
 Corresponding author: Diwakar Krishnakumar

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Deploying a scalable PostgreSQL database on a Kubernetes cluster in a data center: A
path toward serverless operations

Diwakar Krishnakumar *

Envestnet | Yodlee, USA.

World Journal of Advanced Research and Reviews, 2025, 26(01), 1021-1027

Publication history: Received on 26 February 2025; revised on 06 April 2025; accepted on 08 April 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.1.1091

Abstract

This article presents a comprehensive framework for deploying and managing PostgreSQL databases on Kubernetes
clusters within data center environments, focusing on achieving serverless-like operations. The article examines the
essential components, architectural considerations, and operational strategies required for successful implementation.
It addresses key challenges in infrastructure planning, component integration, security implementation, and
operational management while highlighting the importance of maintaining high availability and performance
optimization. The article explores the intersection of traditional database management with modern container
orchestration, providing insights into storage design, networking configuration, and monitoring solutions. Through
detailed analysis of deployment workflows and operational best practices, the article demonstrates how organizations
can leverage existing data center investments while adopting cloud-native principles. The article encompasses security
considerations, scaling strategies, and disaster recovery mechanisms, offering a balanced approach to achieving both
operational efficiency and system reliability. Special attention is given to the evolution towards serverless capabilities
within on-premises environments, presenting practical solutions for organizations seeking to modernize their database
infrastructure while maintaining control over their data and resources.

Keywords: PostgreSQL Containerization; Kubernetes Orchestration; Data Center Infrastructure; High Availability
Database Systems; Serverless Architecture

1. Introduction

PostgreSQL's emergence as a robust open-source relational database system, coupled with Kubernetes' container
orchestration capabilities, represents a significant shift in modern database infrastructure [1]. Organizations are
increasingly exploring ways to leverage these technologies within their existing data center investments, seeking a
balance between cloud-native capabilities and on-premises control.

While cloud-based solutions like AWS Aurora have gained prominence, many enterprises find compelling reasons to
deploy PostgreSQL within their data centers using Kubernetes. This approach allows organizations to maintain direct
control over their infrastructure while still achieving cloud-like scalability and resilience. The integration of PostgreSQL
with Kubernetes in a data center environment creates a powerful paradigm that combines the maturity of traditional
database systems with modern container orchestration [1].

The business case for deploying PostgreSQL on Kubernetes in a data center environment is particularly compelling
when considering factors beyond pure technical capabilities. Organizations must evaluate their infrastructure strategy
through multiple lenses, including cost optimization, regulatory compliance, and operational control. Research has

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.1.1091
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.1.1091&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(01), 1021-1027

1022

shown that data center deployment models can be optimized for both operational efficiency and environmental
sustainability [2], making them an attractive option for organizations with existing data center investments.

Key advantages of this approach include cost-effectiveness through the utilization of existing hardware investments,
enhanced data sovereignty capabilities for regulatory compliance, and granular control over database configurations.
Furthermore, this deployment model enables organizations to implement custom scaling solutions that align with their
specific workload patterns while maintaining full control over their data infrastructure [2].

The evolution toward serverless-like operations in data center environments represents a natural progression in
database infrastructure management. By leveraging Kubernetes' orchestration capabilities, organizations can achieve
many of the benefits typically associated with cloud-native solutions while maintaining their data within their own
infrastructure [1]. This approach provides a pathway toward modern, efficient database operations while addressing
the common concerns of cost, control, and compliance.

2. Technical Prerequisites

The successful deployment of PostgreSQL on Kubernetes in a data center environment demands a carefully planned
infrastructure foundation. Based on established e-Science infrastructure principles [3], organizations must ensure their
data center capabilities align with both the immediate requirements and potential future scaling needs. This includes
sufficient computational resources, network capacity, and storage infrastructure to support a production-grade
database deployment.

A robust infrastructure framework requires multiple core components. The fundamental requirements include a
properly configured Kubernetes cluster with sufficient worker nodes, high-performance storage systems capable of
supporting database workloads, and network infrastructure that can handle both internal cluster communication and
external client connections. These components must be designed with redundancy and fault tolerance in mind to ensure
continuous operation of the database system [3].

