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Abstract

Skin cancer is a major cause of death, making early detection essential. This study presents LEVit, an explainable and
class-balanced deep learning framework designed for multiclass skin lesion classification. LEVit combines a hybrid
Vision Transformer (ViT) with a Convolutional Neural Network (CNN). We evaluated LEVit on two benchmark
dermoscopic datasets: HAM 10000, which consists of 10,015 images across 7 classes, and ISIC 2019, with 25,331 images
spanning 8 classes. Both datasets have notable class imbalances. To address this issue, we applied advanced
augmentation techniques to oversample minority classes, ensuring a uniform class distribution and enhancing the
model's ability to generalize. LEVit effectively captures local lesion textures and global spatial relationships through its
integrated self-attention and convolutional modules. We compared its performance against four state-of-the-art
models: NASNet, SqueezeNet, SE-Net, and Xception, across four metrics: F1 Score, Specificity, Matthews Correlation
Coefficient (MCC), and Precision-Recall Area Under the Curve (PR AUC). LEVit achieved outstanding results, with a F1
Score 0f 98.11% and a PR AUC of 98.57% on the ISIC 2019 dataset, and a F1 Score of 96.11% and a PR AUC of 96.62%
on HAM10000. For interpretability, we utilized Grad-CAM to generate class-specific heatmaps, which highlight the key
areas of lesions that influence the model's predictions. This work demonstrates that balanced training and a hybrid
architecture can enhance both classification accuracy and interpretability in skin cancer diagnostics, effectively
addressing the limitations of existing models and paving the way for reliable clinical applications.

Keywords: Skin cancer; Vision transformer; Deep learning; Explainable Al (XAI); Medical imaging.

1. Introduction

Skin cancer is one of the most common types of cancer worldwide, with more than 3 million non-melanoma cases and
over 132,000 melanoma cases diagnosed each year, according to the World Health Organization [1]. In the United States,
one in five people is expected to develop skin cancer by the age of 70, and more than two people die from skin cancer
every hour [2], [3]. Melanoma, though less common, is the deadliest form of skin cancer due to its aggressive nature and
high potential for metastasis. Early diagnosis is vital, as the five-year survival rate for localized melanoma is 90% [4].
However, this rate drops significantly to 27% once the cancer has spread to distant organs. However, early detection
remains challenging due to subtle differences in the appearance of skin lesions and a heavy reliance on the expertise of
dermatologists. Dermoscopic imaging has greatly improved dermatological diagnostics by providing magnified, high-
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resolution views of skin lesions. However, the manual interpretation of these images is labor-intensive, highly
subjective, and prone to variability between different observers [5], especially in low-resource clinical settings.

The development of automated skin lesion classification systems can significantly assist dermatologists by offering
consistent, fast, and accurate second opinions. Among the various methods, CNNs has shown tremendous success in
medical image analysis [6]. CNN-based architectures such as Xception, NASNet, and SE-Net have been employed for
various image classification tasks and have demonstrated promising results [7]. Nonetheless, these models primarily
extract local features, which limits their capacity to capture long-range dependencies or holistic lesion context. In
contrast, ViTs offer superior global modeling ability but often require large-scale datasets and are computationally
expensive, making them less practical in medical scenarios with limited labeled data.

One of the most significant challenges in dermoscopic image classification is class imbalance. Datasets like HAM10000
and ISIC 2019 contain a large number of nevus (NV) images, while rare classes such as vascular lesions (VASC) or
dermatofibromas (DF) are underrepresented [8]. This imbalance biases models toward majority classes, reducing
diagnostic sensitivity for clinically important minority classes. Additionally, most existing works provide limited model
interpretability, which is critical in clinical settings where decisions must be explainable and verifiable [9].

