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Abstract 

Poultry farming plays a crucial role in global food security, yet it faces significant challenges from infectious diseases 
such as Coccidiosis, Salmonella, and Newcastle disease, which can lead to substantial economic losses. Existing deep 
learning models often encounter issues like class imbalance, poor generalization across different datasets, and a lack of 
interpretability. To address these limitations, we propose a novel hybrid deep learning framework based on the MaxViT 
architecture. This framework combines MBConv blocks with both block-wise and grid-based self-attention mechanisms, 
allowing it to effectively capture local and global features in complex fecal images. In our study, we utilized two publicly 
available poultry fecal image datasets, consisting of 8,067 and 6,812 images, respectively. Each dataset includes four 
classes: Coccidiosis, Salmonella, Newcastle disease, and Healthy. To tackle the severe class imbalance, we applied data 
augmentation techniques. We evaluated the models using various metrics, including accuracy, F1-score, specificity, PR 
AUC, and MCC, under 10-fold cross-validation. Our proposed MaxViT model achieved impressive accuracy scores of 
99.54% and 98.96% on the two datasets, outperforming ViT-B/16, ViT-L/32, DeiT-S, and T2T-ViT-14 across all metrics. 
Additionally, we integrated Grad-CAM to provide visual explanations of the model's decisions, thereby enhancing 
transparency and applicability in veterinary settings. This study introduces a deployable, interpretable, and highly 
accurate framework for intelligent poultry disease diagnosis, effectively addressing critical limitations found in 
previous research. 
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1. Introduction

Poultry farming accounts for over 35% of global meat production and supports the livelihoods of approximately 1.3 
billion people [1]. This sector particularly benefits smallholder farmers in low-income regions, where poultry can 
represent up to 60% of livestock income [2]. However, poultry diseases such as coccidiosis, salmonella, and Newcastle 
disease result in annual losses exceeding USD 3 billion [3]. These diseases undermine productivity, food safety, and 
public health. Traditional diagnostic methods, including manual inspections and laboratory tests, are often impractical 
in rural settings due to their high costs, time consumption, and the need for skilled personnel. Deep learning techniques, 
especially Convolution Neural Networks (CNNs) have improved automated disease detection by identifying local 
features like texture and color gradients [4], [5]. However, CNNs often struggle with understanding global spatial 
contexts and lack interpretability [6]. Vision Transformers (ViTs) provide a solution with their self-attention 
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mechanisms, which allow for the modeling of long-range dependencies and provide contextual analysis [7]. 
Nonetheless, ViTs require large datasets and do not possess the inductive biases of CNNs, which can limit their 
effectiveness in low-data or noisy agricultural environments. 

While many studies have applied CNNs and early ViT models to poultry disease classification, several gaps remain. Few 
incorporate explainable AI (XAI) techniques, which limits interpretability. Additionally, no study has explored hybrid 
ViTs that combine CNN and transformer architectures for improved feature extraction. Critical issues such as class 
imbalance—especially for underrepresented diseases like Newcastle—have largely gone unaddressed, resulting in 
biased models. Furthermore, cross-dataset generalization and visual interpretability of predictions are seldom 
investigated, despite being essential for real-world deployment. 

To address these challenges, this study has the following objectives: 

• To design and implement a robust hybrid model that will capture both local and global visual patterns from 
fecal images. 

• To develop a strategy to reduce class imbalance and enhance the model's robustness. 
• To integrate XAI for improving interpretability and providing visual justifications for model predictions. 
• To evaluate the model’s performance across two diverse datasets and benchmark it against standard ViT 

variants. 

To achieve our objectives, we propose a framework based on the MaxViT architecture, which was specifically selected 
for its ability to integrate the strengths of both convolutional and transformer-based models (See Figure 1). MaxViT 
uses depthwise convolutions, MBConv blocks, and both block-wise and grid-based attention mechanisms, allowing it to 
capture fine local details and broader spatial relationships in fecal imagery. This hybrid design helps identify subtle 
visual differences between disease types and enhances generalization in real-world conditions. We use two public 
datasets and apply targeted augmentation techniques to balance class distributions and minimize training bias. Further, 
we improve model interpretability with Grad-CAM visualizations, which show which regions in the input images affect 
predictions.  

