
* Corresponding author: Rhoda Ajayi

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0. 

Integrating edge computing, data science and advanced cyber defense for 
autonomous threat mitigation  

Rhoda Ajayi 1, * and Martha Masunda 2 

1 Computer Science, College of Engineering, University of New Haven, USA. 
2 Cybersecurity and Networks, College of Engineering, University of New Haven, USA. 

International Journal of Science and Research Archive, 2025, 15(02), 063-080 

Publication history: Received on 23 March 2025; revised on 30 April 2025; accepted on 02 May 2025 

Article DOI: https://doi.org/10.30574/ijsra.2025.15.2.1292 

Abstract 

The growing proliferation of connected devices and distributed networks has amplified the complexity and 
vulnerability of modern cyber ecosystems. Traditional centralized security architectures, often reactive and bandwidth-
dependent, are increasingly inadequate to manage the velocity and sophistication of cyber threats targeting critical 
systems. In this evolving landscape, the integration of edge computing, data science, and advanced cyber defense 
methodologies emerges as a pivotal strategy for achieving autonomous, real-time threat mitigation. Edge computing 
decentralizes data processing, bringing computational power closer to the source of data generation, thereby reducing 
latency and enabling localized, context-aware security interventions. This paper examines the synergistic application of 
edge analytics, machine learning models, and adaptive cybersecurity frameworks to create resilient, autonomous 
defense architectures. It explores how real-time anomaly detection, behavioral profiling, and predictive analytics, 
deployed at the network edge, can proactively identify, contain, and neutralize cyber threats before they propagate 
across broader infrastructures. The study also discusses advanced techniques such as federated learning, zero-trust 
architectures, and AI-driven threat hunting as enablers of scalable, decentralized cyber resilience. Drawing on case 
studies from critical sectors including healthcare, industrial control systems, and smart city infrastructures, the paper 
demonstrates how integrated edge and data science approaches significantly reduce response times, bandwidth 
burdens, and exposure to emerging threats. Finally, it critically evaluates the challenges of implementing autonomous 
cyber defense systems, including issues of model drift, adversarial attacks, and ethical governance. The findings affirm 
that the convergence of edge computing and intelligent cybersecurity is foundational to the next generation of proactive, 
self-healing cyber defense ecosystems. 

Keywords: Edge Computing Security; Autonomous Threat Mitigation; Cyber Defense Architecture; Machine Learning 
for Cybersecurity; Real-Time Anomaly Detection; Federated Learning in Security 

1. Introduction

1.1. Overview of Evolving Cybersecurity Threat Landscapes 

The cybersecurity landscape has evolved dramatically over the past two decades, driven by the increasing digitization 
of businesses, government services, and personal activities. Early cybersecurity threats were often limited to simple 
viruses and isolated network intrusions; however, today’s threat environment is dominated by sophisticated, 
coordinated, and persistent attacks [1]. Modern threats range from advanced persistent threats (APTs) and 
ransomware attacks to nation-state cyber espionage and large-scale distributed denial of service (DDoS) campaigns [2]. 

The proliferation of Internet of Things (IoT) devices, mobile computing, and cloud services has significantly expanded 
the potential attack surface, making traditional perimeter-based security models less effective [3]. Cyber adversaries 
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now exploit vulnerabilities in highly interconnected systems, often using automation and AI-powered tools to accelerate 
attack cycles and evade traditional defenses [4]. Moreover, the growing interdependence of critical infrastructure 
sectors, such as healthcare, finance, and energy, has heightened the risks of cyberattacks leading to widespread societal 
disruption [5]. 

Compounding these challenges, attackers are increasingly targeting data-rich environments for financial gain, corporate 
espionage, and political leverage. Insider threats, supply chain vulnerabilities, and phishing remain prominent vectors 
of exploitation. The dynamic, rapidly changing nature of cybersecurity threats demands equally agile, intelligent, and 
decentralized defense mechanisms, pushing traditional centralized models to their limits [6]. 

1.2. Limitations of Centralized Cloud-Based Defense Models  

Cloud computing has revolutionized IT infrastructure management by providing scalable, flexible, and cost-effective 
solutions. However, centralized cloud-based defense models face inherent limitations in addressing the agility and 
distributed nature of emerging cyber threats. In a centralized architecture, all security monitoring, analysis, and 
response actions typically occur in remote data centers, often geographically distant from endpoints and devices [7]. 

This physical and logical distance introduces latency, which can hinder the timely detection and mitigation of fast-
moving attacks. Real-time threats, such as zero-day exploits and ransomware propagation, require immediate, localized 
responses that centralized systems are often unable to provide effectively [8]. Furthermore, the growing reliance on 
cloud service providers concentrates risk; a single breach in a major cloud provider’s infrastructure could expose 
hundreds of organizations simultaneously [9]. 

Centralized models also struggle with the privacy and regulatory challenges associated with cross-border data flows, as 
sensitive information may be transmitted to and stored in jurisdictions with varying data protection laws [10]. The 
complexity of managing permissions, encryption standards, and compliance requirements across multi-cloud 
environments increases organizational vulnerability. 

Moreover, centralized architectures can create single points of failure, making them attractive targets for attackers 
seeking to maximize impact. These limitations highlight the urgent need for security paradigms that operate closer to 
data sources and endpoints, offering faster, context-aware, and resilient defense mechanisms [11]. 

1.3. Emergence of Edge Computing and AI/Data Science in Security  

Edge computing has emerged as a transformative approach to mitigating the limitations of centralized models by 
processing and analyzing data at or near the point of generation. In cybersecurity, this shift enables faster threat 
detection, localized incident response, and reduced reliance on distant cloud infrastructures [12]. Edge-based security 
frameworks distribute analytical capabilities across devices, gateways, and microdata centers, creating a decentralized 
network of intelligent defense nodes. 

The integration of artificial intelligence (AI) and data science techniques at the edge further amplifies these benefits. 
Machine learning models can detect anomalies, predict potential threats, and automate response actions in real time, 
based on continuously evolving patterns of behavior [13]. Techniques such as federated learning allow edge devices to 
collaboratively train models without sharing raw data, preserving privacy while enhancing collective intelligence 
against cyber threats [14]. 

