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Abstract 

Distributed Denial of Service (DDoS) attacks are a very continuous and ever-increasing threat against the Software-
Defined Networking (SDN) environments as the centralized control plane serves as the most essential vulnerability 
point in these domains. This research provides a lightweight deep learning mechanism for the realtime detection of 
DDoS attacks, where DDoS detection is carried out on a programmable data plane, offloading from the SDN controller. 
A compact Convolutional Neural Network (CNN) model is deployed at the P4-enabled switches such that it could enable 
high-speed, low-latency detection that could be suitable for resource-scarce devices. The experiments were performed 
on standard datasets that showed detection accuracy of more than 99% with significantly reduced latencies and 
resource consumption in detection, proving beyond doubt its efficiency when compared with existing state-of-the-art 
mechanisms. This paper provides an all-inclusive discussion on the architecture, methodology, results, and future 
implications for SDN security deployments.  
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1. Introduction

The advent of Software-Defined Networking (SDN) has ushered in a new paradigm with respect to modern network 
infrastructures by adding centralized control, programmability, and dynamic policy enforcement. With this 
architectural shift come other vulnerabilities, however, and some of these make SDN implementations attractive prey 
for Distributed Denial of Service (DDoS) attack vectors. DDoS attacks lead to disruptions in network availability either 
by overwhelming the SDN controller with huge amounts of traffic or by saturating the data plane, causing massive 
degradation of services or complete outages. Most of the existing detection mechanisms are limited by the dependency 
that they place on the SDN controller. Such an issue would lead to bottleneck situations, which induce an increase in the 
vulnerability. It is therefore evident that there is an urgent need for scalable, real-time, and resource-efficient detection 
mechanisms capable of deployment at the network edge, especially since the DDoS attack vectors are achieving much 
higher scales and sophistication. Therefore, this research will address these issues through the development of 
lightweight deep learning solutions that can be deployed at the data plane for real-time detection and mitigation of 
DDoS attacks without taxing the controller. 

2. Literature Review

Distributed denial of service (DDoS) attacks toward Software-Defined Networking (SDN) environments entail the great 
need for intelligent real-time mitigation. In the past decade, many universities have conducted related studies and 
created industrial frameworks that tackle such threats by means of machine learning (ML), deep learning (DL), and 
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programmable data planes. However, while many of the proposed models showed promising levels of accuracy in 
simulated scenarios, they often lack resource efficiency, scalability, and real-time applicability in edge contexts and data 
planes.  

SVM with Genetic Optimization: Sahoo et al. designed an SVM detection model boosted by kernel principal component 
analysis (KPCA) and genetic algorithms for parameter tuning. While the approach betters detection accuracy and 
training time, it remains predominantly dependent on offline feature engineering and high processing power. Thus, it 
falls short of being more practical for in-network, real-time detection in SDN applications.  

Hybrid Feature Selection Techniques: Nandi et al. and Bagyalakshmi et al. adopted hybrid feature-selection techniques 
that combined Relief, Information Gain, and Chi-square methods aimed at improving classification models like Random 
Forests and Naive Bayes. Though yielding improved detection accuracy, such techniques could not scale very well and 
used static data preprocessing that is not feasible for fast and real-time analyses of dynamic SDN traffic. 

Detection of DDoS with Deep Neural Networks: Cil and colleagues have applied deep neural networks (DNN) on the 
CICDDoS2019 dataset, where they have attained nearly perfect accuracy, that is 99.99% binary detection and over 94% 
in multiclass classification. The problem is that this model requires heavy memory and computation power, which 
makes it not very suitable for lightweight edge deployment. 

LSTM and Hybrid DL Models: Shurman et al. have used long short-term memory (LSTM) networks in a hybrid intrusion 
detection system meant for IoT. The approach did very well in recognizing DrDoS attack traffic in the test datasets, but 
it had some issues regarding inference latency and was not flexible enough for deployment on P4-enabled data planes. 