To address these challenges, we propose a hybrid transformer-convolutional architecture based on the LEVit model.
LEVit combines the convolutional inductive bias of CNNs with the global attention capabilities of ViTs. It enables the
model to extract fine-grained local patterns and global contextual dependencies, making it highly suitable for skin lesion
classification. Furthermore, we apply extensive data augmentation techniques to balance the dataset distributions and
enhance generalization. We also employ Grad-CAM for explainability, offering pixel-level heatmaps that highlight the
lesion regions most influential to the model’s prediction, which supports clinical validation and trust. The key
contributions are as follows:

e Addressed the class imbalance problem in dermoscopic datasets using advanced augmentation techniques,
leading to improved model generalization across underrepresented classes.

e Proposed a novel skin cancer classification framework using the LEVit model that fuses convolutional and
attention-based feature extraction to enhance lesion representation.

o Performed comparative and statistical performance analysis across multiple state-of-the-art models,
demonstrating that the LEVit architecture achieves the highest scores on both HAM10000 and ISIC 2019
datasets.

e Integrated Grad-CAM-based explainability to visualize decision-making regions within lesions, enhancing
clinical interpretability and trust in the model's outputs.

The rest of the paper is organized as follows: Section 2 provides an overview of related work and the limitations of
existing skin lesion classification approaches. Section 3 describes the dataset characteristics, preprocessing techniques,
and the proposed LEVit-based methodology. Section 4 presents experimental results, performance benchmarks, and
statistical validation. Section 5 discusses the findings, implications, and outlines technical limitations and future
directions. Finally, Section 6 concludes the study and highlights the practical relevance of our approach in
dermatological diagnostics.

2. Related Works

In the past few years, transfer learning methods have become essential in numerous practical applications, covering
areas like healthcare [10], [11], education [12], and industrial automation [13], [14]. Skin disease classification has been
widely addressed using data-driven techniques that leverage both CNN and transformer architectures to capture local
and global features of dermoscopic images. Rezaee et al. [15] introduced a hybrid model combining CNN branches with
a transformer module via bi-directional feature fusion, achieving a 96.85% accuracy on the ISIC-2019 dataset, though
without an explicit explainability mechanism. Similarly, Ahmad et al. [16] integrated DeepLabv3+ for segmentation with
a ViT for classification, demonstrating impressive accuracies across multiple datasets; however, their work did not focus
on extensive augmentation to address dataset imbalances. Rezaee and Zadeh [17] further advanced the field by
proposing a bi-branch parallel framework that fused self-attention units and an optimized CNN backbone, which
improved feature extraction yet lacked integrated XAl tools.

Ensemble approaches such as that by Rahman et al. [7] have also been explored, where a weighted combination of
multiple CNNs boosted recall scores significantly, though these methods often treat the classification process as a “black-
box.” More recently, Yang et al. [18] proposed a novel ViT model that applied class rebalancing and patch-based
tokenization, achieving competitive performance with a 94.1% accuracy on HAM10000. Cai et al. [19] took a multimodal
approach by fusing image features with clinical metadata through a mutual attention block, thereby enhancing the
overall diagnostic accuracy.
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Despite these advancements, a common shortcoming persists while many models achieve high accuracy, few integrate
comprehensive data augmentation strategies to balance imbalanced datasets or incorporate explainability techniques.
In our work, we address this gap by employing a ViT architecture augmented with advanced data augmentation
methods to ensure dataset balance. Additionally, we embedded the Grad-CAM explainability tool into the pipeline,
providing visual insights into the network’s decision process. This integration not only enhances the transparency and
interpretability of the classification outcomes but also builds clinician trust in automated diagnostic systems.

3. Materials and Methods

Figure 1 illustrates the complete workflow of our study. It begins with dermoscopic images from the HAM10000 and
ISIC 2019 datasets, followed by image preprocessing (resizing and normalization), dataset balancing via augmentation
and oversampling, and training using multiple deep learning models including NASNet, SqueezeNet, SE-Net, Xception,
and the proposed LEVit. The performance is evaluated using metrics such as F1 Score, Specificity, MCC, PR AUC,
confusion matrix, and learning curves, culminating in a state-of-the-art comparative analysis. We also integrated with
Grad-CAM for improve diagnostic accuracy and model interpretability.

