, and Tracee. Traditional firewalls and IDS
solutions based on network layers work on patterns or specific rules. Rather, EBPF-based security frameworks operate
at the kernel level, providing much finer visibility into kernel-level or system-level events. For instance, although the

International Journal of Science and Research Archive, 2025, 15(02), 207-225

212

traffic might be blocked by a firewall on IP addresses and ports, an EBPF tool like Falco can detect suspicious activity
using system calls or the lower layer of the kernel (Deri et al., 2019). EBPF frameworks like Tetragon present the novelty
of observing Kubernetes and container environments at a higher level for inspecting applications' behavior across
distributed systems. Because traditional security tools are unable to operate at this granular level, both perimeter and
host security can be utilized.

Security mechanisms in traditional use suffer in terms of scalability in dynamic cloud-native environments where
servers come and go frequently. EBPF offers, in its nature, greater flexibility in adapting to changes and/or configuration
changes in the context of containers and services with little necessity for reconfiguration or updates to security policies.
Even though traditional security tools are still indispensable for securing network boundaries and enforcing basic
security measures, EBPF-based approaches constitute a different, more adaptive approach to security in cloud-native
environments. They are valuable to any modern security architecture because they can operate with low overhead,
provide real-time monitoring, and enforce fine-grained policies.

4 EBPF for Observability and Tracing

4.1 Observability in Cloud-Native Environments

Observability is key to keeping healthy, performant, and secure distributed applications and services in the cloud-native
context. Due to the dynamic and ephemeral nature of microservices, containers, and Kubernetes orchestration
platforms encompassing all the diversified services and systems, the monitoring must be far more comprehensive than
just simple metric collection. Observability in these environments means monitoring system logs, traces, and metrics to
capture the system's overall behavior. Still, the real-time insights required in dynamic cloud environments are not
usually resolved by traditional monitoring tools because of the scale and complexity of operations.

To answer these challenges, EBPF offers a solution of deep kernel-level observability without the instrumentation
overheads. Real-time monitoring of network traffic, system calls, and application behavior is possible by attaching EBPF
programs to various points in the kernel (Neves et al., 2020). This low-level access gives them unprecedented visibility
into the inner workings of cloud-native applications and underneath infrastructure, allowing them to get those insights
very quickly, help in troubleshooting, optimize performance, and ensure security.

Figure 3 Mastering EBPF Observability

4.2 Real-Time Packet Inspection with EBPF

Real-time packet inspection is one of the most powerful uses of EBPF in cloud-native observability. Traditional network
monitoring tools like tcpdump and Wireshark operate at the user level, require many resources, and can't be used in
high-performance environments or fast time analysis. While this is more overhead and slower than packet inspection
in userspace, EBPF is the only tool I found that allows packet inspection directly in the kernel, thus reducing overhead
dramatically.

Using EBPF, live packets are monitored and analyzed as they flow through the system. EBPF provides a low latency,
high throughput solution for monitoring packet flows (Singh et al., 2020). This capability is very useful for capability is
very useful for cloud-native environments where applications and services flow across distributed networks. For
example, EBPF-based tools like Cilium utilize this ability to build high-performance networks, exposed to network flows

International Journal of Science and Research Archive, 2025, 15(02), 207-225

213

and security policies with no performance penalty (Budigiri et al., 2021). EBPF can filter network traffic through custom
rules and triggers. That being said, this can be helpful when they want to see some specific type of traffic in detail. HTTP
request or DNS query- to be aware of a certain aspect of an application or service in depth. Packet inspection with EBPF
in real-time means that the cloud-native environment can work smoothly, hence the faster process of troubleshooting
network-related issues and overall visibility.

4.3 Syscall Tracing and Anomaly Detection

EBPF also enables syscall tracing. System calls (syscalls) are the primary interface between the user space application
and kernel and are most important for their information about how the application appears to behave. EBPF allows
monitoring of application behavior in real-time by tracing syscalls. Such a structure is especially useful in detecting
resource contention, abnormal system resource usage, and security vulnerabilities.

Tools based on EBPF, such as Tracee, can trace at the kernel level system calls and thus be able to see the actions of
applications without having to deploy the traditional tracing tools (Sharma, 2017). This functionality is especially useful
in a native world where your microservice tends to rely on complicated interactions with other containers, other
services, or even dependencies. Once tracked, the system calls can provide critical information as to the behavior of an
individual container or service. They can help identify performance bottlenecks or unusual activity, which may indicate
security threats.

Syscall tracing would be useful in anomaly detection because detecting abnormal or malicious behavior in the system
is very important. EBPF-based tools can analyze syscall patterns over time, thus detecting deviations from standard
behavior, anomalous file access patterns, or suspicious network connections. These could be flagged as anomalies for
further investigation. It is a proactive approach to Security and Performance management.

4.4 Practical Applications of EBPF in Monitoring and Observability

EBPF provides details and real-time insights into the system's behavior for observability and tracing in cloud-native
environments. Monitoring Kubernetes cluster performance and health is one of the most practical applications of EBPF
(Krahn et al., 2020). Kubernetes environments comprise pods, services, and nodes, each of which must be monitored
and considered a moving part. In the context of EBPF, operators can do real-time network traffic monitoring, as well as
real-time system calls or application-level behavior, with very little overhead.

For example, EBPF can devise a way to monitor pod-to-pod network connection health or service disruptions and
troubleshoot latency issues. Using EBPF, tools such as Cilium can monitor containers in Kubernetes communication
traffic and enforce security policies on this traffic (Fournier, 2020). EBPF-based observability tools help with in-depth
insight into applications running in containers, helping to identify and resolve problems that otherwise may be
unnoticed. EBPF is equally important in monitoring VM cloud and bare metal servers. While this doesn't make EBPF a
broadcast to the Linux kernel, it allows an administrator to attach EBPF programs to kernel points to track live metrics
such as CPU usage, memory consumption, and disk I/O.