The tooling requirements for this deployment extend beyond basic infrastructure. Organizations need to establish a
comprehensive toolkit that includes the Kubernetes command-line interface (kubectl), container runtime
environments, monitoring solutions, and backup tools. Additionally, familiarity with infrastructure-as-code practices
and configuration management tools becomes crucial for maintaining consistency across the deployment.

Storage and networking foundations represent critical aspects of the infrastructure. The storage system must support
features such as dynamic provisioning, snapshot capabilities, and performance characteristics suitable for database
workloads [3]. Network architecture should be designed to minimize latency, provide adequate bandwidth, and support
features like load balancing and service discovery within the Kubernetes cluster.

Security requirements must be addressed at multiple layers of the infrastructure stack. This includes network security
with properly configured firewalls and access controls, storage encryption at rest and in transit, and robust
authentication and authorization mechanisms for both database and Kubernetes cluster access [3]. The security
architecture should align with industry best practices while accommodating organization-specific compliance
requirements.

Table 1 Core Infrastructure Requirements for PostgreSQL on Kubernetes Deployment [3]

Component Category Minimum Requirements Recommended Features

Compute Resources Multiple worker nodes Redundant CPU/Memory allocation

Storage System Basic persistent storage Dynamic provisioning, Snapshots

Network Infrastructure Basic connectivity Load balancing, Service discovery

Security Framework Basic authentication Multi-layer security, Encryption

Tooling kubectl CLI Infrastructure-as-code tools

Monitoring Basic health checks Comprehensive monitoring solution

World Journal of Advanced Research and Reviews, 2025, 26(01), 1021-1027

1023

3. Implementation Architecture & Components

The architecture for PostgreSQL deployment on Kubernetes relies heavily on fundamental Kubernetes components that
form the backbone of the system. As outlined in Core Kubernetes [4], these essential components include StatefulSets
for maintaining database state, Services for network connectivity, ConfigMaps for configuration management, and
Secrets for sensitive data handling. The interplay between these components creates a robust foundation for database
operations.

Storage and persistence design represents a critical architectural consideration that extends beyond basic Kubernetes
functionality. The implementation must utilize Persistent Volumes (PVs) and Persistent Volume Claims (PVCs) to ensure
data durability. This design should account for various storage classes that match the performance requirements of
PostgreSQL, incorporating features like dynamic provisioning and storage snapshots to support backup and recovery
operations.

The high availability framework builds upon Kubernetes' native orchestration capabilities to ensure continuous
database operations. This includes implementing primary-replica configurations, automated failover mechanisms, and
load balancing strategies. The framework must address both planned maintenance scenarios and unexpected failures,
incorporating monitoring and health check mechanisms to maintain system reliability.

Configuration management approaches must be systematically designed to handle both static and dynamic
configuration needs. This includes leveraging Kubernetes ConfigMaps for managing PostgreSQL configuration files,
implementing strategies for dynamic configuration updates, and ensuring proper version control of configuration
changes. The approach should support both initial deployment and ongoing maintenance requirements while
maintaining consistency across the cluster.

Security architecture implementation follows a defense-in-depth strategy, incorporating multiple layers of security
controls. This includes network policies for traffic control, role-based access control (RBAC) for authentication and
authorization, encryption for data at rest and in transit, and secure communication channels between components. The
security design must also account for audit logging and compliance monitoring to meet regulatory requirements.

Figure 1 PostgreSQL on Kubernetes: Architecture Component Performance Matrix" (Comprehensive assessment of
architectural components and their operational metrics [4]

3.1. Deployment Workflow

A systematic approach to deploying PostgreSQL on Kubernetes begins with careful cluster preparation. This phase
involves ensuring the Kubernetes cluster meets all prerequisites and is properly configured for database workloads.
Following established network configuration principles [5], the cluster must be set up with appropriate network
policies, quality of service parameters, and security configurations to support database operations.

World Journal of Advanced Research and Reviews, 2025, 26(01), 1021-1027

1024

Storage and network configuration represents a critical foundation for the deployment. The implementation must
establish persistent storage volumes with appropriate performance characteristics and configure network paths that
ensure reliable communication between all components. This includes setting up storage classes, defining persistent
volume claims, and implementing network policies that align with both SDN and legacy network requirements [5].

