
* Corresponding author: Md Ismail Hossain Siddiqui

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0. 

Efficient and interpretable monkeypox detection using vision transformers with 
explainable visualizations 

Sanjida Akter 1, Mohammad Rasel Mahmud 2, Md Ariful Islam 3, Md Ismail Hossain Siddiqui 4, * and Anamul 
Haque Sakib 3 

1 Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh. 
2 Department of Management Information System, International American University, CA 90010, USA. 
3 Department of Business Administration, International American University, CA 90010, USA. 
4 Department of Engineering/Industrial Management, Westcliff University, Irvine, CA 92614, USA. 

International Journal of Science and Research Archive, 2025, 15(01), 1811-1822 

Publication history: Received on 13 March 2025; revised on 22 April 2025; accepted on 24 April 2025 

Article DOI: https://doi.org/10.30574/ijsra.2025.15.1.1162 

Abstract 

Monkeypox is a zoonotic disease that poses diagnostic challenges due to its resemblance to other pox-type skin lesions 
like measles and chickenpox. Traditional deep learning (DL) methods, especially convolutional neural networks (CNNs), 
often struggle with generalization when trained on small, imbalanced datasets. These methods also tend to lack 
interpretability and computational efficiency, limiting their use in real-time, resource-constrained settings. This study 
introduces a lightweight, explainable DL framework based on EfficientFormerV2, which merges the advantages of 
convolutional inductive biases with efficient token-mixing strategies. We used the publicly available Monkeypox Skin 
Image Dataset (MSID), which contains 770 images across four categories: Monkeypox, Chickenpox, Measles, and 
Normal. Through advanced preprocessing and augmentation, we expanded the dataset to 4,000 images, improving class 
representation and reducing overfitting. Also, we evaluated five models—EfficientFormerV2, T2T-ViT, DeiT, Xception, 
and MobileNetV4—using metrics like F1-score, specificity, PR AUC, and Matthews Correlation Coefficient (MCC) with 
10-fold stratified cross-validation. EfficientFormerV2 performed the best, achieving an F1-score of 98.73%, specificity
of 99.63%, PR AUC of 99.86%, and MCC of 94.15%. We used Grad-CAM visualizations to create class-specific heatmaps
for better interpretability. This framework combines an efficient architecture, data-centric augmentation, and
explainable AI (XAI), offering high accuracy and low-latency predictions, making it suitable for real-time monkeypox
screening, especially in low-resource settings.
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1. Introduction

Monkeypox is a viral zoonosis that is raising global health concerns due to its rapid spread [1]. As of late 2023, the World 
Health Organization (WHO) reported over 91,000 confirmed cases and more than 160 deaths across 114 countries, 
making this the largest outbreak since the virus was first identified in 1970 [2] [3]. Symptoms include pustular skin 
lesions, fever, lymphadenopathy, and fatigue, which can be similar to chickenpox and measles [4]. This similarity 
complicates diagnosis, particularly in non-endemic areas with limited access to laboratory testing. Early identification 
is crucial for containing transmission, enabling timely treatment, and reducing illness. 

In response to the need for better diagnostic methods has led to the use of dermatological imaging and artificial 
intelligence (AI) for non-invasive, rapid screening and diagnosis. DL has shown promise in medical image classification 
within dermatology [5]. However, most current approaches are limited by small, imbalanced datasets, leading to 
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overfitting and poor generalization. CNNs focus on localized features, which makes it hard to capture important long-
range spatial relationships needed to differentiate between similar skin conditions. While transformer-based models 
can grasp global context better, they are computationally heavy and require large, labeled datasets—often unavailable 
for rare diseases like monkeypox. There is a substantial gap in efficient, explainable, and lightweight models for 
detecting monkeypox lesions, despite increased research on skin disease recognition. Few studies have explored hybrid 
transformer architectures that combine accuracy with computational efficiency, and even fewer have precisely tested 
these models on well-augmented and balanced datasets. Also, explainability methods like Grad-CAM are underused, 
which hampers transparency and clinical adoption. 

This study aims to develop an effective and explainable DL framework for classifying monkeypox and pox-type skin 
lesions using a lightweight hybrid transformer architecture. The objectives are to: (1) use advanced data augmentation 
to address small and imbalanced datasets; (2) evaluate both convolutional and transformer models under the same 
conditions; and (3) incorporate XAI to enhance clinical interpretability; and (4) achieve low-latency, high-accuracy 
performance for real-time diagnostics in resource-limited environments. 