 

Figure 1 Overall methodology 

Our key contributions are as follows: 

• Proposed a new framework for classifying poultry diseases using the Multi-Axis ViT (MaxViT). It combines 
convolutional layers with block-wise and grid-based attention mechanisms to effectively capture local textures 
and global spatial dependencies. 

• Addressed class imbalance in two poultry fecal image datasets by applying targeted data augmentation 
techniques. This improved model stability and performance for underrepresented classes like Newcastle 
Disease. 

• Utilized Grad-CAM to provide visual interpretations of model predictions, improving trust and understanding 
in veterinary and agricultural applications. 
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• Conducted a comparative analysis of various models, demonstrating that our method surpasses existing 
approaches. 

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3 details the datasets, 
preprocessing, and architecture. Section 4 presents the results and comparative analysis. Section 5 offers a critical 
discussion, and Section 6 concludes the study. 

2. Related Works 

In recent years, artificial intelligence techniques have played a vital role across a wide range of real-world applications, 
including sustainable agriculture [8], [9], [10], biodiversity systems [11], [12], and disease diagnosis [13], [14]. 
Pretrained CNN models have also shown promise for detecting diseases in poultry. Machuve et al. [15] developed a deep 
learning model to identify Coccidiosis, Salmonella, and Newcastle disease using 8,067 fecal images. Among various CNN 
architectures tested, MobileNetV2 achieved the highest accuracy at 98.02%. However, the system lacked integration 
with clinical metadata and real-time diagnostic capabilities, which limited its practical utility. To improve portability 
and enable real-time diagnosis, mobile-based solutions have emerged. Degu et al. [16] proposed a system that employs 
YOLOv3 for fecal image segmentation and ResNet50 for classifying diseases into four categories. Their model, trained 
on 10,500 images, achieved an accuracy of 98.7%. Despite this success, its reliance on a single imaging modality and the 
absence of broader clinical validation restricts its deployment in the field. 

Hybrid learning strategies have also been employed to enhance classification accuracy. Luo et al. [17] built a transfer 
learning pipeline using 6,812 fecal images, combining nine pre-trained CNNs with traditional classifiers such as SVM, 
Logistic Regression, and KNN. The best-performing model, ResNet152-SVM, achieved an accuracy of 98.3%. However, 
the dataset was limited to chickens, affecting the model's generalizability to other poultry species. Studies have 
investigated how well models generalize across diverse environments. Chidziwisano et al. [18] evaluated models like 
MobileNet, DenseNet, and ResNet on datasets from Tanzania (8,077 images) and Malawi. While binary classification 
was effective across regions (MobileNet achieved 98% accuracy in Tanzania and 82% in Malawi), the performance in 
multiclass classification degraded significantly, revealing challenges related to breed differences, environmental factors, 
and dataset imbalance. 

Efforts to enhance model interpretability have involved the use of ViTs. Luong et al. [19] developed a ViT16 model 
integrated with the Integrated Gradients technique to interpret predictions. Trained on 8,067 fecal images, it achieved 
100% accuracy, outperforming both CNN and ViT32 models. However, its dependency on localized data and a single 
image modality may hinder its scalability to varied or real-time applications. Audio-based classification models have 
also been explored for the early detection of diseases. Cuan et al. [20] introduced a BiLSTM-based Deep Poultry 
Vocalization Network (DPVN) to detect Newcastle disease using chicken vocalizations. The model achieved an accuracy 
of 98.5% after advanced noise filtering and vocal segmentation. Its limitation lies in focusing on a single disease and the 
need for controlled acoustic environments. Lastly, lightweight hybrid architectures are gaining traction for efficient 
disease detection. He et al. [21] proposed ResTFG, a CNN-transformer hybrid model with 1.95 million parameters, 
designed to classify seven Eimeria species from 5,103 oocyst images. The model achieved an accuracy of 96.9% and a 
processing speed of 256 frames per second. However, it faced challenges in distinguishing morphologically similar 
species, such as E. praecox, indicating a need for improvement in fine-grained classification. 