Figure 1 Overview of the proposed LEVit-based skin cancer classification framework

3.1. Data Description

ISIC 2019 dataset

Benige Keratons Derrnrdbooens Melapcess Vascsler Levion

Figure 2 Samples from HAM10000 and ISIC 2019 dataset and each class

This study utilizes two widely recognized image datasets: HAM10000[20] and ISIC 2019[21]. Sample images from each
of the both datasets are shown in Figure 2. The HAM10000 dataset contains 10,015 dermoscopic images covering seven
classes of skin lesions AKIEC, BCC, BKL, DF, MEL, NV, and VASC providing a diverse representation of pigmented skin
conditions. In contrast, the ISIC 2019 dataset comprises 25,331 images distributed across eight classes, including MEL,
MN, BCC, AK, BK, DF, VASC, and SCC. Both datasets present significant challenges due to inherent class imbalances and
high intra-class variability, underscoring the need for robust preprocessing and augmentation strategies to achieve
reliable classification performance. The ISIC 2019 dataset complements HAM10000 by providing a larger, more varied
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set of images, contributing to a comprehensive evaluation of our classification approach. Table 1 shows the class
distribution for each dataset, split into 80% for training, 5% for validation, and 15% for testing.

Table 1 Class distribution after dataset splitting for experimental datasets

HAM10000 Distribution
Class | Total | Train (80) | Validation (5) | Test (15)

AKIEC | 327 261 16 50
BCC 514 411 25 78
BKL 1099 | 879 54 166
DF 115 92 5 18
MEL 1113 | 890 55 168
NV 6705 | 5364 335 1006
VASC | 142 113 7 22

ISIC 2019 Distribution
Class | Total | Train (80) | Validation (5) | Test (15)

MEL 4522 | 3617 226 679
NV 12875 | 10300 643 1932
BCC 3323 | 2658 166 499
AK 867 693 43 131
BK 2624 | 2099 131 394
DF 239 191 11 37
VASC | 253 202 12 39
ScC 628 502 31 95

3.2. Data Preprocessing and Augmentation

Each dermoscopic image was resized to 224 x 224 pixels using bilinear interpolation to standardize input dimensions.
After resizing, pixel intensities were normalized using Equation 1, where yy and (3 are learnable parameters, and € is a
small constant to prevent division by zero. This normalization ensures each channel has zero mean and unit variance,
which accelerates and stabilizes ViT training.

Vi =V Xijk — Hi n

ijk =Y T —
Joi+e

To further enhance generalization and reduce overfitting, various data augmentation techniques were applied (Table

2). These augmentations introduced variability by simulating different orientations, lighting conditions, and geometric
distortions, enriching the training set and helping the model learn robust, discriminative features.

B, fori=1,.,H;k=1.,W;k=1,..C (1)
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Table 2 Data augmentation strategies for enhanced model performance in skin cancer detection

Augmentation Technique

Description

Parameter Settings

Rotation

Simulates varied orientations

+30° range; multiple rotations

Horizontal /Vertical Flip

Mimics mirror images

Flip probability = 0.5

Random Crop & | Captures different regions and scales Crop ratio: 80-100%; shift <
Translation 10%

Brightness & Contrast | Simulates different lighting and exposure | Factor range: 0.8-1.2

Adjust. conditions

Shear & Zoom

Alters lesion geometry and scale

Shear: 0.0-0.2; Zoom: 0.8-1.2

Sigmoid tuned

Correction

Intensity | Enhances features using non-linear pixel intensity

adjustment

Empirically
parameter

sigmoid

3.3. Data Balancing and Oversampling

To address the issue of class imbalance in the HAM10000 and ISIC 2019 datasets, we employed an oversampling
technique. Minority classes, such as DF and VASC, were underrepresented compared to the dominant classes like NV
and MN, which posed a risk of biased learning. We synthetically increased the sample count of the minority classes by
augmenting their images using the methods described in Table 3. This process raised the sample sizes to 6,705 for
HAM10000 and 12,875 for ISIC 2019. This balancing strategy ensured uniform representation across all class types,
reducing model bias and enhancing feature learning for the less frequent classes [22]. Once the datasets were balanced,
we divided them into training (80%), validation (5%), and testing (15%) subsets. When combined with the ViT and
Grad-CAM explainability, this pipeline significantly contributed to the reliability and high performance of the proposed
classification framework.