Sentiment-Based Predictive Models: Alguliyev et al. worked on the social media sentiment analysis that used structured 
data with 14-layer CNNs and LSTM to forecast DDoS. However, the model was problematic in terms of reliability because 
it mainly relied on uploads and did not involve detection at the packet level or programmable infrastructure. 

Autoencoder-based Classification Models: A stacked autoencoder with multi-layer perceptron (SAE-MLP) was proposed 
by Ahuja et al. achieving an accuracy of 99.75% in SDN traffic classification. Similarly, Agarwal et al. presented a 
convolutional autoencoder that gave results of decent accuracy but remains untested in real-time deployments or 
against hardware constraints that are typical of SDN switches. 

GLD-Net and Topological Features: Guo et al. proposed GLD-Net, a deep learning model that combined traffic and 
topological features. It gave a detection accuracy of 99.3%, but it was not such an optimized model for lightweight or 
embedment network environments such as P4-enabled switches. 

LUCID for Lightweight Data Plane Detection: Doriguzzi-Corin et al. devised through LUCID one such detection model 
based on deep learning; LUCID was specifically built for programmable switches. Even though LUCID is light compared 
to other deep models, it translates into overhead during packet classification and lacks flexibility to integrate CNN-based 
detection pipelines.  

Programmable Plane Offloading: In this work, Lapolli presented an architecture for an intelligent distribution of 
detection logic from the SDN controller on P4 switches. Deep learning's absence from the framework limited its 
adaptability and threat classification capability. 

3. Problem Statement and Objectives 

3.1. Problem Statement 

How can real-time detection of DDoS attacks, and detection with high accuracy, be done in SDN and not overload the 
SDN controller or require computation resources?  

Objectives  

The goals, therefore, are as follows:  

• To design a lightweight deep learning model that can be deployed on programmable data planes  
• To achieve high detection accuracy and low latency DDoS detection in real time  
• To minimize resource usage in the deployment on resource-constrained devices  
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• To benchmark the designed approach against existing state-of-the-art ones  

4. Materials and Methods 

4.1. System Architecture 

The system being proposed has the following components: 

• Programmable Data Plane: This uses P4 for packet feature extraction and analysis on a network switch. 
• Lightweight CNN Model: This is a compact neural network whose design has been optimized to run under 

resource constraints. 
• Control Plane Interface: This handles model updating, configuration, and response to attack mitigation. 

 

Figure 1 System Architecture Diagram 
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The SDN-based real-time network-threat detection and mitigation framework proposed in this article in system 
architecture. It shows an interaction among various elements, including SDN controllers, programmable data plane P4-
enabled switches, different traffic flows that executive different types of network traffic, and those monitoring/logging 
systems that define control and data flows for detection, alerting, and mitigation. 

4.2. The Feature Extraction and Preprocessing 

• Packet Level Feature Extraction: The set of header features (source/destination IP, ports, protocol, TCP flags) 
is collected. 

• Flow Statistics Collection: The number of packets, bytes, and arrival times are counted per flow. 
• Entropy-Oriented Techniques: These include the calculation of the entropy of an IP distribution to uncover 

possible anomalies. 
• Dimension Reduction: This allows free processing while maintaining all salient features. 

4.3. Design of the Lightweight CNN Model 

• Architecture: One convolutional layer; with 64 filters, max pooling and fully connected layer; with a total of 
2,241 trainable parameters. 

• Optimization: It is designed for minimal memory and processing overhead. 
• Generalization: Preprocessing should not be dataset-dependent in order to increase model robustness. 

 

Figure 2 Model Architecture Diagram (CNN workflow) 
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Light-weight CNN architecture for traffic flow classification. The diagram represents the different layers of the model 
arranged in sequential order: input processing, traffic flow matrix construction, 1D convolution and max pooling layers, 
fully connected layer, and final output for attack or benign classification. 

4.4. Detection Process  

• Real-time Monitoring: The Programmable switch monitors network traffic on a continuous basis. 
• Observation Windows: The traffic is segmented into fixed-size windows for analysis. 
• Feature Computation: Statistical features are computed for every window. 
• Anomaly Detection: The CNN model classifies traffic as benign and DDoS attack traffic. 
• Alarm Generation: On detection, alerts and metadata are dispatched to the controller. 