Figure 4 Exploring the Power of EBPF in Kubernetes

Network traffic analysis and syscall traces, along with these metrics, give a good overview of the system's performance.
EBPF provides a great observability and tracing solution for cloud-native environments. Operators get the needed

International Journal of Science and Research Archive, 2025, 15(02), 207-225

214

visibility of the health and security of distributed systems, which naturally are highly exposed to anomalous events,
realizing their ability to monitor traffic across the network, trace syscalls, and detect these anomalies in real time. As
the cloud native environments continue to evolve, the EBPF role in monitoring and observability will only grow to
ensure that they have deep insights into high-performing secure systems.

5 Performance Benchmarking of EBPF Applications

5.1 Introduction to Performance Benchmarking

Performance benchmarking is a key step in determining a piece of software's or hardware's achievement in real-world
applications. In this particular scenario, performance benchmarking evaluates the performance, scalability, and
overhead of EBPF programs compared to traditional networking stacks. As EBPF is widely used to gain networking and
security performance in the cloud-native environment, it is necessary to benchmark it in detail to understand its impact
on key performance metrics like CPU utilization, memory consumption, and latency (Huang & Chou, 2020).
Benchmarking results must be accurate to know whether EBPF technologies could be net beneficial in high-
performance environments.

5.2 CPU/Memory Overhead Comparison: EBPF vs. Traditional Networking Stacks

One has to consider overhead when comparing one against the other, and CPU and memory overhead are the primary
factors when comparing EBPF and traditional networking stacks. Traditional networking tools such as iptables and IPVS
typically work on user space processing, thus yielding some overhead due to context switching from kernel to user
space. On the other hand, EBPF operates completely inside the kernel and provides less CPU and memory overhead
when it comes to filtering and monitoring packets and manipulating them.

Studies of benchmarking have found that EBPF programs tend to have less overhead than typical networking stacks.
For example, tools such as Cilium that implement EBPF-based load balancing and enforcement of network policies
typically perform much better than traditional solutions by reducing the load of costly kernel to user-space context
switches (Miano et al., 2021). EBPF programs are to be lightweight regarding memory consumption since they are
translated into bytecode and executed in the kernel. This efficient design comes in very handy for a cloud-native
environment where resource constraints are an issue.

There are performance tradeoffs tradeoffs when using EBPF. Learning that EBPF entails a small CPU overhead can be
mildly awkward when the filtering logic or tracing functionality is quite complex. As a result, the impact of the
performance tradeoffs must be measured specifically for EBPF programs in real-world scenarios to estimate how well
the application's objectives are being met.

5.3 Execution Latency Analysis

Execution latency is a key metric of all networking and security applications driven by hard real-time constraints. The
ability to execute programs directly in the kernel during time processing lowers the time required to process the packet.
Traditional networking stacks involve more layers of processing than they do. They are usually context-switched
between user space and kernel space. Higher latency may result in this, especially in high-throughput environments.

Studies have proven that EBPF-based solutions like Cilium and Katran provide lower execution latency than
conventional networking approaches. As one example, the load balancer used by Cilium, which does not depend on
more complex user space processing, processes packets under much lower latency as it bypasses the need for more
complex processing. From a performance perspective, both items are equally important for cloud-native applications
as high network throughput and low latency communication are critical for performance. EBPF latency is sensitive to
factors such as the number of network events being processed and the complexity of the EBPF program (Sheth et al.,
2021). More specifically, programs like those that inspect packets or trace system calls will tend to increase the latency.
This will be well below the typical latency they observe in traditional systems. The EBPF solutions should independently
thoroughly test latency under each operational condition and ensure that the performance will meet the requirements
of the environment.

5.4 Case Studies on Performance Improvements

EBPF brings a lot regarding processing performance improvements to real-world case studies. Among the notable
examples is the usage of EBPF in all the large-scale cloud-native environments, for example, Kubernetes clusters. In
Cilium's case, a company achieved substantial performance improvements in the network throughput. The company

International Journal of Science and Research Archive, 2025, 15(02), 207-225

215

takes a radically unconventional approach to network use: using EBPF load balancing and network enforce control, it
significantly reduces packet processing time by over 30X compared to conventional methods. This was attributed to the
fact that, unlike other network hops that introduce legacy solutions, EBPF can work directly within the kernel, leading
to less overhead.

EBPF also conducted another case study of Katran, Facebook's EBPF-based load balancer, proving that EBPF can scale
to millions of requests in a second. With EBPF, Katran was able to optimize Facebook's network traffic management at
a larger scale, with high throughput and low latency. This shows the usefulness of EBPF in high-performance
environments, in this case, for large-scale distributed systems where traditional solutions can lag behind the traffic
demands.

5.5 Performance Tradeoffs Tradeoffs and Scalability Considerations

There are some tradeoffs to using EBPF at scale. For example, EBPF programs may face challenges that may impact
system resources. In many cases, EBPF is more efficient than involving the OS to provide that logic, but, as is always the
case, poorly analyzed or poorly written programs may still cause CPU or memory overhead, especially if they are used
to process a large volume of network traffic or to inspect highly detailed packets.

Scalability is another consideration. Since causing EBPF programs to run directly inside the kernel, it becomes difficult
to control the execution of multiple EBPF programs across a wide system (Weng et al., 2021). Adding complexity is the
need to load, manage, and deal with numerous EBPF programs, which may scale up rapidly and lead to additional
complexity regarding configuration and resource management as the environment becomes highly dynamic (i.e., at
scale, in the context of Kubernetes). They need to monitor the performance impact of EBPF deployments and change
the program configurations to maintain scalability. While EBPF offers great performance value in terms of lower CPU
and memory overhead and lower latency, EBPF applications should be benchmarked and well-optimized to achieve the
desired results in real-world contexts.