To achieve our objectives, we introduce EfficientFormerV2, a hybrid vision transformer architecture that combines 
convolutional inductive biases with efficient token-mixing strategies to capture fine-grained and global features (Figure 
1). We enhanced our dataset with a robust augmentation pipeline, increasing the number of images while ensuring 
balanced class representation. In our comparative evaluation, we included four benchmark models, trained using 10-
fold stratified cross-validation and assessed with various metrics. Grad-CAM visualizations were employed for heatmap-
based interpretability, enhancing clinical transparency. The following are the key contributions of our study: 

• A hybrid diagnostic framework that combines convolutional inductive bias with transformer token-mixing 
strategies to achieve high accuracy and computational efficiency, ensuring stable, low-latency predictions for 
real-time web deployment in resource-limited environments. 

• Utilized advanced preprocessing and data augmentation methods were used to expand the dataset which 
addressed class imbalance and enhanced training diversity. 

• Grad-CAM integration provides interpretable and transparent predictions by visualizing specific attention 
regions related to lesions that enhance clinical reliability and model trustworthiness. 

• Achieved state-of-the-art performance by outperforming previous models in both classification accuracy and 
prediction stability across multiple evaluation metrics. 

 

Figure 1 Proposed methodology 

The remainder of this paper is structured as follows: Section 2 reviews related work. Section 3 describes the datasets, 
preprocessing techniques, and architecture. Section 4 presents the results along with a comparative analysis. Section 5 
provides a critical discussion, and Section 6 concludes the study. 
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2. Related Works 

Optimization-based CNN models have shown early success in monkeypox classification. Eliwa et al. [6] proposed a CNN 
model enhanced by the Grey Wolf Optimizer (GWO) for classifying monkeypox skin lesions. They utilized a Kaggle 
dataset containing 25,000 clinical samples across 11 features and achieved an accuracy of 95.31%. Despite its 
effectiveness, this approach faced limitations related to data imbalance, the risk of overfitting, and limited 
generalizability.  

Attention mechanisms and evolutionary algorithms have been used to improve CNN-based models. Almars et al. [7] 
introduced DeepGenMon, a lightweight CNN integrated with attention mechanisms and a Genetic Algorithm (GA) for 
optimization. Evaluated on two datasets of 847 and 659 images across six and four classes respectively, it achieved 
accuracy of 98.5% and 98.2%. However, it lacked explainability and was not validated on large-scale datasets. 

XAI techniques have been incorporated into classical CNN models. Abbas et al. [8] developed a VGG16-based classifier 
enhanced by Layer-wise Relevance Propagation (LRP) to detect monkeypox, measles, chickenpox, and normal skin 
lesions. Trained on 2,310 augmented images, the model attained an accuracy of 93.29%. Its incorporation of XAI 
improved interpretability, although the diversity of the dataset was limited.  

Ensemble models combining multiple CNN architectures have also been explored. Muñoz-Saavedra et al. [9] utilized an 
ensemble of ResNet50, EfficientNet-B0, and MobileNetV2 along with Grad-CAM visualizations to classify monkeypox 
from a custom dataset of 300 images (across three classes). They reported an accuracy of 98.33% but noted that high 
computational costs and the limited dataset size were drawbacks.  

Hybrid CNN-Transformer ensembles have pushed the boundaries of classification and interpretability. Saha et al. [10] 
proposed Mpox-XDE, which combined Xception, DenseNet201, and EfficientNetB7 models with SwinViT and Grad-CAM 
for enhanced detection. Trained on 770 images across four classes, the model achieved an accuracy of 98.70%. This 
study excelled in combining ensemble learning with explainability but faced challenges due to limited data and model 
complexity. 

ViT-CNN fusion models have shown potential in multi-class monkeypox classification. Oztel et al. [11] presented an 
ensemble model that fused Vision Transformer and DenseNet201 architectures to classify monkeypox and six other 
skin conditions. Evaluated on the PAD-UFES-20 and MSLD datasets, which comprised 2,400 images, it achieved an 
accuracy of 81.91%. While the approach was innovative in combining fine-tuned ViT and bagging, it was hindered by 
the dataset size.  

Transformer-only ensembles have demonstrated superior performance over CNNs in some settings. Vuran et al. [12] 
proposed a transformer-based ensemble model incorporating ViT, MAE, DINO, and SwinTransformer for multi-class 
skin lesion classification, including monkeypox. Using the MSLD v2.0 dataset of 755 images, the SwinTransformer 
achieved an accuracy of 93.71%. Although the superiority of transformers over CNNs was demonstrated, high 
computational costs and small data volumes remained a concern.  