 

Figure 3 Network Packet DDoS Detection Flow Diagram 

The workflow process sets forth in this figure describes each packet's journey from ingress, parsing, feature extraction, 
buffering, preprocessing and entropy calculation, lightweight CNN inference, and decision to output and alerting the 
SDN controller. 
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4.5. Experimental Setup 

• Datasets: CICIDS2017, CICDDoS2019 
• Environment: Mininet for SDN emulation, P4-enabled switches 
• Evaluation Metrics: Accuracy, Precision, Recall, F1-score, Detection Latency, Resource Utilization 

5. Results 

5.1. Detection Performances 

• The accuracy obtained through CIC-IDS2017 and CICIDS2019 datasets, that is, 99.2%. 
• Precision-DDoS detection: 98.7%.  
• Recall-DDoS Detection: 99.4%.  
• F1 Score-DDoS Detection: 99.05%.  

5.2. Processing Efficiency 

• Processing Time- 35 times faster than controller-based approaches. 
• Detection Latency-average 235 ms to support reactive measures. 
• Throughput-11 GB without degradation.  

5.3. Resource Utilization 

• Model Size: 2,200 Parameters, 45 KB Memory. 
• Peak Utilization: 12% on test platform, feasible for edge deployment.5.4 Comparison with Existing Approaches 

Table 1 Comparison of DDoS Detection Models 

Approach Accuracy Processing Time (ms) Parameters Memory Usage 

Our Model 99.2% 235 2,200 45 KB 

LUCID 98.9% 9,400 2,241 48 KB 

Deep Defense 99.1% 12,500 >1,000,000 4.2 MB 

Random Forest 99.97% 850 N/A 1.2 MB 

CNN-RF 98.4% 780 8,500 320 KB 

5.4. Parameter Impact 

• Time Window: Shorter windows (1s) yield faster detection with slight accuracy loss; longer windows (5s) 
improve accuracy but increase latency. 

• Packet Count: Increasing packet count beyond 100 per flow yields diminishing returns in accuracy. 

6. Discussion 

This proposed lightweight CNN model in programmed data planes provides high detection accuracy with reduced 
latency and little resource usage. It fits the needs of real-time DDoS detection in SDN because of the rapid response and 
its good scalability. With this offloading of detection to data planes, the solution improves resilience in SDN while 
boosting scalability, lowering risk for overload at controllers, and hence improving network availability. This compact 
model architecture is formed in such a way that the model is suitable for deployment in resource-constrained devices; 
at the same time, it has high accuracy and adaptability whereby it can be proved effective against emerging DDoS attack 
patterns. 

The merit of this system lies in its condition of independence from the SDN controller, thus, avoiding the bottlenecks 
and vulnerabilities that arise due to centralized detection. The use of programmable data planes enables in-network 
processing, thus, reducing detection latency, but also allowing faster mitigation. Yet, challenges remain in ensuring that 
the model generalized well regarding newer types of attacks, as well as performance maintenance in very dynamic 
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network environments. Future work will focus on model robustness improvement, hardware-specific optimizations, 
and enlarging the perspective of the approach to other threats.  

7. Conclusion 

It is shown in the research that scaled-down models like deep learning could be efficiently deployed with programmable 
data planes for on-time real-time detection of DDoS attacks at SDN environments. The suggested CNN-based approach 
is highly accurate but operates with minimal consumption of resources within low latency, thus making it comfortable 
for the practical implementation on edge devices. With this transfer, the solution brings resilience and scalability to SDN 
while furnishing a robust defense against DDoS attacks. 

7.1. Future Work 

7.1.1. Future research will focus on: 

• Improving model generalization to new and evolving attack types 
• Exploring hardware-specific optimizations for further resource reduction 
• Extending the approach to detect other network threats (e.g., data exfiltration, insider attacks) 
• Integrating the solution with broader SDN security frameworks and real-world deployments  
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