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Abstract 

Early identification of leaf diseases in chili and onion crops is crucial for maintaining agricultural productivity and 
reducing economic losses. This study proposes a transformer-based deep learning framework for the multi-class 
classification of common leaf diseases affecting chili and onion plants. It addresses challenges related to intra-class 
similarity, complex backgrounds, and variations in real-world imaging. We collected a curated dataset consisting of 
13,989 high-resolution images—10,987 of chili leaves and 4,502 of onion leaves—from actual agricultural 
environments in Karnataka, India. This dataset covers nine disease classes, including Cercospora, purple blotch, Iris 
yellow spot virus, and powdery mildew. To enhance model generalization, we applied extensive preprocessing 
techniques, including resizing, normalization, augmentation, and noise injection. We evaluated four state-of-the-art 
transformer architectures: MaxViT, Swin Transformer, Hornet, and EfficientFormer. Among these, MaxViT achieved the 
highest performance, with classification accuracies of 95.75% on the onion dataset and 90.86% on the chili dataset, 
along with high F1 scores, Matthews Correlation Coefficient (MCC), and Precision-Recall Area Under Curve (PR-AUC) 
values. To enable practical use in the field, we developed a real-time web application using Django. This application 
allows users to upload leaf images and receive instant predictions, supplemented by Grad-CAM-based visual 
explanations. This integration of explainable AI (XAI) enhances transparency and builds trust among end-users, such as 
farmers and agronomists. The results highlight the effectiveness of transformer-based models for agricultural disease 
diagnosis and provide a scalable, interpretable, and deployable solution for precision farming. 
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1 Introduction 

Chili and onion are among the most widely cultivated vegetable crops across Asia, Africa, and Latin America. Globally, 
chili production exceeds 3.5 million metric tons annually, while onion ranks as the second most consumed vegetable 
crop, with over 16 million metric tons produced worldwide each year [1], [2]. These crops play a vital role in food 
security and the economy, serving as both staple ingredients and commercial commodities [3]. However, their 
productivity is frequently threatened by a variety of leaf diseases, including Cercospora, purple blotch, leaf blight, and 
powdery mildew. Studies estimate that leaf diseases can cause yield losses of up to 30–50% in chili and onion fields, 
particularly in tropical climates [2]. Such diseases not only reduce the quantity but also the quality of yield, leading to 
substantial economic setbacks and increasing dependence on chemical fungicides. Accurate identification of these leaf 
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diseases is therefore crucial for healthy crop management, minimizing pesticide overuse, and promoting sustainable 
agricultural practices [4]. 

Traditional plant leaf disease diagnosis relies on visual inspection by experts, which is often subjective, error-prone, 
and labor-intensive. These manual methods are difficult to scale across large agricultural fields, especially in regions 
with limited access to plant pathologists [5], [6]. Furthermore, many disease symptoms share overlapping visual traits, 
such as spots, blights, and discoloration, making them difficult to distinguish using conventional techniques. Variations 
in lighting, background, and leaf maturity further complicate accurate disease detection in real-world conditions [7]. 

Convolutional Neural Networks (CNNs) have emerged as a powerful tool for plant disease classification due to its ability 
to learn discriminative features directly from raw images. While CNNs have shown high accuracy in controlled 
environments, they often struggle with complex datasets where intra-class variation and inter-class similarity are high 
[8], [9]. Transformer-based architectures, such as MaxViT, Swin Transformer, Hornet, and EfficientFormer, offer a 
promising alternative by combining local and global feature extraction. These models are better equipped to handle 
subtle disease patterns and variable imaging conditions, making them suitable for field-level diagnosis. 

In addition to model accuracy, real-world deployment requires solutions that are accessible and interpretable. To 
address this, we developed a lightweight web application that integrates the trained deep learning model for real-time 
inference. Users can upload leaf images through the browser and receive instant predictions, making the system 
practical for farmers, agronomists, and field workers. To further support decision-making and build trust, we 
incorporated XAI using Grad-CAM to highlight the specific regions of the leaf that influenced the model’s prediction. 

Previous studies in plant disease detection often rely on small, single-crop datasets, with limited focus on generalization 
and usability. Most do not include transformer-based architectures or support real-time use through deployment and 
explainability. There remains a gap in delivering high-performing, scalable, and interpretable systems that can serve 
diverse agricultural needs. This study addresses these gaps by evaluating multiple deep learning models across two 
real-world datasets of chili and onion leaves. Our key contributions are as follows: 

• Conducted a comparative analysis of transformer-based models (MaxViT, Swin, Hornet, and EfficientFormer) 
for multi-class leaf disease classification. 