The database deployment process follows a structured sequence of steps, beginning with the creation of necessary
Kubernetes resources. This includes deploying StatefulSets, configuring init containers for any required setup tasks, and
establishing proper resource limits and requests. The deployment workflow must be designed to maintain data
consistency and minimize downtime during updates or modifications.

Service exposure in modern deployments has evolved significantly with the advancement of cloud-native architectures
[6]. The process involves creating appropriate Kubernetes Services, configuring ingress controllers if needed, and
establishing load balancing mechanisms. This step must consider both internal cluster access and external client
connectivity requirements while maintaining security and performance objectives.

Replication setup follows the initial deployment, implementing PostgreSQL's native replication capabilities within the
Kubernetes environment. This includes configuring primary and replica instances, establishing streaming replication,
and implementing automated failover mechanisms. The replication architecture must be designed to maintain data
consistency while supporting high availability requirements.

Monitoring implementation completes the deployment workflow, establishing comprehensive observability into the
database system. This includes deploying monitoring tools, configuring metrics collection, and setting up alerting
mechanisms. The monitoring architecture should provide insights into both PostgreSQL performance metrics and
Kubernetes cluster health [6], enabling proactive management of the entire system.

Table 2 PostgreSQL on Kubernetes Deployment Phase Matrix [5, 6]

Deployment Phase Key Activities Dependencies Priority Level

Cluster Preparation Network policies, QoS setup Infrastructure readiness High

Storage Configuration PV/PVC setup, Storage classes Storage system Critical

Database Deployment StatefulSets, Init containers Cluster & Storage config Critical

Service Exposure Load balancing, Ingress setup Network configuration High

Replication Setup Primary-replica config, Failover Database deployment High

Monitoring Implementation Metrics collection, Alerting All previous phases Medium

4. Operational Management

Performance monitoring forms the cornerstone of effective PostgreSQL operations on Kubernetes. Drawing from
established monitoring principles in integrated services networks [7], organizations must implement comprehensive
monitoring strategies that encompass both database-specific metrics and container orchestration health indicators.
This includes tracking query performance, resource utilization, connection pools, and transaction rates while
maintaining historical data for trend analysis.

Scaling strategies in this environment must balance responsiveness with resource efficiency. The implementation
should leverage Kubernetes' Horizontal Pod Autoscaling (HPA) capabilities for read replicas while maintaining careful
control over the primary database instance. This approach requires defining appropriate scaling thresholds,
implementing proper load testing procedures, and ensuring that scaling operations don't impact database consistency
or performance.

Resource optimization represents an ongoing operational challenge that requires continuous attention. Organizations
must implement strategies for efficient resource allocation, including proper sizing of CPU and memory requests,
optimizing storage I/O patterns, and managing connection pools effectively. This involves regular analysis of resource
usage patterns and adjustment of resource limits and requests based on actual workload characteristics.

World Journal of Advanced Research and Reviews, 2025, 26(01), 1021-1027

1025

Backup and recovery procedures must be robust and well-tested to ensure data durability. The implementation should
include automated backup schedules, point-in-time recovery capabilities, and clear procedures for different types of
recovery scenarios. These procedures must be integrated with Kubernetes' native capabilities while ensuring minimal
impact on production workloads.

High availability maintenance requires a proactive approach to system health and stability. This includes implementing
automated health checks, failover testing procedures, and regular maintenance windows for system updates. The high
availability strategy should encompass both planned maintenance activities and unexpected failure scenarios, with
clear procedures for each type of event.

Serverless-like capabilities can be achieved through careful orchestration of Kubernetes features. This includes
implementing auto-scaling policies, optimizing resource allocation for variable workloads, and establishing efficient
connection pooling mechanisms. While true serverless operation may not be achievable, organizations can implement
many serverless characteristics through proper configuration and automation.

Figure 2 Stacked column chart comparing Efficiency Rate, Automation Level, and Risk Factor [7]

5. Use Cases & Best Practices

Ideal deployment scenarios for PostgreSQL on Kubernetes in data centers typically align with organizations that have
established infrastructure investments and specific regulatory requirements. These scenarios include enterprises with
predictable workloads, organizations requiring fine-grained control over their data infrastructure, and companies with
existing Kubernetes expertise. The deployment model particularly suits industries like finance, healthcare, and
government sectors where data sovereignty is paramount.