3. Materials and Methods 

3.1. Data Description 

This study uses two publicly available image datasets with labeled samples of poultry diseases. Each dataset includes 
four categories: Coccidiosis, Salmonella, Newcastle Disease, and Healthy. These categories represent common 
conditions that affect poultry health, making them essential for early detection and effective disease management. 
Dataset 1 [22] comprises a total of 8,067 samples, while Dataset 2 [23] contains 6,812 samples, resulting in a combined 
total of 14,879 images. In Dataset 1, the class distribution is relatively balanced among the Coccidiosis (2,476), 
Salmonella (2,625), and Healthy (2,404) classes. However, Newcastle Disease is significantly underrepresented, with 
only 562 samples. A similar pattern is observed in Dataset 2, where Coccidiosis (2,103), Salmonella (2,057), and Healthy 
(2,276) classes are well represented, while Newcastle Disease has only 376 samples. Sample image from both datasets 
illustrated in Figure 2. 
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Figure 2 Sample image of each class from both datasets 

3.2. Data Preprocessing and Augmentation 

To prepare the poultry disease images for classification using the ViTs, several preprocessing techniques were applied 
to standardize image dimensions, enhance visual features, and normalize pixel intensity values. Initially, all images from 
the two poultry disease datasets were resized to 224×224 pixels to meet the input size requirements of the ViTs 
architecture. The pixel values were then normalized to a range of [0, 1] to ensure consistency in the input distribution 
[24]. After preprocessing, the datasets were divided into training, validation, and test sets using stratified sampling with 
a ratio of 70/10/20, which preserved the class distributions in each subset (See Table 1). This approach ensured that 
the model encountered a balanced representation of each disease class during evaluation. 

Table 1 Class distribution after splitting 

Dataset Class Total Training (70%) Validation (10%) Testing (20%) 

Dataset 1 Coccidiosis 2476 1733 247 496 

Salmonella 2625 1837 262 526 

Healthy 2404 1682 240 482 

Newcastle Disease 562 393 56 113 

Total 8067 5645 805 1617 

Dataset 2 Coccidiosis 2103 1472 210 421 

Salmonella 2057 1439 205 413 

Healthy 2276 1593 227 456 

Newcastle Disease 376 263 37 76 

Total 6812 4767 679 1366 

Both datasets initially showed class imbalance, particularly in the Newcastle Disease class, which contained significantly 
fewer samples than the others. To address this issue and enhance the model's generalization capabilities, data 
augmentation techniques were implemented. Common augmentation strategies included random rotations (±15°), 
horizontal and vertical flips, zooming, and adjustments to brightness and contrast. These augmentations were applied 
only to the training set and specifically targeted the underrepresented classes to synthetically increase their sample 
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sizes. After augmentation, each class within the individual datasets was balanced to match the size of the majority class. 
In the first dataset, all classes were balanced to contain 1,837 images each, resulting in a total of 7,348 images. Similarly, 
in the second dataset, each class was augmented to have 1472 images, yielding a total of 5,888 images. This 
preprocessing and augmentation strategy ensured that the datasets were not only compatible with the model but also 
robust and balanced [25]. Figure 3 illustrates sample images from each disease after applying augmentation techniques. 

 

Figure 3 Sample augmented images for each poultry disease class 

3.3. Experimental Models 

3.3.1. ViT Models 

In this study, we used five ViT models to classify poultry diseases from fecal images. These models were pretrained on 
the ImageNet dataset and fine-tuned to identify four specific health conditions in poultry. Unlike CNNs, ViTs utilize self-
attention mechanisms to better capture subtle disease patterns that may be spread across the images. This makes them 
effective for our needs, as disease indicators are often diffused and require contextual understanding.  

ViT-B/16, introduced by Dosovitskiy et al. [26], is an early transformer model designed for vision tasks. It processes 
images by dividing them into 16×16 patches and uses multi-head self-attention. We selected it as a baseline for its strong 
generalization and simplicity. ViT-L/32, a larger variation, uses 32×32 patches, enhancing global context understanding 
but sacrificing finer detail. We chose this model to explore the balance between parameter size and recognition 
performance, especially in distinguishing similar disease patterns. DeiT-S, developed by Facebook AI [27], serves as a 
lighter alternative to ViT. It is designed to train efficiently on smaller datasets without necessitating large-scale 
pretraining. This model incorporates a distillation token that benefits from knowledge transfer during training. Its 
lightweight design makes it suitable for deployment in resource-constrained environments while still maintaining 
competitive accuracy. T2T-ViT-14 improves upon the original ViT by refining the tokenization process [28]. Rather than 
simply flattening raw patches, it recursively aggregates neighboring tokens to better model local structures before 
applying self-attention. This hierarchical tokenization approach is particularly effective in disease classification tasks 
where localized features are critical. 

