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Abstract 

In solving the problem of determining saturation classes, a number of important results were obtained by P.I. 
Romanovsky, I.P. Natanson, D.K. Fadeev, B.I. Kornblum, F. Kharshiladze, A. Turetsky, P.L. Butzer, R. Nessel, R.G. Mamedov 
and others. Using the Fourier transform method, Butzer [1-2], R.G. Mamedov [ 4] and others determined the order and 

saturation class of various singular integrals and linear operators in the space )1(),( − pLp .

The main results obtained in recent years by various authors on the solution of the saturation problem are described in 
detail in the monographs of R.G. Mamedov [ 4] and Butzer-Berenz [ 3]. 

In this paper, the order and class of saturation are determined 

 -singular integrals of general form in the metric of the space )( n

p
RL . The results obtained are applied to 

determining the order and saturation class of a specific singular integral. 
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1. Introduction
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for everyone ne 1 . 

Let us consider for each ne 1 ,  a singular integral of the form: 
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where 0 is any real number. 

In this paper, approximations of functions are considered. )()( n

p
RLxf    - singular integrals of general form: 
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where one-dimensional kernels satisfy conditions (1). 

Note that if )()( n

p
RLxf    p1 and the kernel )(, ee tK

e
satisfies conditions (1), then the singular integral (3) 

exists almost everywhere on nR and the following relations are valid: 
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Let us denote by F the set of all infinitely differentiable functions with compact support. 
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Proof: Let us consider the case  p1 . 

I According to (c) we have: 
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Comparison of (13) and (14) shows that the function 
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2. Conclusion 

In this paper, the order and class of saturation were determined.  -singular integral of general form in the 

metric of space 
)( n

p
RL

. The results obtained were applied to determine the order and saturation class of a specific 
Fejér singular integral 
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