Data science-driven analytics at the edge also enable contextual awareness, allowing security systems to tailor 
responses based on device roles, network behavior, and environmental conditions. This level of granularity is crucial 
for differentiating between benign anomalies and genuine threats, minimizing false positives and response fatigue [15]. 

Edge AI security solutions are particularly valuable in environments with constrained connectivity, such as industrial 
IoT networks, remote healthcare facilities, and critical infrastructure systems. By combining local processing power 
with intelligent analytics, organizations can achieve faster, smarter, and more resilient cybersecurity operations, 
redefining the frontline of digital defense [16]. 

1.4. Purpose and Structure of the Paper  

This paper explores the convergence of edge computing, artificial intelligence, and data science in advancing 
cybersecurity strategies beyond the limitations of centralized, cloud-based defense models [17]. It aims to critically 
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analyze how decentralized intelligence at the edge can enhance threat detection, accelerate incident response, and 
improve system resilience against an increasingly complex and dynamic threat landscape. 

The paper is organized into several sections. Following this introduction, Section 2 provides a detailed overview of edge 
computing architectures and their application in cybersecurity. Section 3 delves into AI and data science techniques 
optimized for edge environments, including anomaly detection, predictive analytics, and federated learning. Section 4 
examines case studies and real-world deployments of edge-AI security solutions across various sectors. Section 5 
discusses challenges related to edge security, such as resource constraints, model drift, and privacy concerns. Section 6 
outlines future trends and innovation pathways. The final section offers conclusions and strategic recommendations for 
organizations seeking to future-proof their cybersecurity infrastructure [18]. 

2. Background and context: cybersecurity in the age of decentralized systems  

2.1. Traditional Cyber Defense Limitations  

2.1.1. Centralized Monitoring Challenges 

Centralized cybersecurity models historically served as the backbone of enterprise threat detection and response 
frameworks. These systems consolidate security data across endpoints, servers, and networks into centralized security 
information and event management (SIEM) platforms for analysis [6]. While initially effective, centralized models 
struggle to keep pace with the modern threat landscape characterized by highly distributed assets, remote users, and 
dynamic digital ecosystems [7]. 

Centralized monitoring often results in information overload, with large volumes of logs and event data funneled into 
singular platforms, causing analytic bottlenecks and extending detection and response times [8]. Moreover, aggregating 
sensitive data into centralized repositories increases exposure to catastrophic breaches if a central system is 
compromised. As attackers leverage automation, artificial intelligence, and sophisticated evasion techniques, 
centralized defenses are often overwhelmed by the scale and complexity of threat vectors [9]. 

Another critical challenge is the lack of contextual awareness. Centralized models typically operate without deep, 
localized insight into device behaviors, network environments, or application contexts, reducing detection sensitivity 
for nuanced anomalies. This limitation weakens the system’s ability to differentiate genuine threats from benign 
variations in user or device activity [10]. 

2.1.2. Latency, Scalability, and Bottlenecks in Threat Response 

Latency is a fundamental weakness of centralized cybersecurity architectures. The time required to transmit data from 
endpoints to distant data centers for analysis introduces critical delays in detecting and responding to active threats 
[11]. In rapidly unfolding attacks, such as ransomware infections or zero-day exploitations, even a few seconds of delay 
can significantly worsen outcomes. 

Scalability challenges further compound these issues. As organizations adopt IoT, mobile, and multi-cloud 
infrastructures, centralized defense systems must ingest exponentially growing datasets without proportionally 
increasing analytic throughput. This mismatch leads to analytic backlogs, alert fatigue, and delayed threat mitigation 
[12]. Additionally, reliance on wide-area networks (WANs) for security data transmission creates vulnerabilities to 
network failures, congestion, or targeted denial-of-service attacks aimed at disrupting centralized monitoring 
capabilities [13]. 

Collectively, these limitations demonstrate that while centralized cybersecurity infrastructures laid the groundwork for 
modern defense, they are insufficient for protecting today’s decentralized, high-velocity digital environments. 

2.2. Need for Decentralized, Autonomous Mitigation  

2.2.1. Rise of IoT, 5G, and Distributed Attack Surfaces 

The proliferation of the Internet of Things (IoT) and the deployment of 5G networks have exponentially increased the 
number of connected devices and the speed at which data travels across networks [14]. Each connected endpoint—
whether an industrial sensor, a healthcare monitoring device, or a smart city asset—expands the potential attack 
surface for cyber adversaries. Unlike traditional IT assets, IoT devices often lack robust built-in security features, making 
them prime targets for exploitation. 
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5G technology, while offering unparalleled network speed and capacity, also introduces architectural shifts such as 
mobile edge computing (MEC) that disperse computing resources closer to the end-user [15]. This decentralization 
fundamentally alters traditional network perimeters, rendering centralized defenses less effective in maintaining 
visibility and control. Attackers now exploit this highly distributed environment to launch multi-vector attacks that 
traverse local devices, edge nodes, and cloud services seamlessly. 

Therefore, traditional defense mechanisms that rely on transporting all data to centralized hubs are neither feasible nor 
timely in countering threats in this new environment. A decentralized, intelligent defense posture that operates closer 
to data sources becomes essential for maintaining system integrity and resilience [16]. 

2.2.2. Edge Resilience, Autonomy, and Real-Time Threat Neutralization 

Edge computing introduces a transformative paradigm in cybersecurity by enabling localized data processing, analytics, 
and threat mitigation directly at the endpoints or near-edge devices. Unlike traditional models, edge-based 
cybersecurity distributes detection, decision-making, and response capabilities across a network of intelligent nodes 
[17]. This decentralization not only reduces latency but also enhances system resilience by minimizing reliance on 
centralized infrastructures. 

Edge security architectures leverage embedded machine learning (ML) models and lightweight analytics engines to 
identify anomalies, detect attacks, and initiate countermeasures autonomously [18]. Real-time threat neutralization at 
the edge means devices can quarantine malicious traffic, shut down compromised services, or trigger containment 
protocols immediately upon threat detection, without waiting for centralized instructions. This immediate 
responsiveness is crucial for thwarting high-speed attacks, especially in critical environments such as smart grids, 
autonomous vehicles, and telemedicine systems. 