• We have developed a unified pipeline integrating preprocessing, training and deployment for robust model 
performance. 

• Deployed a web-based application that provides real-time prediction and user-friendly interaction. 
• Incorporated Grad-CAM explainability to visualize model decisions, improving interpretability for non-expert 

users and field validation. 

The rest of the paper is structured as follows: Section 2 presents related works on plant disease detection and highlights 
existing limitations. Section 3 describes the datasets, preprocessing techniques, and model architectures. Section 4 
reports experimental results, including evaluation metrics and comparisons with state-of-the-art methods. Section 5 
discusses findings, practical implications, and limitations. Finally, Section 6 concludes the paper and outlines future 
directions for research and deployment. 

2 Related Works 

The detection of leaf diseases in chili and onion crops using deep learning and machine learning techniques has gained 
significant attention due to their ability to improve disease management and optimize agricultural practices. Various 
studies have explored different approaches for disease detection, with notable improvements in accuracy and 
generalization. 

For chili leaf disease detection, Pratap and Kumar [10] proposed a customized EfficientNetB4 model, fine-tuned to 
detect multiple chili leaf diseases. The model achieved an accuracy of 92%, outperforming other models like ResNet-50 
and MobileNet-V2. However, the generalization ability to other crops was not evaluated. Similarly, a study by Muslim et 
al. [11] developed an Android-based disease detection system for rice and chili crops using MobileNet V1 and Sequential 
CNN models. Their model achieved a testing accuracy of 95%, demonstrating its potential for real-time use in the field. 
However, their study was limited to only a few chili diseases, limiting their broader applicability. In the realm of onion 
leaf disease detection. 

McDonald et al. [12] explored aerial photography using UAVs equipped with a near-infrared (NIR) camera to assess 
Stemphylium leaf blight. While the study provided useful insights into disease severity through NDVI and other 
vegetative indices, no strong correlations between disease severity and the indices were found, suggesting limitations 
in the sensitivity of the indices for precise disease detection. On the other hand, Amondkar and Bhoite [13] employed 
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machine learning techniques to detect onion leaf diseases in Maharashtra, India. They achieved significant classification 
accuracy but encountered challenges with dataset diversity and the scalability of their approach.  

In a broader context, Shao et al. [14] investigated the use of hyperspectral imaging to detect root rot in chili peppers, 
achieving a classification accuracy of 92.3% using a SPA-BP model. While hyperspectral imaging has shown promise for 
plant disease detection due to its ability to capture detailed spectral information, the study acknowledged the 
complexity of acquiring hyperspectral data and the need for specific wavelengths to achieve accurate results. This 
dependency on specialized equipment and the challenge of capturing data in real-world conditions make the approach 
less practical for large-scale, on-the-ground applications. 

Major obstacles to broader adoption include the use of limited and homogenous datasets, environmental adaptation 
challenges, and inherent scalability restrictions. Additionally, many current models function as opaque "black box" 
systems, which lack the necessary explainability to elucidate decision-making processes. This study addresses these 
challenges by implementing robust approaches that increase dataset diversity and integrating XAI methods within a 
web-based framework, thereby enhancing identification accuracy and boosting user confidence in conservation 
progress.  

3 Materials and Methods 

Figure 1 depicts our proposed methodology for chili and onion leaf disease classification. The process starts with 
acquiring input images, which undergo preprocessing that includes resizing, flipping, brightness adjustment, and adding 
Gaussian noise for better generalization. These images are then processed through four transformer-based deep 
learning models for multi-class classification. To enhance transparency, Grad-CAM is used to highlight key areas that 
influence predictions. A real-time web application, Onichili: Leaf Disease Classifier, allows users to upload images, 
receive immediate predictions, and see visual interpretations through XAI overlays. 

 

Figure 1 Proposed methodology 

3.1 Data Description 

The dataset used in this study [15] is the COLD dataset, which consists of high-resolution leaf images of chili and onion 
plants, specifically collected from the Chilwadigi village in the Koppal district of Karnataka, India. This dataset is 
designed to support the development of machine learning models for the classification and detection of various leaf 
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diseases in chili and onion crops. The dataset contains a total of 13,989 images, consisting of 10,987 chili leaf images 
and 4,502 onion leaf images. 