3.4. Experimental Models

In this study, we evaluated a set of state-of-the-art deep learning models alongside our proposed model, LEVit, to
benchmark and enhance skin cancer classification.

3.4.1. NASNet

Itis a CNN architecture discovered through neural architecture search. Its modular design—with repetitive normal and
reduction cells—allows NASNet to learn robust feature hierarchies with minimal human intervention. Its strong
performance on large-scale image recognition tasks [23], [24] makes it a valuable baseline for skin lesion analysis,
where subtle texture variations must be accurately captured.

Table 3 Balanced data distribution for both datasets via oversampling techniques

HAM10000 dataset balancing
Class | Actual | After Augmentation | Training | Validation | Testing
AKIEC | 327 6,705 5,364 335 1,006
BCC 514 6,705 5,364 335 1,006
BKL 1,099 | 6,705 5,364 335 1,006
DF 115 6,705 5,364 335 1,006
MEL 1,113 | 6,705 5,364 335 1,006
NV 6,705 | 6,705 5,364 335 1,006
VASC | 142 6,705 5,364 335 1,006
ISIC 2019 dataset balancing
MEL 4,522 | 12,875 10,300 | 644 1,931
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MN 12,875 | 12,875 10,300 644 1,931
AK 867 12,875 10,300 644 1,931
BCC 3,323 | 12,875 10,300 644 1,931
DF 239 12,875 10,300 644 1,931
VASC | 253 12,875 10,300 644 1,931
SCC 628 12,875 10,300 644 1,931
BK 2,624 | 12,875 10,300 644 1,931

3.4.2. SqueezeNet

SqueezeNet is celebrated for its lightweight architecture, leveraging “fire modules” that combine squeeze layers (using
1x1convolutions) with expand layers (using both 1x1 and 3x3 convolutions). This design dramatically reduces the
model’s parameter count while maintaining competitive accuracy [25]. SqueezeNet is particularly useful in clinical
contexts where computational resources may be limited, and rapid inference is needed.

3.4.3. Xception

Xception extends the idea of depthwise separable convolutions, decoupling spatial feature extraction from channel-wise
processing. This results in efficient architecture that minimizes redundancy while capturing fine-grained, discriminative
features [26]. Xception’s ability to delineate subtle differences in lesion morphology and texture is critical for
distinguishing between similar skin cancer types.

3.4.4. SE-Net

Squeeze-and-Excitation Networks introduces a channel attention mechanism that selectively emphasizes important
features. By performing a squeeze operation through global average pooling followed by an excitation step, SE-Net re-
calibrates the importance of each feature map. This targeted re-weighting is particularly beneficial in medical imaging,
where certain features—such as color and border irregularities—are more indicative of malignancy than others [27].

3.4.5. Proposed LEVit

Our proposed LEVit model integrates the strengths of ViTs with enhanced local feature extraction to address the
challenges of skin lesion variability. LEVit leverages self-attention mechanisms as shown in Figure 3, it captures both
global contextual relationships and fine-grained details, which is crucial for accurate skin cancer classification. The
model’s architecture is defined by a series of complex operations. The input image X € R?*W*Cjs divided into N non-
overlapping patches. Each patch x; is flattened and projected into an embedding shown in Equation 2. In Equation 3,
the output of the multi-head attention is passed through a position-wise feed-forward network which allows the model
to learn complex non-linear transformations of the features.