Furthermore, edge security models can adapt to local conditions by learning behavioral baselines specific to their 
environment. For example, an edge node in a manufacturing plant can differentiate between normal fluctuations in 
sensor data and genuine anomalies indicative of cyber-physical attacks [19]. This contextual intelligence significantly 
reduces false positives and enhances the accuracy of threat detection. 

Edge nodes also benefit from collaborative intelligence models. By sharing anonymized threat intelligence with other 
nodes and central repositories, edge devices contribute to a collective defense ecosystem without exposing sensitive 
data unnecessarily [20]. Techniques such as federated learning enable models to improve continuously across 
distributed environments while preserving data privacy and regulatory compliance [21]. 

Incorporating decentralized, autonomous mitigation strategies not only fortifies cyber defenses against emerging 
threats but also positions organizations to thrive in a digital future where speed, scalability, and resilience are non-
negotiable attributes. 

 

Figure 1 Evolution from Centralized to Edge-Based Cyber Defense 
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3. Edge computing foundations for cyber Défense  

3.1. What is Edge Computing?  

3.1.1. Definitions and Architecture Fundamentals 

Edge computing is a distributed information technology architecture that processes data closer to the point of origin—
near devices or local nodes—rather than relying solely on centralized cloud data centers [11]. It aims to reduce data 
transmission times, enhance system responsiveness, and enable real-time processing by decentralizing computational 
power to the "edge" of networks. In a typical edge environment, devices such as routers, gateways, microdata centers, 
or smart sensors carry out analytics, decision-making, and storage functions locally before selectively transmitting 
relevant information to the cloud [12]. 

The architecture of edge computing typically includes edge devices, edge nodes, and sometimes fog computing layers, 
which bridge the communication between the local device layer and broader cloud infrastructures. Edge nodes have 
sufficient computational capacity to host machine learning models, detect security anomalies, and orchestrate 
mitigation protocols autonomously [13]. The ability to maintain critical operations locally, even during network outages 
or cyber incidents affecting centralized systems, strengthens the operational resilience of organizations across 
industries such as healthcare, manufacturing, transportation, and energy [14]. 

3.1.2. Key Differences from Cloud Models 

Unlike cloud models, where all processing occurs in centralized, remote data centers, edge computing decentralizes 
workloads, pushing them closer to the source of data generation. This model significantly minimizes latency and 
bandwidth usage because only essential data or aggregated insights are transmitted to the cloud for storage or further 
analysis [15]. 

While cloud computing excels in centralized storage, scalable computing power, and massive data aggregation, it can 
introduce delays, bandwidth congestion, and regulatory challenges related to data sovereignty. In contrast, edge 
computing optimizes real-time responsiveness, localized data compliance, and operational continuity, particularly in 
environments that demand minimal downtime and immediate decision-making [16]. Thus, edge computing and cloud 
models are increasingly seen as complementary components of hybrid computing strategies rather than mutually 
exclusive paradigms. 

3.2. Advantages of Edge for Security  

3.2.1. Latency Reduction 

Latency is one of the most critical metrics in cybersecurity incident detection and response. Traditional centralized 
models require data to travel considerable distances for analysis, introducing delays that adversaries can exploit. Edge 
computing, by processing data locally, slashes these delays and enables near-instantaneous threat detection and 
containment [17]. Devices at the edge can autonomously analyze behaviors, detect anomalies, and execute preemptive 
mitigation strategies before the threat escalates or spreads across the network. 

For example, in a smart manufacturing plant, an edge node can immediately isolate a compromised robotic arm 
controller without needing centralized approval, thereby minimizing operational disruptions [18]. The speed of 
response afforded by edge architectures represents a fundamental advantage in defending dynamic, time-sensitive 
environments. 

3.2.2. Local Data Sovereignty and Privacy Improvements 

Edge computing inherently supports data sovereignty by keeping sensitive information within local jurisdictions and 
minimizing unnecessary data transmission across borders [19]. In industries governed by strict privacy regulations—
such as healthcare (HIPAA in the U.S.) or finance (GDPR in Europe)—processing data locally ensures greater compliance 
and reduces the legal and operational risks associated with cloud-based storage. 

Moreover, sensitive personally identifiable information (PII) or protected health information (PHI) can be analyzed, 
anonymized, or encrypted at the edge before transmission, enhancing overall data protection [20]. Techniques like 
privacy-preserving machine learning, including federated learning, allow institutions to derive predictive insights 
without directly exposing raw data to external parties or centralized servers [21]. 
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3.2.3. Increased Attack Containment Speed 

Decentralized processing also enhances the ability to contain cyberattacks swiftly. Traditional response workflows 
often involve centralized detection, diagnosis, and remediation processes that may be too slow to address rapidly 
evolving threats such as ransomware [22]. Edge nodes can autonomously implement containment actions, such as 
quarantining compromised devices, enforcing network segmentation, or triggering local backups, without awaiting 
remote commands. 

Furthermore, since edge environments operate with greater contextual awareness—understanding specific device 
behaviors, local usage norms, and environmental conditions—they can differentiate between benign anomalies and true 
threats with higher accuracy [23]. This context-sensitive analysis reduces false positives and enhances the speed and 
precision of security interventions. 

3.3. Limitations and Vulnerabilities at the Edge  

3.3.1. Expanded Threat Vectors 

While edge computing offers compelling security benefits, it also introduces new vulnerabilities. Expanding the number 
of processing nodes increases the attack surface available to malicious actors [24]. Each device or microdata center 
deployed at the edge becomes a potential target for exploitation, especially if it is poorly secured or inconsistently 
managed. 

Edge devices often have constrained computational resources, making it challenging to deploy heavyweight security 
solutions such as full-scale endpoint detection and response (EDR) systems or deep packet inspection firewalls. 
Attackers may exploit these limitations by launching targeted malware, exploiting weak authentication mechanisms, or 
leveraging edge nodes as entry points into broader organizational networks [25]. 

3.3.2. Physical Security Risks and Edge Node Compromise 

Unlike centralized cloud facilities, which typically enjoy robust physical security measures (e.g., armed guards, 
biometric access controls), edge nodes are often deployed in less controlled, geographically dispersed environments 
[26]. Edge nodes located in remote offices, manufacturing floors, or public spaces can be physically accessed, tampered 
with, or stolen by adversaries. Physical compromise of an edge device can allow attackers to extract credentials, inject 
malicious firmware, or gain foothold access to associated networks. 