6 EBPF for Zero Trust Security and Microsegmentation

6.1 The Importance of Zero Trust Security

Zero Trust Security is a major security mode that relies upon the principle of never trusting, always verifying. In this
model, trust is never assumed whether the access entity (trying to access the resource) is within the network or when
the access entity is outside of the network. Cloud-native infrastructures, microservices, and distributed systems have
rendered traditional perimeter-based security models obsolete (Demirpolat, A2021). As IT environments become more
complicated, checking every access request by verifying identity, device, and context to protect against data breaches,
lateral movement of threats, or other advanced attacks is no longer sufficient. The principle of Zero Trust is to grant
access to resources as strictly as possible, namely only with the strictest verification of identities and micro-
segmentation, so that access is made only under the strictest conditions.

6.2 Implementing Zero Trust using EBPF

Figure 5 Zero Trust Security with Cilium

They write EBPF programs that allow monitoring packets at various network stack layers, identifying anomalies in
network traffic, or enforcing security policies based on contextual information about the application, the user, or the

International Journal of Science and Research Archive, 2025, 15(02), 207-225

216

data being sent and the security state of the cooperators (i.e., involved systems). Using EBPF with authentication
schemes (for example, identity cards or tokens), a Zero Trust architecture can continually validate communication and
block all access that was not authorized, or that would be used for the movement laterally throughout the network.

6.3 Micro-segmentation in Kubernetes Environments with EBPF

Micro-segmentation is a technique that divides the network into small, isolated segments to limit the size of security
breaches and stop the attacker's lateral movement. In a Kubernetes environment, micro-segmentation is difficult
because the containers are dynamic, and network policies must be managed between hundreds or thousands of
machines. EBPF simplifies implementing micro-segmentation with deep, packet-level visibility and control without
changing the app code or configuring something completely complex.

Within Kubernetes environments, micro-segmentation is achieved with fine-grained network policies to control traffic
between pods, namespaces, and service, using EBPF-supported tools like Cilium to enforce the policies based on EBPF
directly at the kernel level so that traffic is allowed only with permission from the authorized entities. This helps to
minimize the lateral movement potential across the environment, even when one part of the cluster is breached. EBPF
operates at the kernel level, which servers to reduce overhead typically associated with network policy enforcement
and thus makes it appropriate for high-performance, large-scale Kubernetes environments (Budigiri et al., 2021).

6.4 Benefits of Fine-Grained, Identity-Aware Security Policies

Specifically, the key advantage of using EBPF under a Zero Trust architecture is that they can define fine-grained,
identity-based security policies. The problem is that traditional network security models usually rely on static, IP-based
access control lists (ACLs), which do not work in a dynamic environment with frequent IP address changes, e.g., in the
cloud-native infrastructure. Doing this gives them much more granular access control of resources as each entity can
be given policies that only fit its needs and security posture.

It also allows for continuous security policy monitoring and adaptation using EBPF. EBPF-based systems allow services
to dynamically adjust policies as the service scales or changes, based on real-time information, with work state and
container lifecycle, to name a few. It provides such flexibility that security measures stay effective even in changing
environments at an extremely fast pace. Additionally, EBPF can augment a security team's ability to detect and mitigate
threats based on continuous observations of the system in order to stop threats before they reach full-blown breach.

6.5 Real-World Deployments and Best Practices

The efficacy of EBPF in improving security while maintaining performance in real-world deployments of Zero Trust and
micro-segmentation has been very much demonstrated. EBPF-based tools like Cilium have been integrated into
companies running Kubernetes as their container orchestration platform to use EBPF to implement network policy
enforcement on top of a scalable micro-segmentation without compromising throughput and without adding latency
(Singh et al., 2019). These implementations also ensure that container communication is tightly controlled and
monitored so that only authorized interactions and no unauthorized access can occur.

Whenever deploying EBPF-based security in a Zero Trust architecture, it is best to work with IAM protocols (e.g.,
integrate EBPF with tools that provide user identity, OAuth2, JWT, or mutual TLS). Anomalies or violations of security
policies can be continuously detected from running network traffic and system calls. Since EBPF is a kernel-level
technology, just like any other kernel-level technology, they must be careful with the performance overhead and the
debugging complexity. Implementing EBPF in a modular form and thoroughly testing configurations in small
environments before scaling it up can mitigate it. They should also use EBPF ability to work with other awareness tools
for persistent danger consideration and proactive protection footing the price. EBPF is a powerful and efficient way to
implement Zero-Trust Security and micro-segmentation in the modern cloud-native environment (Shin & Kim, 2021).
It provides fine-grained access controls and identity-aware policies that improve the security of dynamic
infrastructures with minimal performance overhead, making it an indispensable tool for security and network
management in modern times.

7 Challenges in Deploying EBPF in Large-Scale Systems

7.1 Scalability Challenges of EBPF

The scalability is one of the main problems in deploying EBPF in a system at scale since EBPF programs run in the kernel,
so they are efficient at the lowest level. Efficiency can be thwarted as the system's scale increases. The problem with

International Journal of Science and Research Archive, 2025, 15(02), 207-225

217

resource consumption in the form of a scalability challenge arises naturally since EBPF programs need to live in memory
and use memory efficiently (Raju, 2017). The programs must also be fast, requiring memory to store their state and run
and code efficiently. When more and more EBPF programs are deployed into a large-scale environment, the resource
overhead also increases and may degenerate the performance of these EBPF programs. Managing and orchestrating
many EBPF programs in large dynamic systems (such as the Kubernetes cluster) is more complex. Thousands of
containers and microservices may interact with EBPF programs, making it a difficult problem to ensure that they scale
efficiently over all nodes.

EBPF programs receive packets or events at speed (or latency); in large-scale systems, the kernel must process data on
high throughput. Especially in environments with large network traffic or complex workloads, high volumes of events
will be processed by EBPF, potentially causing bottlenecks. In constrained systems where the kernel's resources to
support the execution of EBPF programs, such as CPU time and memory bandwidth, limit performance (Qiu et al., 2021).
Conversely, EBPF typical advantages in smaller systems are not achieved. Therefore, scalability is addressed with
careful resource management, optimization of the EBPF programs, and possibly limiting the usage of EBPF on the
systems for high traffic.