Drawing parallels from energy management systems' challenges [8], the limitations and challenges of PostgreSQL on
Kubernetes deployments manifest in several key areas. These include complexity in managing stateful applications,
potential performance overhead from containerization, challenges in achieving true high availability, and the need for
specialized expertise in both PostgreSQL and Kubernetes. Organizations must carefully evaluate these limitations
against their operational capabilities and requirements.

Alternative approaches must be considered as part of a comprehensive decision-making process. These might include
cloud-native database services, traditional bare-metal deployments, or hybrid solutions that combine multiple
approaches. Each alternative presents its own trade-offs in terms of cost, control, complexity, and operational overhead.
The selection process should involve careful evaluation of these factors against organizational requirements.

The decision framework for PostgreSQL on Kubernetes deployment should incorporate multiple factors: technical
requirements, operational capabilities, cost considerations, and compliance needs. This framework should guide
organizations through key decision points such as storage architecture selection, high availability requirements, and
scaling strategies. Regular review and adjustment of these decisions ensure continued alignment with organizational
goals.

World Journal of Advanced Research and Reviews, 2025, 26(01), 1021-1027

1026

Future considerations must account for the evolving landscape of container orchestration and database technologies
[8]. This includes emerging trends in automation, advances in storage technologies, improvements in container-native
databases, and the growing adoption of GitOps practices. Organizations should maintain flexibility in their architecture
to accommodate these evolving technologies and practices.

6. Scaling strategies

Scaling strategies in this environment must balance responsiveness with resource efficiency. The implementation
should leverage both horizontal and vertical scaling approaches to optimize database performance and resource
utilization.

For horizontal scaling, Kubernetes' Horizontal Pod Autoscaling (HPA) capabilities can be employed for read replicas
while maintaining careful control over the primary database instance. This approach requires defining appropriate
scaling thresholds, implementing proper load testing procedures, and ensuring that scaling operations don't impact
database consistency or performance.

Complementing horizontal approaches, vertical scaling strategies play a crucial role in PostgreSQL performance
optimization on Kubernetes. As demonstrated in recent advancements in serverless PostgreSQL implementations [9],
vertical scaling allows for dynamic adjustment of resources allocated to individual database instances based on
workload demands. This includes implementing Kubernetes Vertical Pod Autoscaler (VPA) for automated resource
recommendations and adjustments, configuring resource quotas that allow for elastic expansion during peak loads, and
implementing PostgreSQL parameter tuning that adapts to changing resource allocations.

Research on serverless PostgreSQL deployments has shown that effective vertical scaling can significantly improve
resource utilization by enabling fine-grained resource allocation that matches actual workload patterns [9]. This
approach is particularly valuable for workloads with variable resource requirements, as it allows the database to expand
its resource footprint during peak processing periods and contract during idle times. Vertical scaling complements
horizontal strategies by addressing scenarios where adding more replicas is less effective than increasing the capacity
of existing instances.

Implementation considerations for vertical scaling include:

• Configuring Kubernetes QoS classes appropriately to support dynamic resource allocation
• Implementing careful monitoring of resource utilization patterns to inform scaling decisions
• Establishing boundaries for maximum resource consumption to prevent resource contention
• Developing strategies for handling PostgreSQL's response to dynamic resource changes
• Integrating vertical scaling decisions with connection pooling configurations

The combination of horizontal and vertical scaling creates a comprehensive scaling framework that can adapt to diverse
workload characteristics while maintaining optimal resource utilization.

7. Conclusion

The deployment of PostgreSQL on Kubernetes in data center environments represents a significant evolution in
database infrastructure management, offering organizations a pathway to modern operations while leveraging existing
investments. Through careful consideration of technical prerequisites, architectural components, and operational
strategies, organizations can successfully implement a robust and scalable database solution that combines the benefits
of traditional infrastructure with cloud-native capabilities. The presented framework demonstrates that while true
serverless operation may not be fully achievable in on-premises environments, organizations can implement many
serverless characteristics through proper orchestration and automation. The success of such implementations relies
heavily on comprehensive planning, appropriate tooling selection, and the establishment of robust operational
procedures. As the landscape of container orchestration and database technologies continues to evolve, organizations
must maintain flexibility in their architectural approaches while ensuring alignment with business objectives,
compliance requirements, and performance needs. The article underscores the importance of balancing technical
capabilities with operational realities, highlighting how proper implementation can lead to enhanced data sovereignty,
cost optimization, and operational control while providing a foundation for future technological adoption.