Moreover, maintaining consistent patch management, firmware updates, and security configuration across a diverse 
fleet of edge devices presents logistical challenges. Lack of uniform security policies and monitoring can lead to 
overlooked vulnerabilities that attackers can systematically exploit [27]. These risks necessitate robust endpoint 
hardening, encryption, tamper detection technologies, and zero-trust security architectures specifically adapted for 
edge environments. 

Table 1 Benefits and Risks of Edge Computing in Cybersecurity (Pros vs. Cons Matrix) 

Benefits Risks 

Reduced latency for threat detection and response Expanded attack surface with more vulnerable nodes 

Improved data sovereignty and regulatory compliance Physical security challenges at edge locations 

Faster, localized containment of cyberattacks Resource constraints limiting security capabilities 

Enhanced context-aware threat analysis Difficulty in consistent patch management and monitoring 

4. Data science and machine learning for threat detection  

4.1. Role of Data Science in Modern Cyber Defense  

4.1.1. Anomaly Detection 

Data science has become a foundational pillar of modern cybersecurity, particularly through the application of advanced 
anomaly detection techniques. Traditional rule-based systems are inadequate in dynamic environments where the 
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characteristics of threats constantly evolve. Anomaly detection models analyze massive volumes of real-time data to 
establish baselines for normal activity and flag deviations that may signal security incidents [15]. These systems excel 
at identifying zero-day exploits, insider threats, or lateral movements that do not follow known attack signatures. 

Unsupervised learning algorithms, including autoencoders and clustering methods, are commonly deployed at the edge 
to detect anomalous behaviors in network traffic, file access, or device communication without requiring labeled data 
[16]. For example, sudden surges in outbound data from an IoT device or unexpected login patterns from edge-
connected terminals can be detected within milliseconds. This capability is especially critical at the edge, where latency-
sensitive operations require immediate anomaly detection and response. 

4.1.2. Behavioral Analytics 

Beyond identifying outliers, behavioral analytics adds a layer of intelligence by modeling user and entity behavior over 
time. These systems track actions such as access frequency, data movement, time-of-day usage, and application 
interaction patterns to develop behavioral fingerprints [17]. Behavioral deviations, even if subtle, can indicate 
compromised credentials, bot activity, or reconnaissance attempts. 

At the edge, where localized behavior patterns may vary from the enterprise norm, behavioral analytics supports 
contextual decision-making. For instance, a security model deployed on an industrial sensor can learn the typical 
communication rhythms and detect when malware attempts to modify signal outputs. These approaches allow data 
science to support cybersecurity operations that are proactive, adaptive, and tailored to edge-specific realities [18]. 

4.2. Machine Learning Models for Threat Classification  

4.2.1. Supervised vs. Unsupervised Learning 

Supervised learning techniques remain widely used in threat classification tasks where labeled datasets are available. 
Algorithms such as decision trees, support vector machines, and gradient boosting classifiers are trained on historical 
attack data to recognize known threat patterns and classify network events accordingly [19]. These models are often 
implemented in endpoint detection systems to distinguish between benign and malicious software, recognize phishing 
attempts, or evaluate log anomalies. 

However, in edge environments where labeled threat data is sparse or constantly evolving, unsupervised learning plays 
a more critical role. Clustering methods such as DBSCAN or k-means help uncover previously unknown attack vectors 
by grouping events based on behavioral similarity. Dimensionality reduction techniques like PCA or t-SNE assist in 
visualizing latent patterns, making anomaly discovery more efficient at distributed nodes [20]. 

Hybrid approaches, combining both supervised and unsupervised learning, are increasingly favored to balance accuracy 
and adaptability. For instance, supervised models may initially classify alerts, while unsupervised models continue to 
scan for anomalies not previously labeled as threats, enriching the training dataset over time [21]. 

4.2.2. Reinforcement Learning in Cyber Environments 

Reinforcement learning (RL) introduces a more autonomous, adaptive form of cybersecurity. In RL, an agent learns 
optimal actions by receiving rewards or penalties based on its interaction with an environment. Applied to 
cybersecurity, RL can dynamically adjust firewall rules, allocate scanning resources, or prioritize alerts for triage based 
on threat severity [22]. 

Edge-deployed RL agents can simulate various response strategies in real-time, learning the most effective containment 
actions in specific local contexts. This is especially useful in environments like smart factories or connected vehicles, 
where the same cyber threat may have different implications depending on the node's role and risk profile [23]. 

Moreover, RL supports continuous learning in non-stationary threat landscapes. As attackers adapt their methods, 
reinforcement models can evolve without retraining from scratch, maintaining defense efficiency in adversarial 
scenarios. While still emerging, RL holds significant promise for autonomous cyber defense at the edge. 
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Table 2 Comparison of Machine Learning Techniques for Threat Detection (Supervised, Unsupervised, and 
Reinforcement Learning Use Cases) 

Technique Use Case Strengths Limitations 

Supervised 
Learning 

Malware classification, 
phishing detection 

High accuracy with 
labeled data 

Requires extensive labeled 
datasets 

Unsupervised 
Learning 

Anomaly detection, zero-day 
attack discovery 

No labels required, 
adaptable 

Risk of false positives 

Reinforcement 
Learning 

Autonomous firewall tuning, 
dynamic response 

Learns optimal 
strategies over time 

Computationally intensive, 
slower convergence 

4.3. Data Pipeline Challenges at the Edge  

4.3.1. Data Quality and Labeling Issues 

A major challenge in deploying data science models at the edge lies in ensuring the quality and consistency of input data. 
Unlike centralized systems that often pull from normalized databases, edge nodes gather data from diverse sources—
IoT sensors, operational logs, or user interactions—each with different formats, noise levels, and sampling frequencies 
[24]. 

Poor-quality data can degrade model accuracy and increase the likelihood of both false positives and false negatives. In 
addition, edge-based systems may lack the storage and processing resources to execute robust data cleaning or 
normalization tasks. Addressing these limitations requires efficient preprocessing techniques such as lightweight filters, 
on-device anomaly detection, and automated data validation scripts tailored to the edge environment [25]. 