7.2 Debugging Complexity in Large-Scale Deployments

Debugging EBPF in large deployment is difficult as it lives in the kernel space. Operating in the kernel, EBPF makes
tracing and diagnosing the problem for an issue a very difficult and time-consuming task for use on any system using
EBPF, as traditional debugging tools are unavailable in user space. It is also hard to see how well something is working
or where problems may be located, for instance, in EBPF when multiple EBPF programs run in parallel in different
subsystems.

The difficulty of determining an error is located in the EBPF program itself or in the kernel behavior. Problems are
introduced in a large-scale environment when deploying EBPF, involving kernel changes, incompatibilities among EBPF
programs, and network configurations. Execution of EBPF on a large system, therefore, can take a long time to confirm
if the problem is fixed and detect the problem in the first place, depending upon the availability of complete debugging
tools. When networks are large, fault identification and isolation become considerably more difficult when a network
stack or EBPF-based security policy is involved (Miano et al., 2021).

They usually try to address it by using tracing tools and logging mechanisms like bpftrace or bpfcc to analyze what is
going on when EBPF is invoked. These tools can have overheads and impose costs on the system. Just like debugging
EBPF, debugging requires extensive knowledge of kernel internals and the relationship between EBPF and the
operating system, and this might be a limitation to the effective troubleshooting of EBPF in large-scale environments.

Table 2 Key Challenges, Impacts, and Mitigation Strategies in deploying EBPF in Large-Scale Systems

Challenge Description Impact Mitigation Strategy

Scalability
Challenges

As EBPF programs run in the kernel,
resource consumption becomes an issue
in large-scale systems. Scaling requires
careful resource management and
optimization to avoid performance
degradation. Managing multiple EBPF
programs across dynamic systems like
Kubernetes increases complexity.

Increased resource
overhead, potential
bottlenecks, and
performance degradation in
high-traffic or complex
environments.

Optimize EBPF programs
to be lightweight, limit the
scope of programs, use
filters, and deploy EBPF
hierarchically or across
nodes to distribute the
load.

Debugging
Complexity

Debugging EBPF in large deployments is
difficult due to its operation within the
kernel. Traditional debugging tools are
unavailable, and fault identification is
challenging in complex systems with
multiple EBPF programs running in
parallel.

Longer troubleshooting
times, complex fault
isolation, and reliance on
specialized knowledge of
kernel internals and EBPF
interactions.

Use advanced tracing and
monitoring tools like
bpftrace, adopt continuous
testing, and implement
automated QA pipelines for
early detection of issues.

International Journal of Science and Research Archive, 2025, 15(02), 207-225

218

Security
Risks

While EBPF enhances security by
enabling kernel-level monitoring, it also
poses risks as it gives users deep access to
the kernel. Malicious programs or
vulnerabilities can lead to system crashes
or code execution, particularly in multi-
party systems.

Increased risk of privilege
escalation, code injection, or
unauthorized access to
sensitive information in
systems where EBPF is not
properly secured.

Enforce strict access
controls, use sandboxing
techniques, run regular
security audits, and ensure
EBPF programs are
validated and constrained.

7.3 Security Risks in EBPF Implementations

Although EBPF can enhance security by enabling kernel-level monitoring and enforcement at a fine-grained level, it also
poses security risks. The main issue is that EBPF gives users deep access to the kernel, exposing them to malicious EBPF
programs and code. EBPF runs inside the kernel space, so in case of a poor BPF program or attackers sneaking in with
it, the EBPF program could lead to system crashes or even kernel code execution. Particularly in systems involving
multiple untrusted parties or services interacting with the kernel with EBPF, the risk of privilege escalation or code
injection is particularly high.

As EBPF continues to develop, the technology's flexibility has led to new ways of using it, some of which may introduce
vulnerabilities. For example, if EBPF programs are not properly isolated or constrained, they could get illegal access to
sensitive information or manipulate critical system processes (Findlay, 2021). This is especially critical in cloud-native
environments where EBPF enforces security and real-time monitoring. This allows for severe security breaches that an
attacker could inject or tamper with malicious EBPF programs, undermining the effectiveness of the security
framework.

7.4 Mitigation Strategies for These Challenges

On the other hand, optimization is one of the best ways to resolve scalability challenges related to EBPF. To avoid
resource contention and performance degradation, sufficient attention is required to keep EBPF programs lightweight
and efficient. The scope of EBPF programs can be limited, filters can be used to achieve precisely targeted EBPF
programs only against specific events or packets, and state storage can be minimized. EBPF may be deployed
hierarchically or even on different nodes to reduce the burden on a single part and improve overall system performance.

Advanced tracing and monitoring tools are essential for adopting debugging in large-scale systems. Bpftrace, for
example, is a tool that can dynamically trace and monitor EBPF programs in real-time to enhance the visibility of their
behavior as they run in a live environment. continuous testing and validation of EBPF programs before deployment is
helpful in identifying issues in the early stages of development. Implementing automated testing and quality assurance
pipelines reduces debugging by identifying errors before they can troll into senior systems.

Security for EBPF should be heavily considered. This includes enforcing strict access controls on EBPF programs so that
only authorized entities can load and run EBPF code. Using sandboxing techniques and running regular security audits
can stop evil programs from gaining access to kernel resources (Aich, 2021). Requiring proper, validated, and
constrained EBPF programs that are only used for noncritical tasks can help limit the number of sensitive security
vulnerabilities. Though using EBPF on large-scale systems has its problems, the risks can be overcome with proper
resource management, debugging strategy, and security precautions. In high-performance and secure environments,
organizations could get the most out of EBPF by optimizing usage and robust monitoring.

8 Ethical and Legal Concerns

8.1 Ethical Implications of Deep Kernel-Level Access

EBPF can communicate directly with the kernel, which carries several serious ethical challenges. The benefits of
performance and security optimization that kernel-level access to EBPF programs bring about make the issue of
transparency and control emerge. The issue of one of the main ethical dilemmas is the ability provided by EBPF for
organizations and individuals to gather deep insight behind them without the user's knowledge or even consent. This
deep integration into the kernel provides strong monitoring and enforcement tools that could be used in intrusive
surveillance or manipulating user data. EBPF allows administrators to run code at kernel points that are normally not
accessible, allowing very specific behavior on distributed systems. This power can be misused for the good if the code
is not appropriately audited or if any EBPF (Falco for security monitoring) is used maliciously. With no strict controls

International Journal of Science and Research Archive, 2025, 15(02), 207-225

219

and transparency, ethical limits of privacy, consent, and accountability break down for fear that they will have the power
to decide and audit the applications and how they keep users' special private data.