The chili leaf dataset is categorized into five disease classes: healthy leaves (2,198 images), Cercospora leaf spot (2,219 
images), mites and thrips (2,507 images), nutritional deficiency (2,032 images), and powdery mildew (2,031 images). 
The onion leaf dataset is classified into four categories: healthy leaves (1,278 images), Iris yellow spot virus (1,272 
images), purple blotch (735 images), and leaf blight (1,217 images). These images were taken during the Kharif season, 
under varying climatic conditions, and were processed using standard pre-processing techniques such as resizing and 
augmentation to increase the dataset's diversity. Sample image from each class for both dataset is shown in Figure 2. 

The images were captured using a Canon Mark II D digital camera, providing detailed photographs to support accurate 
disease identification. The dataset includes both raw and augmented images to enhance the robustness of machine 
learning models and to simulate real-world scenarios in agricultural settings. The images in this dataset cover a wide 
range of conditions, including subtle inter-class similarities, changes in lighting, and varying background conditions 
such as different foliage arrangements and light levels. This dataset is made publicly available for research purposes 
and can be accessed via Mendeley Data repositories, with the dataset links provided for both the chili and onion leaf 
images. The data can be used for training deep learning models, especially for tasks such as disease classification, disease 
severity estimation, and leaf segmentation. The rich variety of images in natural environments makes this dataset an 
essential resource for developing robust disease detection systems tailored to real-world agricultural challenges. 

 

Figure 2 Sample images from both datasets 

3.2 Image Preprocessing 

The dataset underwent several preprocessing steps to ensure consistency and improve the performance of deep 
learning models. All images were resized to 224 × 224 pixels to standardize input dimensions. The pixel values were 
then normalized to the range [0, 1], ensuring better stability and faster convergence during training [16]. To enhance 
model generalization and address potential overfitting, data augmentation techniques were applied, including random 
rotations of up to ±30 degrees, horizontal and vertical flips, zooming between 0.9 and 1.1, and brightness adjustments 
between 0.8 and 1.2. These augmentations simulate real-world conditions, such as lighting variations and leaf 
orientations. Additionally, Gaussian noise was added to mimic sensor noise. The dataset was split into 80% for training, 
15% for validation, and 5% for testing, ensuring balanced and unbiased evaluation. These preprocessing steps helped 
the model focus on key features while enhancing its robustness across diverse scenarios. 

3.3 TL Models 

To optimize the performance of the transformer-based models, we employed a consistent set of training parameters 
across all experiments to ensure a fair comparison. The models were trained for 100 epochs using the Adam optimizer, 
known for its adaptive learning rate and stable convergence characteristics. The initial learning rate was set at 0.001 
and was modified using a learning rate scheduler with a patience of 5 epochs and a decay factor of 0.1. A batch size of 
32 was selected to balance memory usage and convergence speed. We applied the categorical cross-entropy loss 
function, which is suitable for multi-class classification tasks. To prevent overfitting and reduce unnecessary training 
time, early stopping was implemented with a patience of 10 epochs. Additionally, model checkpointing was utilized to 
save the best-performing model based on validation accuracy. All experiments were conducted on an NVIDIA GPU with 
CUDA acceleration, ensuring efficient parallel processing during training. These parameters were empirically selected 
based on preliminary experiments and align with standard practices in image classification using deep learning. 

3.3.1 MaxViT 

The MaxViT model shown in Figure 3, combines convolutional layers with multi-scale attention modules to effectively 
capture both local and global features in high-resolution images. Its foundation lies in the scaled dot-product attention 
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shown in Equation (1), where Q, K, and V represent the query, key, and value matrices, and dₖ is the dimension of the 
key vectors. The model then employs multi-head attention, as defined in Equation (2), to aggregate diverse feature 
representations by applying several attention heads in parallel and concatenating their outputs [17]. Additionally, 
MaxViT introduces local and grid attention mechanisms that merge both fine-grained and global contexts, which can be 

expressed in Equation (3) by adding the outputs of local (Flocal) and global (Fglobal)  attention modules to the original 

input X. This fusion enables MaxViT to adapt seamlessly to various disease patterns in leaf images while maintaining 
computational efficiency [18]. 