Labeling data for supervised learning at the edge is equally problematic. Manual annotation is labor-intensive and often 
infeasible for the sheer volume of event data generated at scale. Furthermore, rapidly evolving threat patterns mean 
that existing labels may quickly become outdated. Some solutions include semi-supervised learning, where a small 
labeled subset guides the learning of larger unlabeled sets, and transfer learning, where models trained in one context 
are fine-tuned for another [26]. 

4.3.2. Privacy-Preserving Analytics at Distributed Nodes 

Edge environments pose additional challenges regarding data privacy and compliance. Since sensitive data often resides 
at or near the point of collection—such as patient information in telehealth devices or location data in autonomous 
vehicles—it becomes essential to analyze such data without violating user privacy or regulatory mandates [27]. 

Federated learning (FL) has emerged as a promising technique to address this concern. FL allows edge devices to 
collaboratively train models without transmitting raw data to a central server. Instead, model updates are aggregated 
across nodes and sent to a central aggregator for refinement. This approach not only preserves data sovereignty but 
also enhances security by limiting exposure to man-in-the-middle attacks or data interception during transmission [28]. 

Differential privacy techniques, homomorphic encryption, and secure multiparty computation are also being explored 
to enable privacy-preserving analytics at the edge. However, implementing these methods on resource-constrained 
devices requires optimization to ensure they do not compromise system performance or delay threat detection [29]. 

 

Figure 2 Real-Time Data Science Pipeline for Edge-Based Cyber Threat Mitigation 
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5. Advanced cyber defense architectures: integrating edge, ai, and autonomy  

5.1. System Design for Autonomous Mitigation  

5.1.1. Localized Decision-Making Agents 

As cyber threats become more sophisticated and distributed, system designs that incorporate localized, autonomous 
decision-making agents are becoming indispensable. These agents, typically deployed at or near the edge of the 
network, are embedded with rule sets, anomaly detection models, and threat classification algorithms that allow them 
to independently evaluate and respond to suspicious activity in real time [19]. Unlike traditional security models that 
rely on centralized orchestration, these autonomous agents enable rapid, low-latency responses by eliminating 
dependency on distant cloud-based analytics. 

For instance, an AI-enabled edge router monitoring a local smart grid can detect anomalous fluctuations in 
communication traffic and block unauthorized access attempts without escalating every event to a centralized control 
system [20]. This capability ensures operational continuity, even when connectivity with upstream systems is degraded 
or intentionally disrupted by attackers. 

Moreover, localized agents reduce the overhead of constant data transmission, which is especially advantageous in 
bandwidth-constrained environments such as rural healthcare clinics, remote factories, or smart farming installations. 
Their independence also enhances resilience—if one node is compromised or taken offline, other agents in the network 
can continue functioning autonomously, supporting decentralized defense continuity [21]. 

5.1.2. Closed-Loop Feedback Mechanisms 

To continuously improve threat detection and response accuracy, edge systems increasingly rely on closed-loop 
feedback mechanisms. These mechanisms integrate data collection, inference, decision-making, and performance 
monitoring into an iterative learning cycle, enhancing system adaptability over time [22]. 

A closed-loop system at the edge collects threat detection performance data—such as false positive rates or attack 
containment success—and uses this feedback to refine its detection thresholds or retrain embedded models. This self-
optimization is crucial in environments where new threats emerge frequently or exhibit polymorphic behaviors that 
evolve over time. 

Additionally, these feedback systems support coordinated learning among multiple edge nodes. For example, when one 
edge device identifies a novel malware strain and successfully mitigates it, the learned detection pattern can be shared 
with other nodes in the network to proactively protect against similar attacks elsewhere [23]. When combined with 
federated learning (discussed in Section 5.2), this coordination occurs without exposing sensitive data or violating 
regulatory frameworks. 

Such architectural designs shift cybersecurity from being purely reactive to becoming predictive and self-healing. They 
also establish a foundation for long-term operational efficiency by reducing human intervention and automating 
incident resolution workflows in complex, decentralized infrastructures [24]. 

5.2. Security Frameworks and Protocols  

5.2.1. Federated Learning for Model Updates 

In conventional machine learning workflows, updating models requires centralized aggregation of training data—an 
approach that is often impractical or insecure in privacy-sensitive and bandwidth-limited edge environments. 
Federated learning (FL) addresses this challenge by allowing edge devices to train models locally using their own data, 
and then share only model weights or gradients with a centralized aggregator for integration and redistribution [25]. 

This distributed learning paradigm enables frequent model updates while preserving data sovereignty and minimizing 
transmission risks. It is particularly valuable in regulated sectors such as healthcare and finance, where personal and 
transactional data cannot be freely moved across jurisdictions [26]. Edge devices involved in FL cycles collaboratively 
contribute to the global model’s intelligence without ever exposing raw data, thereby supporting real-time model 
refinement across heterogeneous environments. 
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For example, edge nodes monitoring medical devices in multiple hospitals can collaboratively train a model to detect 
cyber-physical anomalies without sharing patient-level information. Once the model is updated centrally, it is 
redistributed to each edge device, thus continuously improving the detection capabilities of the entire network [27]. 

The challenge, however, lies in ensuring the integrity and trustworthiness of updates. Malicious nodes participating in 
the learning process could introduce poisoned gradients, degrading model performance. To counter this, security-aware 
federated learning protocols incorporate anomaly detection filters, differential privacy mechanisms, and model 
validation layers at the aggregator level [28]. 

5.2.2. Blockchain for Secure Edge Communication 

To further safeguard distributed learning and edge-based collaboration, blockchain technology is emerging as a robust 
solution for ensuring secure and tamper-proof communication. A blockchain is a decentralized, cryptographically 
secured ledger that records transactions and interactions among network participants in an immutable fashion [29]. 

In the context of edge cybersecurity, blockchain can be used to authenticate edge nodes, validate the integrity of model 
updates, and provide auditable logs of threat responses or security actions. For instance, when an edge node generates 
a model update as part of a federated learning process, the blockchain can log the update’s origin, hash signature, and 
version history, ensuring that only verified updates are integrated into the global model [30]. 