8.2 Privacy Concerns with EBPF Real-Time Monitoring Capabilities

The second big ethical concern to me is privacy, as EBPF allows the tracing of system calls, monitoring of network traffic,
and monitoring of kernel activities in real time, which can be used for extensive data collection. Sensitive information
could be user behaviors, application interactions, system resource usage, and so on, and real-time monitoring might be
done. This is valuable for debugging, performance monitoring, security enforcement, and so on, but it can be too
devastating if personal or confidential data gets exposed inadvertently or intentionally.

This is a concern in a multi-user environment where shared resources are used, such as public cloud or multi-tenant
Kubernetes cluster. The lack of isolation mechanisms for tenant data in EBPF makes the deep observability that EBPF
offers possible for one tenant to learn about the behavior or operations of another tenant, breaking confidentiality
agreements or personal privacy. The large amount of telemetry EBPF produces would also be able to be stored or
analyzed in a way that violates users' privacy and thus creates the perfect opportunity for data abuse or misuse. The
real ethical issue is 'to check the benefits of real-time monitoring and system observability with the need to protect user
privacy and ethical data handling.'

8.3 Legal Considerations for Data Handling and Security Enforcement

Given how data is handled in the deployment of EBPF, legal and security enforcement in such environments must be
considered. With EBPF organization, they need to ensure that their monitoring and security practices fit in with all the
data protection laws governing how user data gets collected, processed, and stored. For instance, in cloud environments,
the legality of such monitoring may be questioned if data interception or packet inspection using EBPF, for example.

Security policies must be established to prevent unauthorized access or abuse, as this is one way to secure EBPF instead
of performing the security enforcement itself. In some cases, the separation between lawful monitoring and unlawful
surveillance can be difficult to identify. For instance, results based on the EBPF tools, such as Falco, can be used for
intrusion detection. Improper configuration and lack of transparency could violate privacy rights or allow just data
manipulation without proper permissions (Danezis et al., 2015). Organizations must consider how their data is retained
and processed by EBPF programs, be it data retention in line with the law, and refrain from unnecessary or excessive
data collection.

Figure 6 Methods of Protecting Data

8.4 Regulatory Compliance in EBPF Applications

In order to implement EBPF-based security monitoring, regulatory frameworks such as the General Data Protection
Regulation (GDPR) and the California Consumer Privacy Act (CCPA) must be met. These regulations enforce data
privacy, transparency, and client control. Similarly, it is in organizations' interests to carefully consider how EBPF

International Journal of Science and Research Archive, 2025, 15(02), 207-225

220

programs handle user-sensitive data. For example, GDPR requires that individuals be informed about how their data is
processed and have rights to access, correct, or no longer have that data (Tikkinen-Piri et al., 2018). Thus, the message
is that any use of EBPF collecting personally identifiable information (PII) must take precautions to comply with these
requirements. EBPF real-time monitoring capabilities could compromise these regulations inappropriately if
organizations do not properly anonymize or oversee EBPF use. The capability of EBPF to collect large numbers of
operational data points could result in an inadvertent capture of sensitive user IP addresses or credentials. In order to
reduce legal risks, organizations should create and enforce data minimization practices — data should only be collected
and processed for as long as necessary to monitor the website or prevent security threats. These organizations must
carefully configure EBPF-based security tools that respect the users' right to opt out or to revoke consent from data
collection where such concern is held in strict privacy laws. EBPF offers large benefits for high-performance networking
and security backed up by associated ethical and legal issues that must be addressed carefully (Kejariwal & Allspaw,
2017). One concern revolves around the ethical implications of kernel level access, a second concerns the privacy
weaknesses of real-time monitoring, a third question is related to compliance with data handling under GDPR and CCPA,
and a last is staying in line with the given regulatory framework. Solving these issues is necessary to ensure that EBPF
capabilities remain responsible, ethical, and appropriate for user privacy and comply with relevant laws.

9 Future Considerations

9.1 Emerging Trends in EBPF Development

Since then, EBPF has been growing, and the development has also accelerated recently as a growing community of
developers and organizations are trying to expand its reach. There is a trend of increasing EBPF programmability. The
use of EBPF in a broader set of applications has enabled the new EBPF features that support more complex programs
and extended kernel hooks. At the same time, EBPF is being used more widely in real-time observability and tracing
tools. A great example is projects like BPF Compiler Collection (BCC) and BPFTrace, which allow us to build systems
monitoring at the advanced level with virtually no impact on the system. Along with this trend of interest in EBPF, there
is also the emergence of EBPF-specific tools for cloud-native environments, such as Cilium for networking and Falco for
security. Another critical trend is the continued refinement of EBPF tooling, such as developing better debugging and
performance profiling tools to make EBPF easier to use in this and other system architectures.

9.2 The Evolving Role of EBPF in Cloud-Native Security

Figure 7 The Power of EBPF for Cloud Native Systems

Since in a cloud-native environment, these security requirements are always changing thanks to the dynamic nature of
containerized apps and microservices, EBPF is already ready to strengthen security with fine-grained granular control
and visibility into the kernel — providing a good way for applying security policies. EBPF will be even more important
in a world of zero trust. EBPF provides real-time access to system-level events such as network traffic, system calls, and
application behaviors, which are critical to detecting and mitigating security threats. In addition, EBPF can enforce such
security policies at the kernel level while incurring only a small amount of overhead in the performance. This makes

International Journal of Science and Research Archive, 2025, 15(02), 207-225

221

EBPF a promising choice for the security of high-performance cloud-native environments (Loreti et al., 2021). As more
and more EBPF-based tools like Tetragon with security observability and compliance workloads are being deployed,
EBPF will become a critical building block for security in cloud-native infrastructures. Another area of future growth is
to play a key role in securing Kubernetes clusters through network policies and micro-segmentation to provide more
dynamic and flexible security enforcement.