To ensure stable gradient flow and deeper network training, residual connections and layer normalization are applied
throughout (shown in Equations 4-5) allowing the model to efficiently combine initial features with their refined
representations. LEVit was chosen as our proposed model because its transformer-based self-attention mechanism
addresses the high intra-class variability present in medical images [28]. By explicitly modeling long-range
dependencies and capturing both global context and local details, LEVit provides superior discriminative power crucial
for challenging skin cancer classification tasks. Additionally, the integration of residual learning and normalization
schemes further stabilizes training, ensuring that the model generalizes well across diverse datasets [29].

zi = Linear(Flatten(xi)) +p, i=1,..,N, (2)
KT 3
Attention;, = Softmax (Qh—h) Vi, (3)
Jas
FFN(Z’) = GELU(Z’Wl + bl)WZ + bz, (4’)
z" = LayerNorm(z + FFN(Z’)), (5)
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Figure 3 Architecture of the proposed LEViT model

3.6. Evaluation Metrics

To thoroughly evaluate the performance of the proposed and baseline models for skin cancer classification, we used
four widely accepted evaluation metrics: F1 Score, Specificity, MCC, and PR AUC. The F1 Score is the harmonic mean of
precision and recall, and it balances false positives and false negatives. This balance is crucial in medical imaging, where
both types of errors can have serious consequences. Specificity measures the proportion of true negatives correctly
identified, which helps to minimize false positives and unnecessary clinical interventions. The MCC provides a balanced
evaluation by considering all components of the confusion matrix, making it a more dependable metric than accuracy
in scenarios with class imbalances. Lastly, the PR AUC illustrates the trade-off between precision and recall across
various thresholds, offering a more informative assessment than ROC AUC for imbalanced datasets. High values across
these metrics indicate a model’s robustness and its potential for clinical application. To ensure unbiased evaluation,
stratified K-fold cross-validation was employed, with K set to 10. This approach maintains the class distribution across
all folds, ensuring each fold is a good representative of the overall dataset.

3.7. Training Parameters

Table 4 outlines the key configurations used to train the LEVit model for skin cancer classification. Images were resized
to 224x224 and processed in batches of 32 over 30 epochs. An AdamW optimizer with a learning rate of 1e-4 and weight
decay of 0.01 was employed, along with a cosine annealing scheduler for gradual learning rate reduction. The model
used a patch size of 16x16 for tokenization, 12 transformer layers, and 8 attention heads. Dropout was set to 0.1 to
prevent overfitting, and categorical cross-entropy was used as the loss function for multi-class classification. These
settings ensured training stability, generalization, and effective feature representation across diverse lesion types.

4., Results and Discussion

4.1. Performance Comparison

The results summarized in the Table 5, provide a comprehensive performance evaluation of our experimental deep
learning models across the HAM1000 and ISIC 2019 datasets, both before and after the application of augmentation
strategies. The "Before Augmentation” results establish the baseline performance of the models when trained on the
original, unaugmented data, whereas the "After Augmentation” results illustrate the impact of advanced augmentation
techniques designed to enrich the training set by introducing additional variability.

Across both datasets, the observed improvements in all performance metrics following augmentation are significant,
particularly in PR AUC, which is critical in assessing the precision-recall balance of diagnostic models. The proposed
LEVit model, leveraging a hybrid transformer-based architecture, consistently achieves higher or comparable
performance relative to the other models; for instance, its F1 score improves markedly from 92.10 + 0.9 to 96.11 + 0.3
on the HAM1000 dataset and reaches 98.11 + 0.5 on the ISIC 2019 dataset after augmentation. This trend underscores
the model’s ability to capture both global contextual features and subtle local details in dermoscopic images.
Furthermore, the consistency of performance across both datasets—as evidenced by similar trends in the improvement
of metrics—and the low standard deviations in post-augmentation scenarios highlight the enhanced reliability of the
models under augmented training conditions. Overall, the data demonstrates that image augmentation is pivotal for
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addressing class imbalance and improving model generalizability in skin lesion classification, with the proposed LEVit
model emerging as a robust candidate for clinical application.