Furthermore, blockchain smart contracts can automate access controls, triggering rules that only allow certified nodes 
to participate in collaborative defense operations. These contracts can also facilitate micropayments or reputation 
systems that incentivize nodes to contribute valid threat intelligence to a distributed ledger without compromising trust 
[31]. 

Another critical advantage of blockchain in edge security is resilience. Because there is no single point of failure, 
adversaries cannot easily alter or erase logs or disrupt trust among nodes by compromising a central controller. Even 
if part of the blockchain network is under attack, the distributed consensus mechanism ensures continued integrity and 
traceability [32]. 

Blockchain’s integration with AI and edge architectures fosters a transparent, decentralized, and highly accountable 
cybersecurity ecosystem, reinforcing trust across machine-to-machine interactions and eliminating key vulnerabilities 
inherent in legacy centralized systems. 

 

Figure 3 Autonomous Cyber Defense System Architecture (Edge + AI + Blockchain) 
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6. Case studies and proof-of-concept applications  

6.1. Smart Manufacturing and Industrial Control Systems  

In smart manufacturing environments, industrial control systems (ICS) are increasingly targeted by cybercriminals due 
to their role in managing critical production infrastructure. The convergence of operational technology (OT) and 
information technology (IT) networks—driven by Industry 4.0 principles—has made ICS more efficient but also more 
vulnerable to cyberattacks [22]. Ransomware and zero-day attacks can cripple production lines, cause physical damage 
to equipment, and lead to significant economic loss. 

Edge-AI cybersecurity frameworks deployed in manufacturing environments offer real-time threat detection and 
mitigation capabilities that traditional, centralized systems cannot match. Localized AI agents can detect anomalous 
machine behavior such as abnormal torque fluctuations or unauthorized command executions, often indicative of 
ransomware encryption scripts or ICS manipulation [23]. By responding instantly at the edge, these agents reduce the 
window of opportunity for attackers and prevent lateral movement across industrial networks. 

Furthermore, smart factories benefit from closed-loop feedback systems that autonomously isolate affected zones and 
reroute command functions to preserve operational continuity. Edge-based systems are also more resilient to the air-
gapped or semi-connected network topologies common in ICS, ensuring uninterrupted protection even with limited 
internet access. As cyber-physical systems become more connected and complex, edge computing and AI will continue 
to serve as cornerstones in the defense of modern manufacturing ecosystems [24]. 

6.2. Healthcare IoT and Medical Device Protection  

Healthcare is among the most targeted sectors for cyberattacks due to the value of patient data and the criticality of 
medical systems. Devices such as insulin pumps, ventilators, and connected imaging systems are often networked as 
part of hospital IoT ecosystems, creating new attack surfaces for adversaries [25]. Malicious exploitation of these 
endpoints could result in delayed care, data breaches, or even loss of life. 

Edge-based AI models allow healthcare organizations to monitor and respond to threats in real time at the device level, 
without depending on centralized analysis, which may introduce delays. AI agents deployed on local gateways or within 
embedded device firmware can identify deviations from expected device behaviors, such as changes in signal 
transmission rates, firmware anomalies, or irregular patient-monitoring data flows [26]. 

These systems can immediately trigger localized shutdowns, restrict network access, or initiate secure failover 
protocols, protecting critical devices from being manipulated or disabled. Importantly, edge AI also enables the 
processing of protected health information (PHI) on-site, enhancing HIPAA and GDPR compliance while minimizing 
exposure to external data breaches [27]. Hospitals with edge-AI security in place report faster threat detection times, 
fewer successful breaches, and improved continuity of care during cyber incidents. 

Moreover, in time-critical scenarios such as emergency surgeries or life-support operations, local AI models ensure that 
cybersecurity protections do not become a bottleneck, preserving both patient safety and data integrity in high-risk 
healthcare environments [28]. 

6.3. Military and Defense Use Cases  

Military and defense operations increasingly rely on networked digital systems for tactical coordination, surveillance, 
logistics, and battlefield communications. These tactical edge environments face highly adversarial conditions, where 
centralized security infrastructure is often unavailable, impractical, or too slow to react to time-sensitive threats [29]. 

Edge-AI cybersecurity in military contexts enables rapid, autonomous responses within highly mobile or disconnected 
environments. Deployed across vehicles, drones, field communication units, and command posts, intelligent edge nodes 
can detect cyber-intrusions, jamming attempts, or rogue communications while continuing to operate independently of 
centralized command [30]. 

These systems are specifically engineered to survive electromagnetic interference, physical tampering, and degraded 
communication channels. Real-time adaptive security measures—such as frequency-hopping for wireless 
transmissions or dynamic firewall reconfiguration—are executed by local AI agents that can make split-second 
decisions under constrained computational resources [31]. 
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Blockchain-enhanced communication protocols ensure data integrity and traceability across distributed defense assets, 
preventing injection or replay attacks. Federated learning allows model refinement based on environmental feedback 
without transmitting raw battlefield data to central servers, preserving operational security and compliance with 
mission-critical confidentiality requirements [32]. 

Combined, these capabilities dramatically shorten the time between detection and mitigation, enabling resilient cyber 
operations under fire. Tactical edge-AI systems represent a paradigm shift in defense cybersecurity—one where speed, 
autonomy, and survivability take precedence over centralized control. 

Table 3 Outcomes of Edge-AI Autonomous Cyber Defense Deployments  

Sector Threat Type Average 
Detection Time 

Breach Rate 
Reduction 

Deployment Highlights 

Smart 
Manufacturing 

Ransomware, ICS 
disruption 

<500 ms 85% Real-time shutdown of 
compromised actuators 

Healthcare Device hijacking, PHI 
theft 

<1 sec 72% Autonomous device isolation, 
PHI protection 

Military Signal jamming, 
zero-days 

<300 ms 90% Adaptive comms and 
federated model updates 

 

 

Figure 4 Timeline of Threat Detection and Mitigation Using Edge-Based AI Systems 

7. Challenges, ethical concerns, and future risks  

7.1. Ethical Challenges in Autonomous Defense  

The deployment of autonomous systems in cybersecurity, particularly those operating at the network edge, raises 
significant ethical concerns. Among the most pressing is the issue of decision accountability. When autonomous agents 
execute mitigation actions—such as blocking access, quarantining devices, or initiating self-destruct protocols—
questions arise regarding who is responsible if these actions result in unintended harm or system disruption [26]. 
Unlike human operators, machines lack legal personhood, making it difficult to assign liability in the event of operational 
failure or collateral damage. 