9.3 Future Improvements in EBPF Scalability and Performance

EBPF has been very efficient but has had some scaling issues, especially as researchers scale up large-scale distributed
systems, as they often see with cloud-native deployments. More improvements in the kernel and the EBPF virtual
machine (EBPF VM) will increase the scalability of EBPF. In terms of EBPF programs, one is to improve the throughput.
Integrating EBPF with the underlying hardware and network interface could reduce latency and increase packet
processing speeds. The Just in Time (JIT) compilation of EBPF programs has also already borne fruit in terms of
performance. Moving JIT compilers forward, optimizing EBPF interaction with kernel subsystems even more, will very
likely yield lower overhead and better performance at scale (Vieira et al., 2020). For example, it also allows offloading
more EBPF processing to specialized hardware like GPUs or FPGAs. It performs more in data-heavy applications,
particularly in cloud environments with high-volume network load.

9.4 Integrating EBPF with New Technologies and Frameworks

A great deal of interest is surrounding the integration of EBPF with emerging technologies. On the one hand, the rise of
containerization, microservices, and serverless architectures has made other means of observability and manipulation
equivalent to EBPF. EBPF operating at the kernel level has a unique advantage in seeing and controlling something.
Since EBPF will likely be found in these orchestration frameworks and tools as they evolve, they should expect their
performance and security capabilities to be improved. For example, combining EBPF with service meshes like Istio
improves packet processing and traffic management performance. At the same time, as more network processing is
pushed to the edge, eBFP will be useful for executing at the network's edge to optimize performance and reduce latency.
Artificial Intelligence (AI) and Machine Learning (ML) technologies will continue to appear more in cloud-native
environments (Boudi et al., 2021). They can leverage EBPF to provide static and real-time insights and anomaly
detection as it helps the processes identify patterns or suspect security breaches with more desire. New opportunities
for using EBPF to perform fine-grained security policies and to manage network traffic on deeper levels will be opened
via integration with new container runtimes and Kubernetes native technologies. They will see the development of
frameworks that bring EBPF together with service meshes, edge computing, and AI-driven automation, making EBPF a
core building block of modern cloud-native architectures.

10 Potential Contributions of This Research

This research contributes several aspects to understanding and using EBPF for cloud-native high-performance
networking and security. The findings balance theoretical and practical aspects and will help cloud architects, security
engineers, and DevOps teams optimize their cloud infrastructures. Below are the key subtopics through which the
potential contributions are outlined.

10.1 Performance Benchmarking of EBPF-Based vs. Traditional Networking Stacks

A major contribution of this research is that it helps to detail benchmark EBPF-based networking solutions (iptables or
IPVS) versus traditional networking stacks. In the context of a network in a cloud-native setting, the study will compare
the diverse performance metrics like packet processing time, throughput, and latency by demonstrating how EBPF
helps boost network performance in such cases. EBPF reduces the overhead and increases efficiency by directly
interacting with the kernel, eliminating the need for user-space intervention in packet processing. Benchmarking will
provide actual measurements of the benefits of EBPF-based solutions, such as Cilium, compared to traditional
networking stacks in cases where such throughput, low latency, and scaling infrastructure requirements are needed.
These findings will prove crucial to companies looking to implement EBPF in their network stacks to satisfy the needs
of the modern cloud environment where traditional solutions cannot keep up with speed and scalability.

10.2 Evaluating the Effectiveness of EBPF-Based Firewalls & Intrusion Detection

The other major contribution of this research is to evaluate EBPF-based firewalls and intrusion detection systems (IDS)
against state-of-the-art security mechanisms using EBPF. Typical firewalls and IDS solutions are deployed traditionally
in the user space and suffer from latency and limited adaptability in highly dynamic environments such as Kubernetes.
EBPF further leverages direct access to the kernel, allowing it to enforce security policies on a real-time basis with
minimal performance impact (Scholz et al., 2018). They will evaluate deployment in the production environment of

International Journal of Science and Research Archive, 2025, 15(02), 207-225

222

tools such as Falco and Tetragon based on EBPF for their capability to detect threats like system anomalies,
unauthorized access attempts, and malicious network activities. This evaluation aims to provide security engineers with
a practical evaluation of how security enforcement can be accomplished in cloud-native infrastructures using EBPF.
Further, the research will examine how EBPF provides flexibility to create fine-grain security policies at the application
level, which enables secure cloud-native systems.

10.3 Best Practices for Deploying EBPF in Kubernetes Environments

The goal is to deploy EBPF effectively in Kubernetes environments and provide practical insights on this. Kubernetes
environments are highly dynamic environments presenting waste, such as frequent pod scaling, and traditional
networking and security mechanisms are difficult to scale. They can rely on traditional network policy, traffic
monitoring, and security enforcement from an EBPF layer at the kernel level, even if it seamlessly fits with the
Kubernetes service mesh (Chavan, 2021). The best practices for deploying EBPF in Kubernetes will be determined, and
the issues of the program lifecycle and performance overhead will be addressed. It will also describe how to secure
inter-pod communication using micro-segmentation and zero-trust security models, which enable EBPF. Through real-
world deployment strategies presented in this research, EBPF-based solutions will be made practical and increase their
deployment within the Kubernetes administrators or DevOps teams to ultimately deploy EBPF-based solutions
effectively in terms of scalability and reliability.

10.4 Comparative Study of EBPF Security Frameworks

This research will include a study compared with various EBPF security frameworks like Falco, Tetragon, and Tracee.
The research will analyze the strengths and weaknesses of each of these tools for use in monitoring and securing cloud-
native environments. Each item has its strengths and weaknesses, depending on the deployment scenario. Falco is very
popular for real-time threat detection, whereas Tetragon prioritizes the added security at the process level with
optional workload security enforcement. The best option for Tracee is kernel-level tracing for anomaly detection. The
study will compare these frameworks and gain an in-depth understanding of how well these frameworks can work in
real-world security scenarios, how well these can stop attacks, help in the implementation of compliance requirements,
and provide observability in cloud-native infrastructures. Based on these requirements, this analysis will help security
engineers select which EBPF-based security framework to use based on their requirements, including system integrity,
workload protection, and threat detection.