Table 4 Hyperparameter settings used for training the LEVit Model on both datasets

Hyperparameter Value

Input Image Size 224 x 224
Optimizer AdamW
Learning Rate 1.00E-04

Batch Size 32

Epochs 30

Weight Decay 0.01

Learning Rate Scheduler Cosine Annealing
Loss Function Categorical Cross-Entropy
Patch Size 16 x 16

Dropout Rate 0.1

Number of Heads 8

Transformer Layers 12

Table 4 Performance comparison for experimental classifiers on both dataset before and after augmentation

Ham10000 Dataset Results Before Augmentation

Model F1 Specificity MCC PR AUC

NASNet 93.21+0.4 92.45+0.9 88.69 £ 1.7 90.12 +£0.9
SqueezeNet 91.88 £ 0.5 90.77 £1.9 86.55+1.8 88.90+1.1
SE-Net 89.75+1.6 88.12+0.8 83.72+19 86.43+1.8
Xception 9240+ 1.4 91.29+1.7 87.44+1.4 89.15+1.0
LEVit 92.10+0.9 9226+ 0.4 89.21+0.9 91.64 +0.8

Ham10000 Dataset Results After Augmentation

NASNet 97.01+£1.3 96.25+1.1 9413 +1.1 96.03 £1.0
SqueezeNet 96.28 £ 0.9 95.40 £ 0.5 93.26 £ 0.7 95.12+0.7
Xception 95.32+1.4 93.18 £ 1.5 91.08 £ 1.5 9485+1.1
SE-Net 95.75+ 0.4 94.86 + 0.6 92.58+0.8 94.02+£0.8
LEVit 96.11+0.3 96.29 + 0.8 95.51+09 96.62 £ 0.6

ISIC 2019 Dataset Results Before Augmentation

NASNet 93.21£0.6 93.45+0.7 90.69 £ 1.4 91.12 0.7
SqueezeNet 89.88+ 1.5 90.53+1.5 87.55+x19 88.90+£1.3
SE-Net 88.75+1.2 87.12+0.9 84.72+1.8 85.43+1.5
Xception 95.63+1.1 96.01+£0.9 94.44+1.1 95.15+0.9
LEVit 96.02 £ 1.0 96.33 0.6 92.21+0.8 97.64 0.6
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ISIC 2019 Dataset Results After Augmentation

NASNet 9493 +1.1 95.08 +1.0 93.09+1.4 95.12+1.0
SqueezeNet 9197 +0.8 92.40 +0.6 91.26+1.2 92.40+0.9
Xception 97.32+0.4 96.95+0.9 92.08+1.1 97.09 £ 0.8
SE-Net 96.83 + 0.7 96.65+0.9 94.58+0.8 96.81 + 0.7
LEVit 98.11 + 0.5 98.29 +0.7 97.19+0.6 98.57 +0.2

4.2. Performance Validation

Figure 4 displays the confusion matrices for the HAM10000 and ISIC 2019 datasets, highlighting the class-wise
performance of the LEVit model. In both cases, the matrices exhibit strong diagonal dominance, confirming the model’s
capacity to correctly distinguish between multiple lesion types. For HAM10000, NV, BCC, and MEL classes show minimal
off-diagonal errors, while minor misclassifications occur primarily between visually similar classes such as BKL vs.
AKIEC or MEL. For ISIC 2019, the model maintains high fidelity across major classes such as BCC, MN, and BK, with
limited confusion observed between AK and SCC—two categories with overlapping dermoscopic patterns. The sparse
off-diagonal entries reinforce the model’s low error dispersion, aligning with the high F1 and MCC scores reported.
These matrices validate the model’s robustness in handling intra-class variability and inter-class ambiguity, particularly
under class-balanced and augmented training conditions.

[ [ i

wT o
Pk Clind Labeds

Figure 4 Confusion matrices of the LEVit model on both datasets
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Figure 5 Learning curves of the LEVit model trained on both datasets
For the HAM10000 dataset, the loss curves show a sharp decline during the initial epochs followed by stable

minimization, while the corresponding accuracy, recall, and precision curves exhibit a consistent upward trajectory.
Although minor oscillations are observed, the convergence patterns between training and validation curves remain
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closely aligned, indicating effective learning without significant overfitting. The model maintains stable generalization
throughout training, as evidenced by the narrow gap between training and validation scores across all metrics. On the
ISIC 2019 dataset, the LEVit model demonstrates even smoother and faster convergence. The loss decreases sharply
within the first few epochs and plateaus with minimal fluctuation, while accuracy, recall, and precision curves exhibit
strong monotonic improvement. The marginal difference between training and validation curves further confirms that
the model is capable of capturing the underlying data distribution effectively, benefiting from the dataset's size and class
diversity. Figure 5 illustrates the learning dynamics of the LEVit model over 30 training epochs on the HAM10000 (left)
and ISIC 2019 (right) datasets, evaluated using loss, accuracy, recall, and precision metrics for both training and
validation sets.