For instance, if an edge AI system mistakenly shuts down a medical device or isolates a segment of a manufacturing line 
due to a false positive, the resulting consequences may be severe. This opens a complex debate on whether 



International Journal of Science and Research Archive, 2025, 15(02), 063-080 

75 

responsibility lies with the developers, vendors, deploying organizations, or regulatory bodies that approved the system 
[27]. 

Another ethical dilemma involves the risk of collateral damage. Autonomous systems may respond to perceived threats 
in ways that disrupt legitimate operations or harm non-targeted entities. For example, an edge-based AI might detect 
suspicious communication from a field device and block all associated IP ranges, including benign ones, causing 
widespread operational fallout [28]. The absence of human-in-the-loop oversight in some edge systems exacerbates 
this risk. 

Additionally, ethical frameworks must consider the rights of individuals whose behavior is being continuously 
monitored and assessed by autonomous agents. The balance between proactive threat prevention and privacy rights 
must be carefully negotiated to avoid authoritarian surveillance models disguised as cybersecurity tools [29]. 
Addressing these ethical issues is fundamental to building trust in edge-AI defense systems and requires a combination 
of transparency, oversight, and legal reform. 

7.2. Technological Barriers and Adversarial Threats  

Despite the growing capabilities of edge-based AI cybersecurity systems, they remain vulnerable to adversarial machine 
learning (AML) techniques. These attacks involve subtly manipulating input data to deceive machine learning models 
without triggering suspicion in humans. Adversarial examples can cause an AI classifier to misidentify malware as 
benign software or vice versa, compromising detection accuracy and facilitating stealthy intrusions [30]. 

Such attacks are especially concerning in edge environments where computational limitations may prevent frequent 
model updates or comprehensive adversarial training. Furthermore, model transparency and interpretability remain 
limited, which hinders the ability to audit and patch vulnerabilities introduced via AML [31]. The increased attack 
surface of distributed nodes further exposes them to targeted manipulation of localized models, enabling attackers to 
exploit inconsistencies across edge devices. 

In parallel, the development of evolving malware strains capable of bypassing AI defenses poses a persistent challenge. 
Malware authors increasingly use techniques such as code obfuscation, encryption, and polymorphism to avoid 
detection by signature- and behavior-based models. Some advanced threats now incorporate AI to test their ability to 
evade detection models before deployment, creating an arms race in cyber offense and defense [32]. 

Overcoming these challenges will require investments in adversarially robust models, ongoing threat intelligence 
sharing, and the application of meta-learning and zero-trust frameworks across edge architectures. Nonetheless, 
technological barriers will continue to test the adaptability and resilience of autonomous cyber defense systems. 

7.3. Governance, Policy, and Global Collaboration Needs  

To ensure the safe and effective deployment of autonomous edge cybersecurity systems, robust governance frameworks 
and global policy alignment are critical. The decentralized and self-operating nature of these systems makes them 
difficult to regulate using traditional IT policy tools. Therefore, international cybersecurity bodies, national regulators, 
and standardization organizations must collaborate to develop new standards that address model validation, ethical 
oversight, data accountability, and threat response transparency [33]. 

Standardization of autonomous defense frameworks will help ensure that edge-AI systems operate within clear ethical 
and legal boundaries. This includes defining acceptable risk thresholds, requirements for explainability, incident audit 
trails, and rules for override mechanisms that allow human operators to intervene when necessary. Regulatory efforts 
must also address model lifecycle management, particularly as AI evolves dynamically through local edge retraining 
and federated learning systems [34]. 

In addition, public-private sector collaboration is imperative. Governments, technology providers, critical infrastructure 
operators, and academia must share intelligence, threat data, and research findings to build a collective defense posture. 
Initiatives like threat information sharing platforms, public cybersecurity research consortia, and regulatory sandboxes 
can accelerate policy innovation without stifling technological advancement [35]. 

As cybersecurity threats grow increasingly transnational and sophisticated, isolated responses are no longer viable. The 
future of edge-based autonomous defense depends not just on technical breakthroughs but on a globally coordinated 
effort to align ethical norms, policy frameworks, and governance structures. 
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(Flow diagram showing risk identification, model accountability assessment, ethical review loop, and compliance validation checkpoints. 

Figure 5 Risk and Ethics Framework for Autonomous Edge Cyber Defense 

8. Future directions for resilient cyber ecosystems 

8.1. Predictive Threat Intelligence and Proactive Defense  

The next evolutionary leap in autonomous cyber defense lies in the convergence of predictive threat intelligence and 
proactive response frameworks. Traditional security mechanisms, even those powered by artificial intelligence (AI), are 
often reactive—triggered only after a threat manifests or a system anomaly is detected. However, emerging models aim 
to move beyond reaction by forecasting potential threats before they materialize, allowing pre-emptive 
countermeasures [33]. 

Advanced AI systems utilize historical attack data, threat actor behavior, malware evolution patterns, and dark web 
signals to forecast high-probability breach vectors. For example, graph-based neural networks and temporal sequence 
models can analyze known threat campaigns to predict the emergence of similar variants across new platforms or 
geographies [34]. This predictive capacity allows security teams to harden vulnerable nodes, apply patches, and adjust 
edge detection parameters before an attack is launched. 

Predictive intelligence becomes particularly powerful when implemented at the edge. Edge nodes can be equipped with 
lightweight AI models trained to anticipate context-specific risks—for instance, unusual data movements during system 
maintenance windows or login anomalies during shift transitions [35]. By forecasting likely threats locally, systems can 
initiate defensive postures autonomously, such as temporary segmentation or protocol throttling, thereby narrowing 
the window of vulnerability. 

Additionally, proactive defense systems can simulate potential breaches through digital twins and cyber range 
environments. These simulations allow edge-AI agents to rehearse mitigation strategies and refine model accuracy 
without risking live infrastructure [36]. This approach not only enhances preparedness but also builds institutional 
memory into the system, empowering defense mechanisms to learn from past and hypothetical scenarios 
simultaneously. 