Figure 8 An Overview of EBPF and Kernal Module Features

10.5 Significance of the Findings for Cloud Architects, DevOps Teams, and Security Engineers

This research will provide impetus to cloud architects, DevOps teams, and security engineers using a cloud-native
environment. Cloud architects must understand the effects that EBPF would have on network performance and threats
to be able to build more optimized and secured cloud architectures. The research will offer practical guidelines to the
cloud architects on integrating EBPF into their existing network stacks and security policies to allow for scalability and
performance. The impact on DevOps teams will be tremendous. The ability to deploy EBPF-based solutions effectively
in Kubernetes will allow them to have a robust way to secure and define the right behavior for the network in a dynamic

International Journal of Science and Research Archive, 2025, 15(02), 207-225

223

containerized environment (Miano et al., 2021). This will allow security engineers to select the best EBPF security
framework for securing cloud-native applications to provide operational efficiency and encompass threat protection.
This research will generally foster the adoption and improvement of EBPF for cloud-native environments and improve
the state of the art in high-speed networking and security.

11 Conclusion

This research clearly illustrates the significance of EBPF (Extended Berkeley Packet Filter) as a means to achieve
efficient and secure networking in cloud-native infrastructures, more specifically within the context of Kubernetes
environment campuses. This unique feature perfectly fits modern cloud infrastructure requirements for scalability,

real-time monitoring, and dynamic security enforcement. This study’s key findings point to extremely good
performance gains with EBPF-based networking solutions, especially relative to legacy tools like iptables and IPVS,
which can particularly EBPF based networking solutions can make packet processing faster, avoid latency expenses,
and also do a better job of load balancing than Cilium and Katran suggest for the cloud-native environment. Such tools
use EBPF to work around traditional user space processing inefficiencies to give high-performance networking the
scalable, low-latency solutions they require.

EBPF provides added networking and some superpower in cloud-native security. Solutions like firewalls and intrusion
detection systems cannot scale to the dynamic world. EBPF-based solutions are empowered for real-time monitoring
and enforcing the security policy at the kernel level with the precious grain level of network traffic and system behavior.
Falco, Tetragon, and Tracee are examples of how EBPF can offer security observability and anomaly detection with
performance benefits, not conventional security mechanisms. The research also notes that deploying EBPF in
Kubernetes infrastructures is practical and points out the importance of best practices for integration. With Kubernetes
establishing itself as the leading distribution for containerized applications, EBPF provides significant benefits, whether
used to enforce network policy, micro-segmentation, or zero-trust security models. This paper presents real-world
deployment strategies for Kubernetes admins and DevOps teams to use EBPF while guaranteeing scalability and
reliability.

By comparing EBPF security frameworks, it is found that EBPF-based tools have a greater ability to detect and respond
to threats at the kernel level at a deeper level. EBPF can monitor system calls and behavior of applications at a finer-
grained layer than traditional security frameworks and thus can find malicious activities faster and more precisely.
Using EBPF frameworks for workloads in the cloud is an extremely flexible and adaptable way to secure cloud-native
environments where services and workloads are highly dynamic. EBPF is a revolutionary technology for high-
performance networking and security in the cloud native space. Being able to run within kernel minimizes overhead
with deep insights into system behavior, which makes such a tool an important component for cloud infrastructure
optimization for any organization. The future of EBPF appears bright, especially if increased scalability and
performance, along with the advent of AI and edge computing, among other emerging technologies, become a reality.
More research on EBPF capabilities and wider adoption in modern cloud architectures is still required as it scales up
with the challenges of scaling cloud performance, security, and observability.

References

[1] Aich, R. (2021). Efficient audit data collection for linux (Doctoral dissertation, Doctoral dissertation, Doctoral
dissertation). Stony Brook University. Bao, AC (2023). Is docker secure for web server).

[2] Aich, R. (2021). Leveraging EBPF Techniques to Develop a Better Provenance System (Master's thesis, State
University of New York at Stony Brook).

[3] Boudi, A., Bagaa, M., Pöyhönen, P., Taleb, T., & Flinck, H. (2021). AI-based resource management in beyond 5G
cloud native environment. IEEE Network, 35(2), 128-135.

[4] Budigiri, G., Baumann, C., Mühlberg, J. T., Truyen, E., & Joosen, W. (2021, June). Network policies in kubernetes:
Performance evaluation and security analysis. In 2021 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit) (pp. 407-412). IEEE.

[5] Chavan, A. (2021). Eventual consistency vs. strong consistency: Making the right choice in microservices.
International Journal of Software and Applications, 14(3), 45-56. https://ijsra.net/content/eventual-
consistency-vs-strong-consistency-making-right-choice-microservices

[6] Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J. H., Metayer, D. L., Tirtea, R., & Schiffner, S. (2015). Privacy
and data protection by design-from policy to engineering. arXiv preprint arXiv:1501.03726.

International Journal of Science and Research Archive, 2025, 15(02), 207-225

224

[7] Demirpolat, A. (2021). An Intelligent Security Architecture for SDN-Assisted iot Networks (Doctoral dissertation,
Middle East Technical University (Turkey)).

[8] Deri, L., Sabella, S., Mainardi, S., Degano, P., & Zunino, R. (2019, February). Combining System Visibility and
Security Using EBPF. In ITASEC (Vol. 2315).

[9] Findlay, W. P. (2021). A Practical, Lightweight, and Flexible Confinement Framework in EBPF (Doctoral
dissertation, Carleton University).

[10] Fournier, G. (2020, June). Process level network security monitoring and enforcement with EBPF. In Symposium
sur la securite des technologies de l'information et des communications.