3.3.2. Proposed MaxViT Model 

This study aims to enhance poultry disease classification using the MaxViT architecture. MaxViT utilizes both CNN and 
transformer-based attention mechanisms, making it ideal for this task. It effectively captures local features, like texture 
and edge variations in poultry feces, while also understanding the global context needed to analyze complex patterns 
[29]. This dual capability allows it to handle the complexities of real-world poultry waste imagery. The overall 
architecture of MaxViT, as illustrated in Figure 4, starts with two convolutional layers. The first layer is a 3×3 
convolution with a stride of 2, which performs spatial down sampling and basic edge detection. This is followed by 
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another 3×3 convolution layer that further refines low-level features. These convolutional stages are essential for 
capturing early spatial cues and enhancing the model’s inductive bias toward local structures. 

 

Figure 4 Proposed MaxViT architecture 

The backbone of MaxViT consists of a series of MaxViT blocks, each featuring three key components: MBConv, Block 
Attention, and Grid Attention. The MBConv module, adapted from mobile networks, includes a 1×1 pointwise 
convolution, a depthwise convolution, and a Squeeze-and-Excitation (SE) block. This combination efficiently captures 
local patterns while maintaining computational efficiency [30]. Next, the Block Attention stage applies self-attention 
within non-overlapping blocks of the image, allowing the model to focus independently on localized regions. This is 
particularly useful for distinguishing detailed features such as speckled, foamy, or discolored textures associated with 
various diseases. To augment local attention, Grid Attention introduces a global perspective by enabling interactions 
across grid-partitioned sections of the image. This mechanism helps the model learn relationships between spatially 
distant regions, addressing the limitations of block attention and ensuring that contextual dependencies are preserved 
[31]. Following these attention stages, the architecture includes a global pooling layer, a fully connected layer, and a 
softmax-based classification layer that outputs predictions for the four target classes. MaxViT outperforms traditional 
transformers and CNN models, particularly in situations with subtle differences or noisy backgrounds. 

3.4. Training Parameters and Evaluation 

The training process for all models was conducted over 30 epochs using the Adam optimizer, with a constant learning 
rate set at 0.001. For the multiclass classification task, we employed categorical cross-entropy as the loss function. To 
prevent overfitting and improve the model's generalization ability, we integrated early stopping, a learning rate 
adjustment mechanism, and model checkpointing into the training workflow. Model performance was evaluated using 
five metrics: accuracy, F1 score, specificity, PR AUC, and MCC. Accuracy provided an overall measure of correct 
predictions, while the F1 score reflected the balance between precision and recall, which is particularly important when 
dealing with imbalanced classes. Specificity assessed the model's ability to correctly identify negative samples. PR AUC 
offered insights into the precision-recall relationship across various thresholds, and MCC provided a consolidated 
performance score by considering all elements of the confusion matrix. To ensure a reliable and fair evaluation of the 
models, we applied 10-fold stratified cross-validation. The dataset was divided into ten parts while preserving the 
original class distribution. In each fold, one subset was designated for validation, and the remaining nine were used for 
training. This process was repeated across all folds to ensure a comprehensive and unbiased evaluation. 

4. Results and Discussion 

Performance comparison of various ViT architectures on two imbalanced datasets, evaluated using five key metrics 
indicate that the proposed MaxViT model consistently outperforms all baseline models across both datasets. For Dataset 
1, MaxViT achieves the highest performance across all metrics, with an accuracy of 98.34%. Similarly, for Dataset 2, 
MaxViT leads with a PR AUC of 98.22%. Among the other models, T2T-ViT-14 ranks second, demonstrating strong 
performance but consistently falling short of MaxViT. The DeiT-S model performs well on Dataset 1 but shows a 
significant decline on Dataset 2, particularly in the MCC metric (91.39%), which indicates challenges in generalization. 
Both ViT-L/32 and ViT-B/16 exhibit moderate performance, with ViT-B/16 generally receiving the lowest scores across 
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most metrics. These variations highlight the architectural limitations of standard ViT variants when tackling imbalanced 
classification tasks. The ± values indicate standard deviations, which reflect model stability. MaxViT consistently 
demonstrates low variance (±0.29 in accuracy), suggesting reliable performance across different runs. In contrast, 
models such as ViT-B/16 show high variance (±1.58), making them less dependable. Overall, MaxViT exhibits both high 
accuracy and stability, making it particularly suitable for real-world applications that involve imbalanced data (Table 
2). 