Attn = QKTdkAttn =
QKT

√dk
 

(1) 

 

MultiHead(Q, K, V) = Concat(head1, … , headh) ⋅ W
O (2) 

 

Y = X + Flocal(X) + Fglobal(X) (3) 

 

 

Figure 3 Proposed MaxViT model architecture 

3.3.2 Efficient Former 

This is a transformer-based model that prioritizes reduced computational overhead while preserving high accuracy. Its 
core principle involves a hierarchical attention mechanism that selectively processes both local and global features [19]. 
This is initiated by a lightweight self-attention function, as shown in Equation (4), where Q, K, and V represent the query, 
key, and value matrices, and d is the feature dimension. The attention scores are aggregated across different heads to 
form a comprehensive representation of the input. To further enhance efficiency, EfficientFormer introduces a 
progressive downsampling approach expressed in Equation (5), which systematically reduces spatial resolution at each 
stage. By doing so, the model focuses on the most relevant details without incurring excessive computational costs [20]. 
This hierarchical design allows EfficientFormer to excel in detecting small lesions or subtle discolorations in leaf images, 
making it highly suitable for real-time applications where resources may be limited. 

LightAttn = Softmax(
QKT

√d
) ⋅ V 

(4) 

Xdown = DownSample(X) (5) 

3.3.3 Hornet 

It combines convolutional operations with an attention mechanism to balance efficiency and performance in image 
classification tasks. It begins by extracting local features through convolution, as indicated in Equation (6), where 
Conv(𝑋)denotes the convolution applied to input X. Hornet then refines these features using an attention module 
described in Equation (7), which takes Q, K, and V from the convolved feature maps and computes attention scores to 
highlight critical regions. By integrating convolution and attention in a single framework, Hornet captures both small-
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scale patterns (such as minor lesions) and broader structural cues (like leaf shape) [21]. This synergy enables Hornet 
to adapt effectively to diverse disease manifestations in chili and onion leaves, maintaining robust performance under 
varying environmental conditions. Its balanced computational requirements also make it feasible for real-time 
agricultural monitoring systems. 

Xconv = Conv(X) (6) 

HornetAttn = Softmax(
QKT

√d
) ⋅ V 

(7) 

3.3.4 Swin Transformer 

This model employs a hierarchical vision transformer structure, dividing images into non-overlapping windows and 
applying window-based self-attention at each level. Equation (8) describes the standard attention mechanism within 
each window, where the input is partitioned, and Q, K, V are computed for that specific region. To broaden the receptive 
field across layers, Swin implements a shifting strategy in Equation (9), which cyclically shifts windows before the next 
attention operation. By progressively enlarging the scope of attention, Swin captures both localized features and 
broader contextual elements, such as overall leaf color or shape [22], [23]. This multi-stage approach balances efficiency 
and accuracy, enabling the model to handle high-resolution images without excessive computational overhead [24]. 
Consequently, Swin Transformer is well-suited for detecting various disease symptoms in leaf images, even when they 
manifest at multiple scales or under complex background conditions. 

WindowAttn(X) =  Softmax(
QKT

√d
) ⋅    

(8) 

Shift(X)  =  CyclicShift(X,  δ) (9) 

3.4 Evaluation Metrics 

The performance of the multiclass classification model is assessed using four essential evaluation metrics that together 
offer a comprehensive view of its effectiveness. Accuracy indicates the ratio of correct predictions to the total number 
of samples, serving as a general performance indicator; however, it may not fully reflect the model's behavior on 
imbalanced datasets. To address this, the F1-Score, which is the harmonic mean of precision and recall, provides a 
balanced measure by considering both false positives and false negatives, making it more suitable for datasets with 
unequal class distribution. The PR-AUC evaluates the trade-off between precision and recall across different thresholds 
and is particularly helpful in scenarios with class imbalance, as it emphasizes the quality of positive predictions. Lastly, 
the Matthews Correlation Coefficient offers a single-value summary based on the full confusion matrix, measuring the 
strength of correlation between predicted and actual labels, and is especially reliable for imbalanced classification 
problems. 

4 Results  

4.1 Performance Comparison of Experimental Models 

The performance comparison of the deep learning models across chili and onion leaf disease datasets is summarized in 
Table 1, evaluated using Accuracy, F1-Score, PR-AUC, and MCC. Among all models, MaxViT demonstrates superior 
performance on both datasets, achieving the highest accuracy 95.25% for onion, 90.48% for chili and MCC 93.97%, 
88.86%, reflecting its strong capacity to capture multi-scale disease features. Efficient-Former ranks second, offering a 
favorable balance between accuracy and computational efficiency, with 92.42% and 88.88% accuracy on onion and chili 
datasets, respectively. Swin Transformer shows moderate performance but declines on the chili dataset, suggesting 
sensitivity to intra-class variability. Hornet, while lightweight, reports the lowest scores across all metrics, indicating 
limited generalization. Overall, MaxViT’s consistent top performance highlights its robust feature representation and 
generalization, making it highly suitable for complex multiclass classification tasks in agricultural image analysis. 
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Table 1 Performance of experimental models. 