World Journal of Advanced Research and Reviews, 2025, 26(01), 1021-1027

1027

References

[1] Hitjethva and Anish Singh Walia, "How to Deploy Postgres to Kubernetes Cluster," DigitalOcean Community
Tutorial. 2024. https://www.digitalocean.com/community/tutorials/how-to-deploy-postgres-to-kubernetes-
cluster

[2] Lijun Xu et al., "A virtual data center deployment model based on green cloud computing," 2014 IEEE/ACIS 13th
International Conference on Computer and Information Science (ICIS). https://sci-
hub.se/https://ieeexplore.ieee.org/abstract/document/6912140

[3] Ron Perrott, "Infrastructure, requirements and applications for e-Science," 2002 14th Symposium on Computer
Architecture and High Performance Computing. https://www.computer.org/csdl/proceedings-article/sbac-
pad/2002/17720003/12OmNvDqsFc

[4] Christopher Love and Jay Vyas, "Core Kubernetes," Manning Publications, 2022.
https://ieeexplore.ieee.org/book/10280528

[5] Christian Sieber et al., "Network configuration with quality of service abstractions for SDN and legacy networks,"
2015 IFIP/IEEE International Symposium on Integrated Network Management (IM). https://sci-
hub.se/https://ieeexplore.ieee.org/document/7140446

[6] Malgorzata Svensson et al., "Service exposure and automated life-cycle management: The digitalization of society
and the growing popularity of 5G-enabled use cases," IEEE Xplore. 2021.
https://ieeexplore.ieee.org/document/9904697/citations#citations

[7] JOHN G. GRUBER, "Performance monitoring and surveillance in integrated services networks," IEEE Journal on
Selected Areas in Communications, 1988. https://sci-hub.se/https://ieeexplore.ieee.org/document/7870

[8] Md Shahin Alam and Seyed Ali Arefifar, "Energy Management in Power Distribution Systems: Review,
Classification, Limitations and Challenges," IEEE Journals & Magazine. 2019.
https://ieeexplore.ieee.org/document/8756139

[9] Neon, "1 Year of Autoscaling Postgres at Neon: Lessons in Implementing Serverless PostgreSQL," Neon Tech Blog,
2023. https://neon.tech/blog/1-year-of-autoscaling-postgres-at-neon

https://www.digitalocean.com/community/users/asinghwalia
https://www.digitalocean.com/community/tutorials/how-to-deploy-postgres-to-kubernetes-cluster
https://www.digitalocean.com/community/tutorials/how-to-deploy-postgres-to-kubernetes-cluster
https://sci-hub.se/https:/ieeexplore.ieee.org/abstract/document/6912140
https://sci-hub.se/https:/ieeexplore.ieee.org/abstract/document/6912140
https://www.computer.org/csdl/search/default?type=author&givenName=Ron&surname=Perrott
https://www.computer.org/csdl/proceedings-article/sbac-pad/2002/17720003/12OmNvDqsFc
https://www.computer.org/csdl/proceedings-article/sbac-pad/2002/17720003/12OmNvDqsFc
https://ieeexplore.ieee.org/book/10280528
https://sci-hub.se/https:/ieeexplore.ieee.org/document/7140446
https://sci-hub.se/https:/ieeexplore.ieee.org/document/7140446
https://ieeexplore.ieee.org/document/9904697/citations#citations
https://sci-hub.se/https:/ieeexplore.ieee.org/document/7870
https://ieeexplore.ieee.org/author/37086487970
https://ieeexplore.ieee.org/author/37832264400
https://ieeexplore.ieee.org/document/8756139
https://neon.tech/blog/1-year-of-autoscaling-postgres-at-neon
https://neon.tech/blog/1-year-of-autoscaling-postgres-at-neon