Table 2 Performance comparison on imbalanced datasets 

Dataset Model Accuracy F1 Specificity PR AUC MCC 

 

 

Dataset 1 

 
 

Proposed MaxViT 98.34 ± 0.29 97.21 ± 0.33 98.03 ± 0.22 98.47 ± 0.38 96.84 ± 0.47 

T2T-ViT-14 96.87 ± 0.46 96.51 ± 0.41 96.75 ± 0.39 97.05 ± 0.33 95.91 ± 0.26 

DeiT-S 95.97 ± 0.59 95.68 ± 0.27 96.13 ± 0.45 95.62 ± 0.48 94.39 ± 0.42 

ViT-L/32 94.49 ± 0.31 94.02 ± 0.61 95.73 ± 0.61 95.11 ± 0.47 93.51 ± 1.16 

ViT-B/16 93.17 ± 1.13 93.53 ± 0.68 92.74 ± 0.93 94.00 ± 0.43 92.82 ± 1.06 

 

 

Dataset 2 

 
 

Proposed MaxViT 97.66 ± 0.44 96.75 ± 0.28 97.88 ± 0.49 98.22 ± 0.32 96.43 ± 0.53 

T2T-ViT-14 96.33 ± 0.68 94.79 ± 0.55 96.27 ± 0.63 95.89 ± 0.41 94.98 ± 0.39 

ViT-L/32 94.41 ± 0.56 95.09 ± 0.91 94.92 ± 0.46 95.13 ± 0.69 93.45 ± 0.41 

ViT-B/16 94.12 ± 1.58 95.39 ± 1.02 95.08 ± 1.18 95.18 ± 0.98 93.61 ± 1.23 

DeiT-S 91.82 ± 1.74 92.39 ± 1.19 92.55 ± 0.92 93.66 ± 1.07 91.39 ± 0.52 

 

Table 3 Performance comparison on balanced datasets 

Dataset Model Accuracy F1 Score Specificity PR AUC MCC 

 

 

Dataset 1 

 
 

Proposed MaxViT 99.54 ± 0.35 98.91 ± 0.47 99.13 ± 0.26 99.67 ± 0.41 97.04 ± 0.11 

T2T-ViT-14 98.67 ± 0.44 98.21 ± 0.48 97.95 ± 0.33 98.25 ± 0.39 97.11 ± 0.21 

DeiT-S 97.57 ± 0.61 97.28 ± 0.29 97.53 ± 0.46 96.82 ± 0.52 95.99 ± 0.45 

ViT-L/32 96.49 ± 0.36 96.02 ± 0.66 96.93 ± 0.65 96.31 ± 0.53 95.71 ± 1.22 

ViT-B/16 96.17 ± 1.21 96.13 ± 0.72 94.84 ± 0.97 96.20 ± 0.49 95.02 ± 0.62 

 

 

Dataset 2 

 
 