Multi-scale transformer-based models have introduced new architectural innovations. Huan et al. [13] introduced 
MSMP-Net, a ConvNeXt-based multi-scale model for end-to-end classification of monkeypox. Trained on the MSLD v2.0 
dataset (755 images across six classes), the model reached an accuracy of 87.03%. Its innovation lies in multi-scale 
feature fusion; however, the absence of XAI and a small dataset limits its interpretability and scalability. 

3. Materials and Methods 

3.1. Data Description 

This study utilized the MSID, a publicly available dataset curated by Bala and Hossain [14] and hosted on the Mendeley 
Data platform. The dataset contains a total of 770 high-resolution dermatological images categorized into four clinically 
relevant classes: Monkeypox (279 images), Chickenpox (107 images), Measles (91 images), and Normal (293 images). 
Each image showcases distinct skin lesion characteristics necessary for classifying visually similar pox-type conditions.  
Sample image form each class is shown in Figure 2. To ensure robust training and effective performance evaluation, the 
dataset was divided into training, validation, and test sets using a stratified splitting strategy in the ratio of 80:10:10. 
This approach maintained consistent class distribution across all subsets, minimizing bias during model evaluation. The 
final class-wise distribution after the split is summarized in Table 1.  
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Figure 2 Sample image from each class of MSID dataset 

Table 1 Class distribution after splitting the dataset 

Class Train Validation Test 

Monkeypox 223 27 29 

Chickenpox 85 10 12 

Measles 72 9 10 

Normal 234 29 30 

3.2. Data Preprocessing and Augmentation 

 

Figure 3 Sample augmented image from each class 

All images in the dataset were resized to 224×224 pixels and normalized to a pixel intensity range of [0, 1]. These 
preprocessing steps were applied consistently across all subsets to ensure standardized input dimensions and facilitate 
efficient model training [15].  To address the limited sample size and class imbalance, we implemented a data 
augmentation strategy for the training set. This approach increased the number of samples in each class to 1,000, 
resulting in a balanced dataset of 4,000 images across four classes. This expansion helped reduce overfitting, especially 
in underrepresented classes like Measles and Chickenpox, and provided the DL models with diverse samples to learn 
from [16]. A balanced training set also minimizes class bias during optimization and improves the classifier’s 
generalization across all categories. The augmentation pipeline used both geometric and photometric transformations. 
Geometric operations included random horizontal and vertical flipping, rotations of ±20 degrees, zooming by 10%, and 
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shifting dimensions by up to 10%. These changes helped simulate different lesion orientations and sizes. For 
photometric adjustments, brightness and contrast were altered between 0.8 and 1.2, hue and saturation were adjusted, 
and Gaussian noise with a standard deviation of 0.01 to 0.05 was added. These modifications aim to mimic various 
lighting conditions and camera artifacts [17], [18]. Sample augmented image is illustrated in Figure 3. 

Advanced techniques like random cutouts and elastic transformations were employed to help models learn more robust 
representations. This approach enables the models to focus on multiple lesion regions rather than just fixed areas. 
Elastic transformations simulate realistic non-linear distortions by applying a displacement field 𝒟(𝒙) to each pixel 
location (𝒙). The displacement field is computed using Equation 1, where 34 is the deformation coefficient, a Gaussian 
kernel (𝐺4.5)  with a standard deviation of 4.5, and a randomly initialized displacement field 𝒩(𝒙) . These 
transformations increased training diversity, reduced overfitting, and promoted the learning of generalizable features 
across different lesion patterns.  

𝒟(𝒙) = 𝒙 + 34 ⋅ 𝐺4.5 ∗ 𝒩(𝒙) (1) 
3.3. Experimental Models 

To address the issue of limited labeled medical image data, this study employed advanced transfer learning models, 
including convolutional and transformer-based architectures. Each model was selected for its effectiveness in visual 
recognition, suitability for medical imaging, and efficiency in fine-tuning on moderate datasets. 

3.3.1. Transfer Learning Models 

The Tokens-to-Token Vision Transformer (T2T-ViT) was selected for its capacity to preserve local structural 
information through progressive tokenization, as well as its ability to capture global context [19]. In contrast to standard 
ViTs, which flatten image patches at an early stage, T2T-ViT utilizes multiple stages of soft splitting and attention 
mechanisms [20], [21]. This effectively models both low-level textures and high-level semantic patterns. DeiT employs 
knowledge distillation to learn rich feature embeddings without requiring extremely large-scale pretraining data [22]. 
Its efficient design and superior generalization capabilities make it ideal for tasks with limited annotated samples. 