Approach Model Accuracy F1 MCC AUC-PR 

Onion Dataset MaxViT 95.25 94.21 93.97 95.75 

EfficientFormer 92.42 91.31 90.65 93.05 

Swin  90.82 89.45 88.85 91.12 

Hornet 85.40 84.90 83.51 86.20 

Chili Dataset MaxViT 90.48 89.82 88.86 90.86 

EfficientFormer 88.88 87.66 86.98 89.61 

Swin 85.01 84.48 83.70 85.41 

Hornet 81.93 81.78 80.42 82.53 

4.2 Performance Validation 

The confusion matrices in Figure 4 show the model’s strong classification performance across both onion and chili leaf 
disease datasets. In the onion dataset, most healthy, Iris yellow, purple blotch, and leaf blight samples were correctly 
identified, with 181, 185, 101, and 174 true predictions respectively. A small number of misclassifications occurred, 
particularly between purple blotch and other classes, indicating minor visual similarities. In the chili dataset, the model 
accurately predicted a high number of mites and thrips with 359 correct cases and powdery mildew with 299 correct 
cases. A few healthy samples were misclassified as Cercospora or powdery mildew, while misclassifications between 
Cercospora and mites and thrips were limited. Overall, the confusion matrices reflect the model’s robust performance 
and effective feature learning, with only a few errors likely caused by subtle overlaps in disease symptoms. 

 

Figure 4 Confusion matrix of the proposed MaxViT model for both datasets 

 

Figure 5 Learning curves of the proposed MaxViT model for both datasets 

The learning curves in Figure 5 show the training and validation performance of the proposed model on both the onion 
and chili leaf datasets over 100 epochs. In the onion dataset, both training and validation accuracy steadily increase and 
closely converge above 90 percent, indicating good generalization. The corresponding loss curves consistently decrease 
and stabilize with minimal gaps, suggesting effective learning without overfitting. Similarly, in the chili dataset, training 
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and validation accuracy rise smoothly with slight fluctuations and converge above 85 percent. The loss curves for chili 
also show a strong downward trend with both losses aligning well overtime. The overall behavior across both datasets 
confirms stable convergence, effective optimization, and the model’s strong capacity to learn meaningful features while 
maintaining generalization across classes. 

4.3 Model Transparency 

Figure 6 compares the Chili Leaf Dataset and Onion Leaf Dataset, showing the original input images (top row) alongside 
Grad-CAM visualizations (bottom row) for each class. This helps interpret the predictions made by the MaxViT model. 
Grad-CAM highlights the key areas in the images that influenced the model's decisions, enhancing transparency and 
understanding of its reasoning. 

In the Chili Leaf Dataset, Grad-CAM shows clear activation in specific regions for each category. The Powdery Mildew 
class highlights white powdery areas, while the Cercospora class focuses on necrotic circular spots. The Nutritional 
Deficiency class reveals yellow patches and discoloration, and the Mites and Thrips classes indicate insect-affected 
areas. The Healthy class shows a uniform distribution without stress patterns or lesions. In the Onion Leaf Dataset, 
Grad-CAM visualizations identify disease-specific markers. The Purple Blotch class highlights a dark central lesion with 
a purplish surrounding area. The Leaf Blight class shows scattered patterns along the midrib, and the Iris Yellow Spot 
Virus focuses on yellow striping and discoloration. The Healthy class displays evenly spread heatmaps, indicating no 
distinct diseases. 

 

Figure 6 Sample Grad-CAM predictions by MaxViT for each class of both datasets 

These visualizations are essential to verify that the model focuses on the right symptomatic areas and allows for human 
oversight of the classification process. This transparency builds trust, especially in sensitive areas like crop disease 
monitoring, where it supports timely decision-making and intervention. The Grad-CAM overlays demonstrate that the 
model can differentiate subtle symptom variations across disease types, indicating effective feature learning and strong 
class discrimination. 