Proposed MaxViT 98.96 ± 0.39 98.45 ± 0.34 98.95 ± 0.53 99.22 ± 0.37 97.63 ± 0.58 

T2T-ViT-14 97.83 ± 0.71 96.49 ± 0.59 97.47 ± 0.61 98.09 ± 0.44 96.18 ± 0.42 

ViT-L/32 96.41 ± 0.63 96.69 ± 0.95 96.12 ± 0.49 97.33 ± 0.74 95.65 ± 0.44 

ViT-B/16 96.12 ± 0.61 96.89 ± 0.87 96.28 ± 0.56 97.38 ± 0.78 95.81 ± 0.42 

DeiT-S 93.92 ± 1.81 94.49 ± 1.24 94.75 ± 0.74 95.86 ± 1.13 93.59 ± 0.55 

Table 3 summarizes the performance of various ViT-based models on two balanced datasets. The proposed MaxViT 
model achieves the highest scores on both datasets. For Dataset 1, MaxViT records a top accuracy of 99.54% and a 
specificity of 99.13%. Similarly, on Dataset 2, MaxViT leads with an F1 score of 98.45% ± 0.34, demonstrating its strong 
generalization on well-balanced data. In second place overall is T2T-ViT-14, which performs closely behind MaxViT, 
particularly in Dataset 1, with a Matthews Correlation Coefficient (MCC) of 97.11%. The DeiT-S and ViT-B/16 models 
also perform reasonably well, but their metrics exhibit greater variation in Dataset 2. For instance, DeiT-S shows a drop 
in accuracy to 93.92%, indicating reduced consistency. ViT-L/32 generally maintains moderate performance across 
both datasets. The standard deviation values indicate that MaxViT consistently shows the lowest deviation across most 
metrics (e.g., ±0.11 MCC in Dataset 1), suggesting reliable and reproducible results across different runs. In contrast, 
DeiT-S and ViT-L/32 exhibit higher variability, especially on Dataset 2, with some metrics exceeding ±1.0, which 
indicates less stable behavior during repeated training. 
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Figure 5 demonstrates strong and stable model performance across all evaluated metrics over the course of 30 training 
epochs for both Dataset 1 and Dataset 2. For Dataset 1, both the training and validation loss curves exhibit a consistent 
downward trend, reaching near-zero values by the end of training. While minor spikes are observed in the validation 
loss between epochs 5 and 15, the curves eventually stabilize, indicating effective convergence without signs of 
overfitting. The accuracy improves rapidly within the first 10 epochs, surpassing 95% and stabilizing between 98% and 
99% for both training and validation sets, with only a minimal gap suggesting strong generalization. Similarly, the recall 
and precision curves show an upward trend, approaching 98% by the final epochs, indicating reliable true positive 
detection and confident classification. In contrast, Dataset 2 demonstrates a more stable training pattern overall. The 
loss curves decline smoothly and consistently, with values falling below 0.05, reflecting robust optimization. Accuracy 
increases quickly and remains above 98% after approximately 15 epochs, with the training and validation curves 
staying closely aligned. Likewise, recall and precision improve steadily and plateau near 98%, confirming the model's 
strong and consistent classification performance across both training and validation sets. 

 

Figure 5 Learning curve of the proposed MaxViT model 

Figure 6 presents the confusion matrices for the proposed MaxViT model, evaluated on two different datasets. On 
Dataset 1, the model achieved a high accuracy of 99.54%, correctly classifying nearly all samples across four classes: 
493 out of 496 for Coccidiosis, 523 out of 528 for Salmonella, 479 out of 480 for Healthy, and 112 out of 113 for 
Newcastle Disease. The low number of misclassifications indicates a strong understanding of inter-class boundaries. In 
Dataset 2, the model attained an accuracy of 98.96%, with correct classifications of 416 out of 420 for Coccidiosis, 408 
out of 413 for Salmonella, 450 out of 455 for Healthy, and 75 out of 78 for Newcastle Disease. Although Dataset 2 
exhibited a slightly higher misclassification rate, particularly among visually similar classes, the model's performance 
remained consistently robust, demonstrating its strong ability to generalize. 

 

Figure 6 Confusion matrix of the proposed MaxViT model 

The Grad-CAM visualization in Figure 7 demonstrates our proposed model's interpretability, trained on Dataset 1 
(green background) and Dataset 2 (yellow background). The top row features raw images of poultry droppings, while 
the bottom row presents Grad-CAM heatmaps highlighting the key areas influencing the model's predictions. In Dataset 
1, the model identifies key features for each disease class. For Coccidiosis and Newcastle Disease, the activation maps 
highlight discolored and watery droppings, indicating infection. For Salmonella, it emphasizes the solid central mass of 
feces. The heatmap for the Healthy class shows a uniform coverage of well-formed droppings. However, variations in 
background and lighting have slightly impacted the consistency of focus across samples. In Dataset 2, the model exhibits 
strong, symmetric activations across all disease classes, demonstrating its effectiveness in feature identification. The 
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heatmaps for Coccidiosis and Newcastle Disease highlight distinct central areas, while Salmonella and Healthy samples 
show clear regions of interest. The improved textures and consistent backgrounds in Dataset 2 enhance clarity and 
feature localization. 

 

Figure 7 Sample Grad-CAM outputs showing key regions identified by the MaxViT model 

Table 4 presents the outstanding performance of the proposed MaxViT models, which achieved accuracies of 99.54% 
and 98.96% on two different datasets. Unlike previous models, MaxViT incorporates XAI through Grad-CAM, which 
enhances both interpretability and reliability for real-world poultry disease diagnostics. Among prior approaches, 
YOLOv3 combined with ResNet50 and BiLSTM models showed strong performances with accuracies of 98.70% and 
98.50%, respectively. However, these models lack XAI integration and are limited in their modality or disease coverage. 
While MobileNetV2 and ResNet152 combined with SVM also performed well, they struggled to generalize across 
different regions or poultry types, which reduced their robustness. In contrast, ResTFG and Deep CNN approaches 
demonstrated lower accuracy and lacked transparency, making them less suitable for practical deployment. MaxViT 
provides a robust and interpretable solution for intelligent poultry disease monitoring by addressing critical limitations 
found in previous methods. 