Xception is an extension of the Inception architecture that utilizes depthwise separable convolutions, allowing it to learn 
fine-grained spatial hierarchies while maintaining computational efficiency [23], [24]. This model has shown strong 
performance in medical imaging, particularly in dermatology, due to its ability to capture subtle variations in texture 
and shape. MobileNetV4 is chosen for its speed and efficiency in real-time applications. It’s optimized for edge devices 
and mobile use, offering low-latency performance with minimal computational cost [25]. While it has a lower 
representational capacity than transformer-based models, its ease of deployment and compatibility with XAI tools make 
it a strong candidate for web-based diagnostic systems. 

3.3.2. Proposed EfficientFormerV2 

EfficientFormerV2 is a lightweight vision transformer designed for image classification. It balances accuracy and latency 
by combining convolutional inductive biases with efficient token-mixing strategies. The architecture features 
hierarchical feature extraction using MB⁴D (Mobile Block 4D) and MB³D (Mobile Block 3D) stages, optimizing 
performance and computational efficiency while capturing fine-grained local textures and global semantic context 
(Figure 4). The model processes an input image of size B×3×H×W, where B is the batch size. It passes through two 
convolutional stem layers that reduce spatial dimensions while improving feature representation by learning low-level 
elements like edges and textures. 

The architecture starts with a convolutional stem, followed by MB⁴D blocks in the first three stages. Each MB⁴D block 
consists of a depthwise separable convolution unit with two 1×1 pointwise convolutions, batch normalization (BN), and 
a GeLU activation. Additionally, a residual pooling path captures extra spatial context. The blocks operate at decreasing 
spatial resolutions: H/4×W/4, H/8×W/8, and H/16×W/16, enabling the model to learn more abstract features. As the 
model advances, spatial features are flattened into tokens and processed through MB³D blocks starting at Stage 4. Here, 
the features are reshaped into B×(HW/16) ²×C tokens. The MB³D block performs multi-head self-attention by 
calculating Query (Q), Key (K), and Value (V) vectors, followed by dot-product attention with softmax activation. The 
output is refined through linear projections, layer normalization (LN), GeLU activations, and feed-forward layers, 
allowing for global contextual learning across the image. 
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Figure 4 Proposed EfficientFormerV2 architecture 

Embedding layers are incorporated between stages to align feature dimensions and improve communication between 
blocks. Finally, the output tokens are aggregated and processed through a classification head to generate predictions 
for target classes. EfficientFormerV2 is designed for high classification accuracy and low inference latency, making it 
ideal for real-time web-based diagnostic systems in resource-limited settings [26], [27]. Its lightweight architecture 
ensures efficient deployment, and it works well with explainability methods like Grad-CAM for integration into clinical 
decision-making processes [28]. 

3.4. Evaluation and Training Parameters 

Table 2 Hyperparameter ranges and selected values 

Hyperparameter Ranges Selected Value 

Learning Rate {1e-5, 5e-5, 1e-4, 5e-4, 1e-3} 1e-4 

Batch Size {16, 32, 64, 128} 64 

Dropout Rate {0.1, 0.3, 0.5, 0.6} 0.3 

Optimizer {SGD, Adam, AdamW} AdamW 

Weight Decay {1e-6, 1e-5, 1e-4, 5e-4} 1e-5 

Learning Rate Schedule {Constant, Step, Cosine, OneCycle} Cosine Annealing 

Warm-up Steps {0, 100, 300, 500} 300 

Max Epochs {30, 50, 75, 100} 30 

Early Stopping Patience {3, 5, 7, 10} 7 

The evaluation was conducted using key metrics: F1 Score, specificity, PR AUC, MCC. The F1 Score balanced precision 
and recall addressing class imbalances, while specificity evaluated the model's ability to correctly identify negative 
instances and minimize false positives. PR AUC provided insights into the trade-off between precision and recall at 
different thresholds. MCC combined true and false positives and negatives into a single score for multi-class evaluations. 
The confusion matrix helped visualize misclassification patterns among similar disease types. Learning curves for 
accuracy and loss were plotted over 30 epochs to track model performance, convergence, and potential issues like 
underfitting or overfitting. Furthermore, early stopping, a learning rate scheduler, and model checkpointing were 
applied to enhance generalization and reduce overfitting in our training process. We applied 10-fold stratified cross-
validation to ensure reliable performance estimation, maintaining class distribution across folds during training and 
validation. We also conducted a hyperparameter search detailed in Table 2. We set the learning rate to 5e-4 to achieve 
fast and stable convergence while avoiding divergence. After testing batch sizes of 16, 32, 64, and 128, we chose 64 for 
optimal gradient stability and GPU efficiency. We implemented a dropout rate of 0.3 for regularization, effectively 
reducing overfitting without hindering learning. Among the optimizers tested, AdamW was the most effective due to its 
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decoupled weight decay mechanism. We found that a weight decay of 1e-5 provided the best balance between 
generalization and learning dynamics. Cosine annealing was used for the learning rate schedule, resulting in smoother 
convergence than constant or step-based methods. We included 300 warm-up steps to stabilize initial gradients. The 
model training lasted a maximum of 30 epochs, with early stopping applied if validation performance did not improve 
for 7 consecutive epochs. 