4.3. Model’s Transparency

Figure 6 shows Grad-CAM visualizations that illustrate the decision-making process of the skin lesion classification
model for both datasets. Panel (a) features seven classes from the HAM10000 dataset: NV (Melanocytic Nevus), AKIEC
(Actinic Keratoses), VASC (Vascular Lesion), BCC (Basal Cell Carcinoma), BKL (Benign Keratosis), DF (Dermatofibroma),
and MEL (Melanoma). Each lesion image is paired with a Grad-CAM heatmap, highlighting key regions that influenced
the model's predictions. The model tends to focus on the center of lesions or their texture irregularities, which are
important for accurate diagnosis. Panel (b) covers eight classes from the ISIC 2019 dataset, including NV, AK, VASC, BCC,
BK, DF, MEL, and SCC (Squamous Cell Carcinoma). The Grad-CAM maps indicate where the network pays attention for
each lesion image. These heatmaps are generally centered on the lesions, showing that the model recognizes critical
features like shape irregularities and pigmentation differences. For complex or malignant lesions such as MEL and SCC,
the attention maps cover larger areas, reflecting the challenging visual characteristics of these cases.

VASC

Grad-CAM BKL Grad-CAM DF  Grad CAM MEL

Grad CAMMEL  Grad-CAM SCC

Figure 6 Grad-CAM visualization for both (a) HAM10000 and (b) ISIC 2019 datasets

4.4. State-of-the-Art Comparison

Table 6 presents a comparative analysis of recent state-of-the-art approaches for skin cancer classification using
dermoscopic image datasets. Most prior studies achieved high performance using a variety of CNN and transformer-
based models; however, several limitations persist, particularly regarding dataset imbalance and generalizability. For
instance, Rezaee[15] et al. utilized ISIC-2019 without balancing and reported an accuracy of 96.85%, while Rezaee &
Zadeh achieved up to 97.48% across ISIC-2019 and PH2 using a bi-branch transformer-CNN architecture. Ahmad et al.
evaluated their model across multiple datasets, including ISIC-16 to ISIC-20 and HAM10000, but without balancing
strategies, resulting in variable performance, with accuracy dropping to 93.47%.
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Table 5 Comparative analysis of state-of-the-art methods for skin cancer classification

Reference Dataset Name Dataset Balancing | Result (%)
Rezaee et al.[15] ISIC-2019 No 96.85
Ahmad etal.[16] | ISIC-19, HAM10000 No 93.47

Zadeh etal. [17] ISIC-2019, PH2 No 96.87-97.48
Damasevicius[30] | HAM10000, ISIC-2018, ISIC-2019, PH2 No 93.47-98.98
Rahmanetal.[7] | HAM10000, ISIC-2019 Yes 94

Xin etal.[31] HAM10000, Clinical dermoscopy dataset | No 94.1-94.3
Yang et al.[18] HAM10000, Edinburgh DERMOFIT Yes 94.1

Ours (LEViT) HAM10000 and ISIC-2019 Yes 96.62,98.57

Magsood and Damasevicius[30] employed a deep feature fusion and selection framework across four datasets and
achieved up to 98.98%, though their performance on ISIC-2019 was only 93.47%, again without addressing class
imbalance. Rahman et al.[7] introduced a weighted ensemble method with explicit dataset balancing and achieved 94%
accuracy. Similarly, Yang et al. applied balancing techniques and obtained 94.1% on HAM10000. Xin et al.[31] proposed
a transformer model without dataset balancing, yielding results between 94.1% and 94.3%.