Table 4 Comparison of existing models with the proposed MaxViT 

Ref. No. Model Data Result XAI 

Ours Poposed MaxViT 8067 99.54% Yes 

Proposed MaxViT 6812 98.96% Yes 

[15] MobileNetV2 8067 98.02% No 

[16] YOLOv3 + ResNet50 10500 98.70% No 

[17] ResNet152 + SVM 6812 98.30% No 

[18] MobileNet 8077 98% (Tanzania) No 

[19] ResTFG (CNN + Transformer) 5103 96.90% No 

[20] BiLSTM 8000 98.50% No 

[21] Deep CNN Not specified 91.47% No 

The MaxViT model outperforms others due to its hybrid architecture that captures both local and global features. Its 
MBConv blocks are designed to extract fine details, like discoloration and structural irregularities in fecal images. The 
block-wise and grid-based self-attention mechanisms enhance spatial reasoning across different image regions. This 
multi-axis attention structure effectively addresses the limitations of CNNs in managing long-range dependencies and 
the challenges faced by ViTs in low-data scenarios. The low standard deviations in performance metrics indicate the 
model's stability and generalization, crucial for real-world applications. Data augmentation improves model robustness, 
especially for underrepresented classes like Newcastle Disease. The targeted augmentation approach increased intra-
class diversity and reduced biased learning. The improvements in F1-score and MCC demonstrate its effectiveness in 
reducing false negatives and enhancing classification reliability for all disease categories. Grad-CAM enhances 
interpretability by highlighting important areas in images, such as discolored textures in Coccidiosis and dense central 
masses in Salmonella. This transparency allows domain experts to validate the model’s clinically relevant decisions, 
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fostering trust and usability in veterinary settings. Additionally, Grad-CAM’s visual feedback is crucial for making 
explainable decisions in disease intervention. The model is ideal for low-resource agricultural settings. MaxViT can be 
fine-tuned using small, domain-specific datasets and comes with preloaded ImageNet weights, allowing for scalability. 
It can be further optimized with techniques like quantization or pruning to deploy on mobile or edge devices, enabling 
quick on-site disease diagnosis without needing centralized labs or specialist knowledge. 

Despite these strengths, the study has several technical limitations. The augmentation process, while helpful, can create 
distributional shifts that impact generalization in real-world situations. MaxViT’s grid attention is computationally 
intensive, which may limit real-time use on edge devices. Moreover, the model only uses image data and does not 
incorporate contextual information—like breed type or environmental metadata—that could enhance its diagnostic 
accuracy, especially in ambiguous cases. Future work should prioritize creating lightweight MaxViT variants with linear 
attention to lower training and inference complexities. Incorporating multi-modal data, such as fecal images, audio 
signals, and environmental metadata, could enhance diagnostic accuracy. Using self-supervised contrastive learning on 
unlabeled poultry images may improve adaptability. Lastly, adding spatio-temporal models would enable tracking of 
disease progression, aiding early intervention and predictive analytics in poultry health management. 

5. Conclusion 

This study introduces a novel and robust framework for classifying poultry diseases using the MaxViT architecture. This 
architecture uniquely combines convolutional layers with block-wise and grid-based self-attention mechanisms. Unlike 
existing models, our approach effectively captures both local textures and global spatial dependencies in complex fecal 
images, leading to superior performance across multiple evaluation metrics. A key contribution of our work is a targeted 
augmentation strategy that addresses class imbalance, particularly improving representation for under-sampled 
diseases like Newcastle disease. Additionally, the integration of Grad-CAM enhances model transparency, providing 
essential visual interpretability for practical use in veterinary diagnostics. Extensive experiments conducted on two 
diverse datasets confirm the model’s stability, accuracy, and generalizability. By addressing key limitations of existing 
CNN and ViT approaches—such as poor explainability, inadequate generalization, and class imbalance—this research 
marks a significant advance toward deployable, AI-driven systems for poultry disease monitoring. Future research will 
focus on lightweight deployment and the incorporation of multimodal diagnostic inputs. 
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