4.4 Web Application 

Our Onichili Leaf Disease Classifier web application (Figure 7) is an intelligent diagnostic tool developed using the 
Django framework, designed to detect and classify common diseases in chili plant leaves. The user-friendly interface 
enables users to upload leaf images either by dragging and dropping or selecting files via a browser. Upon uploading an 
image, the application processes it through the proposed model and presents both detailed probability distribution and 
the final prediction. To enhance interpretability and user trust, the application integrates Grad-CAM visualizations, 
which generate a heatmap over the leaf image to highlight the specific regions that most influenced the model’s decision. 
This feature offers a transparent and XAI solution for users, particularly beneficial in real-world agricultural diagnosis 
scenarios. Additional controls such as Reload and Re-upload allow users to test multiple samples with ease. Overall, this 
application serves as a practical and scalable tool for plant disease management, enabling timely intervention by 
farmers and agronomists. Django-based architecture ensures flexibility for future enhancements, such as incorporating 
new disease classes or deploying mobile support for field use. 
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Figure 7 Onichili web application for plant classification 

4.5 State-of-The-Art Comparison 

Table 2 presents comparative analysis of previous studies and the proposed MaxViT-based approach in terms of dataset 
size and classification performance. Most existing works utilized relatively small datasets, ranging from 400 to 3200 
samples, and achieved accuracy scores between 86.2% and 95.0%. Notably, the MobileNetV1 and EfficientNetB4-based 
models demonstrated competitive performance with 95.0% and 92.5% accuracy, respectively. In contrast, the proposed 
MaxViT model was evaluated on a significantly larger dataset containing 13,989 samples, covering both chili and onion 
leaf diseases. It achieved superior results, with 95.75% accuracy on the onion dataset and 90.86% on the chili dataset. 
These results not only validate the robustness of MaxViT in handling complex multiclass classification tasks but also 
demonstrate its effectiveness on large-scale agricultural datasets. The improved performance underscores the model’s 
strong generalization capabilities and its potential applicability in real-world plant disease detection scenarios. 

Table 2 Performance comparison with previous studies 

Model Data sample size Result (%) 

EfficientNetB4[4] 2560 92.5 

MobileNetV1[5] 3200 95 

UAV-NIR [6] 400 89.7 

ML-based [7] 450 86.2 

SPA-BP [8] 480 92.3 

(Our) MaxViT 13,989 95.75, 90.86 

5 Discussion 

This study demonstrates the effectiveness of transformer-based deep learning models for automated detection of chili 
and onion leaf diseases. Among all evaluated models, MaxViT achieved the highest performance, with 95.75% accuracy 
on the onion dataset and 90.86% on the chili dataset. Its hybrid architecture, combining convolutional and self-attention 
mechanisms, enabled it to capture both fine-grained and global disease patterns, leading to better generalization across 
complex leaf textures. EfficientFormer also showed strong results, offering a favorable balance between accuracy and 
computational efficiency. Carefully designed preprocessing steps such as resizing, normalization, and Gaussian noise 
injection improved feature consistency and model robustness under varied image conditions. The integration of the 
trained model into a real-time web application further enhances its practical impact, providing instant predictions for 
agricultural stakeholders. Importantly, the use of Grad-CAM-based XAI improves interpretability by visually 
highlighting the disease-affected regions, fostering trust in model outputs. Despite its strengths, the system faces 
limitations including reduced performance on visually overlapping chili diseases and the high computational cost of 
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transformer models. Future work should focus on dataset expansion, model optimization for edge deployment, and 
richer interpretability techniques for real-world agricultural adoption. 

6 Conclusion 

This study presents a transformer-based deep learning framework for detecting multiple leaf diseases in chili and onion 
plants, using high-performing models such as MaxViT, Swin, Hornet, and EfficientFormer. Through careful 
preprocessing and model selection, we achieved strong classification results across both datasets. To support real-
world applications, we developed a lightweight and accessible web application that enables real-time disease prediction 
directly from user-uploaded images. The integration of XAI through Grad-CAM further enhances the system by visually 
identifying key disease regions, promoting transparency and trust in model decisions. This work bridges the gap 
between research and practical deployment, offering a scalable solution for improving plant health monitoring in 
agricultural settings. Nonetheless, the study is limited by the scope of disease types and the computational demands of 
transformer architectures. Future efforts will focus on expanding the dataset, optimizing models for mobile deployment, 
and improving interpretability. These steps aim to strengthen the usability and impact of AI in precision agriculture. 
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