In contrast, our proposed approach applied comprehensive dataset balancing via advanced augmentation strategies to
address class imbalance in both HAM10000 and ISIC-2019. This led to substantial improvements, achieving 96.62%
accuracy on HAM10000 and 98.57% on ISIC-2019. These results outperform most existing models under similar
conditions, demonstrating LEVit's superior generalization and feature extraction capabilities. Furthermore, the
integration of XAI through Grad-CAM and robust evaluation across diverse metrics underscores the clinical reliability
of our method. The results confirm that careful dataset handling, in combination with hybrid attention architecture, is
critical for advancing automated skin cancer diagnosis.

5. Discussion

Our proposed model consistently outperformed competing architectures due to its hybrid design, which integrates
convolutional priors with transformer-based global self-attention. This architectural synergy allows LEVit to
simultaneously model local texture patterns and long-range dependencies, both of which are critical in dermoscopic
image analysis where lesions exhibit high intra-class variability and inter-class visual similarity. In contrast to
traditional CNNs that are limited in global contextual modeling, and pure transformers that require large-scale datasets
for stable convergence, LEVit maintains a favorable trade-off between expressiveness and data efficiency. These
capabilities translated into superior F1 scores, MCC, and PR AUC values across both the HAM10000 and ISIC 2019
datasets, particularly following dataset balancing via augmentation. Beyond raw performance, the broader implications
of this work are significant. From an economic standpoint, automated lesion classification using LEVit could reduce
dependency on specialist consultations, lower diagnostic costs, and enable scalable screening in high-volume or
resource-limited settings. Socially, such deployment can facilitate early cancer detection in underserved populations,
thereby reducing diagnostic latency and improving prognostic outcomes.

However, the approach is not without limitations. LEVit's transformer blocks incur notable computational overhead,
which may hinder real-time deployment on mobile or edge devices unless quantization or pruning is introduced.
Furthermore, while we employed Grad-CAM for visual interpretability, its current resolution may not always provide
clinically actionable insight into specific lesion subregions or boundaries. Future work could benefit from integrating
higher-resolution interpretability frameworks such as Score-CAM++ or Layer-CAM, which offer finer localization. To
further optimize the model, we suggest exploring hierarchical multi-scale attention mechanisms to better capture
structural lesion features at different granularities. Additionally, incorporating patch-wise token pruning or lightweight
self-distillation could reduce inference time while maintaining accuracy. Finally, extending LEVit into a multimodal
framework that jointly processes dermoscopic images and structured metadata (e.g., age, lesion site, risk factors) could
offer improved diagnostic performance and deeper clinical relevance.
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6. Conclusion

This study proposed a LEVit-based deep learning framework for automated skin cancer classification, evaluated on two
benchmark datasets: HAM10000 and ISIC 2019. The model demonstrated superior performance across multiple
evaluation metrics outperforming well-established architectures such as NASNet, Squeeze Net, SE-Net, and Xception.
These results validate the effectiveness of combining local convolutional priors with global attention mechanisms for
robust visual pattern recognition in complex medical imaging tasks. The implications of these findings extend beyond
academic significance. In practical terms, the proposed system could enhance clinical diagnostic workflows by enabling
faster, more consistent lesion assessment. Its ability to generalize across datasets suggests strong potential for
integration into digital dermoscopy tools, improving diagnostic reach in both centralized hospitals and decentralized
teledermatology platforms. Nevertheless, challenges remain. The model's reliance on dermoscopic inputs alone limits
its contextual understanding, especially in borderline or rare cases. In addition, while augmentation addressed class
imbalance, real-world data heterogeneity (e.g., varying skin tones, lighting conditions) still poses generalization
challenges. Future iterations could integrate domain adaptation techniques to enhance cross-domain robustness or fuse
multimodal clinical metadata to contextualize image-based predictions. When LEVit properly tuned and supported by
data augmentation and interpretability tools like Grad-CAM, can serve as a high-performing, explainable model for
multi-class skin cancer classification. Its hybrid attention-convolution architecture offers a viable path forward for
designing intelligent diagnostic systems that are not only accurate but also transparent and scalable for real-world
deployment.
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