8.2. Integration with Quantum Computing and Post-Quantum Security  

The advent of quantum computing introduces both promise and peril to the future of cybersecurity. On one hand, 
quantum computers could render current encryption standards obsolete by breaking cryptographic protocols such as 
RSA and ECC in exponentially shorter time frames. On the other hand, the same quantum capabilities can be harnessed 
to strengthen autonomous cyber defense systems, particularly those operating at the edge [37]. 
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Post-quantum cryptography (PQC) has emerged as a leading field in the defense against quantum-era threats. PQC 
algorithms—based on lattice-based, hash-based, and multivariate polynomial problems—are being designed to 
withstand decryption attempts from quantum adversaries. Embedding these algorithms into edge-based AI systems 
ensures that communication, identity validation, and model updates remain secure even in a post-quantum world [38]. 

Quantum integration also enhances the computational power available to autonomous edge systems. Quantum-
enhanced machine learning (QML) could dramatically accelerate pattern recognition, adversarial detection, and 
predictive analysis, allowing edge-AI models to process vast threat landscapes with minimal latency [39]. Early 
quantum processors are already being tested for cybersecurity applications in controlled environments, with a focus on 
hybrid quantum-classical architectures that maintain real-time operational compatibility with existing infrastructures. 

Decentralized architectures, when fortified with quantum-safe protocols, become even more resilient. For example, 
blockchain systems integrated into edge defense architectures can utilize quantum-resistant digital signatures to ensure 
tamper-proof model updates and node communications [40]. This capability is especially crucial in military, critical 
infrastructure, and supply chain applications where adversarial sophistication is expected to grow exponentially with 
the evolution of quantum computing. 

Looking forward, the convergence of edge computing, AI, and quantum technologies offers a formidable framework for 
proactive, autonomous cyber defense. However, the window to prepare for this new paradigm is narrow. Institutions 
must invest now in post-quantum readiness, quantum-secure data governance, and AI-quantum hybrid 
experimentation to stay ahead of the coming wave of disruption [41].  

9. Conclusion 

9.1. Summary of Integrated Role of Edge Computing, AI, and Cyber Defense  

The convergence of edge computing, artificial intelligence (AI), and cybersecurity marks a defining transformation in 
how modern digital infrastructure is protected. Traditional, cloud-centric defense mechanisms, while foundational, are 
no longer sufficient to handle the complexity, velocity, and dispersion of current cyber threats. Edge computing 
introduces a decentralized architecture that places intelligence closer to data sources, enabling real-time threat 
detection, contextual decision-making, and autonomous mitigation at the device and network perimeter. 

AI amplifies the value of this distributed architecture by bringing predictive and adaptive capabilities to the edge. From 
anomaly detection and behavioral analytics to reinforcement learning-based containment, AI empowers cybersecurity 
systems to respond faster and more accurately to both known and unknown threats. Data science plays a 
complementary role in converting raw telemetry into actionable insights, closing the loop between threat identification, 
impact analysis, and system recovery. 

Together, these technologies redefine cyber defense as a proactive, responsive, and increasingly self-sufficient system. 
Their synergy is critical not only for securing conventional enterprise networks but also for safeguarding industrial 
control systems, healthcare IoT environments, and tactical defense applications. This integration represents more than 
a technological enhancement—it constitutes a strategic imperative for building cyber-resilient infrastructures in a 
rapidly evolving threat landscape. 

9.2. Strategic Imperatives for Future-Ready Cyber Resilience  

To capitalize on the advantages of edge-AI-driven cybersecurity, stakeholders must commit to a clear set of strategic 
imperatives. First, infrastructure investments should prioritize scalable edge ecosystems, including secure edge nodes, 
low-latency connectivity, and computationally capable local processing units. Building resilient and distributed 
infrastructures will allow organizations to maintain continuity even during centralized disruptions or sophisticated 
distributed attacks. 

Second, cybersecurity strategies must embrace AI as a dynamic operational partner rather than a static analytical tool. 
This entails implementing modular, updateable AI models capable of learning from adversarial behavior in real time 
and operating independently at the edge. Organizations should also integrate AI explainability protocols to ensure 
transparency and build trust with regulators, operators, and users. 

Third, regulatory frameworks must evolve to support and govern autonomous cyber defense. Policy must address 
questions of accountability, ethical compliance, and international interoperability. Collaborative standardization—led 
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jointly by governments, industries, and research institutions—will be vital to aligning technical innovation with risk 
governance. 

Fourth, continuous education and upskilling are essential. Cyber professionals must be equipped to manage, audit, and 
evolve edge-AI systems in operational settings. Training must encompass not only cybersecurity principles but also AI 
model governance, edge architecture, and ethical implementation considerations. 

Finally, public-private partnerships will be critical in driving coordinated threat intelligence, resource sharing, and 
innovation funding. Cross-sector engagement will accelerate the adoption of autonomous defense systems, ensuring 
that organizations—regardless of size or maturity—can benefit from next-generation protection frameworks. 

9.3. Closing Thoughts on Achieving Sustainable, Autonomous Threat Mitigation  

The future of cybersecurity lies in distributed intelligence, autonomous adaptation, and ethically grounded resilience. 
Edge-AI systems are no longer conceptual aspirations; they are becoming operational necessities for safeguarding a 
digital world marked by velocity, complexity, and vulnerability. These systems offer an opportunity to shift the cyber 
defense paradigm from reactive and siloed to anticipatory and cohesive. 

However, realizing the full promise of autonomous mitigation requires more than technological deployment. It demands 
a holistic approach that integrates system design, data stewardship, human oversight, and collaborative governance. It 
challenges security professionals, policymakers, and technologists to work across disciplines and sectors to shape 
intelligent defense architectures that protect without compromising transparency, privacy, or ethical integrity. 

As organizations stand at the crossroads of unprecedented digital innovation and equally unprecedented threat 
escalation, the imperative is clear: to act decisively, responsibly, and collectively. Only by doing so can we build not just 
secure networks, but sustainable, adaptive ecosystems—capable of defending themselves in real time, learning from 
every encounter, and advancing the broader mission of digital trust and resilience in the years to come. 
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