[11] Huang, Y. X., & Chou, J. (2020). Evaluations of network performance enhancement on cloud-native network
function. In Proceedings of the 2021 on Systems and Network Telemetry and Analytics (pp. 3-8).

[12] Izzillo, A., & Pellegrini, A. (2021). Graph and flow-based distributed detection and mitigation of botnet attacks
(Doctoral dissertation, MS thesis, Dept. Engineering in Computer Science, University of Rome, Roma, Italy).

[13] Karmakar, R., Chattopadhyay, S., & Chakraborty, S. (2017). Impact of IEEE 802.11 n/ac PHY/MAC high
throughput enhancements on transport and application protocols—A survey. IEEE Communications Surveys &
Tutorials, 19(4), 2050-2091.

[14] Kejariwal, A., & Allspaw, J. (2017). The art of capacity planning: scaling web resources in the cloud. " O'Reilly
Media, Inc.".

[15] Krahn, R., Dragoti, D., Gregor, F., Quoc, D. L., Schiavoni, V., Felber, P., ... & Fetzer, C. (2020, December). TEEMon: A
continuous performance monitoring framework for TEEs. In Proceedings of the 21st International Middleware
Conference (pp. 178-192).

[16] Kumar, A. (2019). The convergence of predictive analytics in driving business intelligence and enhancing DevOps
efficiency. International Journal of Computational Engineering and Management, 6(6), 118-142. Retrieved from
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-
BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf

[17] Loreti, P., Mayer, A., Lungaroni, P., Lombardo, F., Scarpitta, C., Sidoretti, G., ... & Filsfils, C. (2021). SRv6-PM: A
cloud-native architecture for performance monitoring of SRv6 networks. IEEE Transactions on Network and
Service Management, 18(1), 611-626.

[18] Marinos, I. (2018). Network and storage stack specialisation for performance (Doctoral dissertation).

[19] Miano, S., Risso, F., Bernal, M. V., Bertrone, M., & Lu, Y. (2021). A framework for EBPF-based network functions in
an era of microservices. IEEE Transactions on Network and Service Management, 18(1), 133-151.

[20] Neves, F., Vilaça, R., & Pereira, J. (2020, March). Black-box inter-application traffic monitoring for adaptive
container placement. In Proceedings of the 35th Annual ACM Symposium on Applied Computing (pp. 259-266).

[21] Nyati, S. (2018). Transforming telematics in fleet management: Innovations in asset tracking, efficiency, and
communication. International Journal of Science and Research (IJSR), 7(10), 1804-1810. Retrieved from
https://www.ijsr.net/getabstract.php?paperid=SR24203184230

[22] Qiu, Y., Liu, H., Anderson, T., Lin, Y., & Chen, A. (2021, June). Toward reconfigurable kernel datapaths with learned
optimizations. In Proceedings of the Workshop on Hot Topics in Operating Systems (pp. 175-182).

[23] Raju, R. K. (2017). Dynamic memory inference network for natural language inference. International Journal of
Science and Research (IJSR), 6(2). https://www.ijsr.net/archive/v6i2/SR24926091431.pdf

[24] Samuel, T., & Jessica, L. (2019). From Perimeter to Cloud: Innovative Approaches to Firewall and Cybersecurity
Integration. International Journal of Trend in Scientific Research and Development, 3(5), 2751-2759.

[25] Scholz, D., Raumer, D., Emmerich, P., Kurtz, A., Lesiak, K., & Carle, G. (2018, September). Performance implications
of packet filtering with linux EBPF. In 2018 30th International Teletraffic Congress (ITC 30) (Vol. 1, pp. 209-217).
IEEE.

[26] Sharma, S. D. (2017). Low-impact system performance analysis using hardware assisted tracing techniques.
Ecole Polytechnique, Montreal (Canada).

[27] Sheth, J., Ramanna, V., & Dezfouli, B. (2021, November). Flip: A framework for leveraging EBPF to augment wifi
access points and investigate network performance. In Proceedings of the 19th ACM International Symposium
on Mobility Management and Wireless Access (pp. 117-125).

International Journal of Science and Research Archive, 2025, 15(02), 207-225

225

[28] Shin, J. S., & Kim, J. (2021). SmartX multi-sec: a visibility-centric multi-tiered security framework for multi-site
cloud-native edge clusters. IEEE Access, 9, 134208-134222.

[29] Singh, V., Doshi, V., Dave, M., Desai, A., Agrawal, S., Shah, J., & Kanani, P. (2020). Answering Questions in Natural
Language about Images Using Deep Learning. In Futuristic Trends in Networks and Computing Technologies:
Second International Conference, FTNCT 2019, Chandigarh, India, November 22–23, 2019, Revised Selected
Papers 2 (pp. 358-370). Springer Singapore. https://link.springer.com/chapter/10.1007/978-981-15-4451-
4_28

[30] Singh, V., Oza, M., Vaghela, H., & Kanani, P. (2019, March). Auto-encoding progressive generative adversarial
networks for 3D multi object scenes. In 2019 International Conference of Artificial Intelligence and Information
Technology (ICAIIT) (pp. 481-485). IEEE. https://arxiv.org/pdf/1903.03477

[31] Tikkinen-Piri, C., Rohunen, A., & Markkula, J. (2018). EU General Data Protection Regulation: Changes and
implications for personal data collecting companies. Computer Law & Security Review, 34(1), 134-153.

[32] Vieira, M. A., Castanho, M. S., Pacífico, R. D., Santos, E. R., Júnior, E. P. C., & Vieira, L. F. (2020). Fast packet
processing with EBPF and xdp: Concepts, code, challenges, and applications. ACM Computing Surveys (CSUR),
53(1), 1-36.

[33] Weng, T., Yang, W., Yu, G., Chen, P., Cui, J., & Zhang, C. (2021, May). Kmon: An in-kernel transparent monitoring
system for microservice systems with EBPF. In 2021 IEEE/ACM International Workshop on Cloud Intelligence
(CloudIntelligence) (pp. 25-30). IEEE.