4. Results and Discussion 

The evaluation of five advanced models was performed with and without data augmentation. Table 3 shows that data 
augmentation improved all evaluation metrics, enhancing generalization and reducing overfitting. EfficientFormerV2 
outperformed the others, achieving an F1 score of 97.34% and a MCC of 93.92% before augmentation, and improving 
these to 98.73% and 94.15% after augmentation, along with a specificity of 99.63%. The low standard deviations 
indicate the model's high stability and consistency. These findings demonstrate EfficientFormerV2’s effectiveness in 
distinguishing visually similar pox-type lesions. 

T2T-ViT demonstrated a notable increase in performance after augmentation, with its PR AUC rising from 97.18% to 
98.90%. It maintained a high MCC, demonstrating strong predictive abilities and a good balance between sensitivity and 
specificity. DeiT improved its F1-Score from 95.57% to 97.41%, though it experienced a slight decrease in MCC, 
indicating some instability in class handling. Xception's MCC increased from 90.89% to 91.53%, but it still fell short 
compared to transformer-based models, highlighting their superior ability to model intricate visual patterns. 
MobileNetV4, the lightest model, also improved with augmentation, but its lower MCC and higher variability suggests it 
is less suitable for high-stakes diagnostics, even though it's beneficial for use in resource-constrained environments. 

Table 3 Performance comparison of all models before and after augmentation 

Augmentation Status Model Specificity F1-Score PR AUC MCC 

 

 

 

Before 

EfficientFormerV2 98.19 ± 0.31 97.34 ± 0.29 98.42 ± 0.28 93.92 ± 0.22 

T2T-ViT 97.04 ± 0.47 96.59 ± 0.49 97.18 ± 0.27 93.30 ± 0.33 

DeiT 95.96 ± 0.65 95.57 ± 0.17 95.82 ± 0.46 92.76 ± 0.26 

Xception 94.61 ± 0.98 94.11 ± 1.21 95.19 ± 0.83 90.89 ± 1.07 

MobileNetV4 93.31 ± 1.13 93.58 ± 1.32 93.92 ± 0.98 89.29 ± 1.30 

 

 

 

After 

EfficientFormerV2 99.63 ± 0.24 98.73 ± 0.13 99.86 ± 0.13 94.15 ± 0.13 

T2T-ViT 98.64 ± 0.46 98.22 ± 0.44 98.90 ± 0.01 93.61 ± 0.27 

DeiT 97.76 ± 0.42 97.41 ± -0.01 97.66 ± 0.21 92.58 ± 0.15 

Xception 96.59 ± 0.13 96.25 ± 0.54 97.11 ± 0.25 91.53 ± 0.46 

MobileNetV4 95.25 ± 1.02 95.60 ± 0.78 96.02 ± 0.94 90.62 ± 1.10 

The standard deviation is a key indicator of model performance stability in 10-fold cross-validation. EfficientFormerV2 
not only achieved the highest performance scores but also had the lowest standard deviation across all metrics after 
augmentation, with a ±0.13 standard deviation in the F1-Score, indicating very stable predictions. T2T-ViT and DeiT 
showed low variability as well, suggesting good generalization. In contrast, MobileNetV4 and Xception had higher 
standard deviations, particularly in the MCC and F1-Score, indicating greater sensitivity to specific training subsets and 
less reliability in complex classification tasks. 

The learning curves of the EfficientFormerV2 model, shown in Figure 5, highlight its training dynamics, convergence 
behavior, and generalization performance over 30 epochs, both before and after applying data augmentation. The loss 
curves indicate that the model trained on the non-augmented dataset shows a consistent decrease in training loss. 
However, the validation loss varies widely, especially between epochs 5 and 20, suggesting difficulty in generalization 
due to the original dataset's limitations and imbalances. The growing gap between training and validation loss in later 
epochs points to mild overfitting, where the model is too tailored to the training data, leading to poor performance on 
new samples. In contrast, after implementing a strong data augmentation pipeline, the loss curves show improved 
training stability. Both training and validation loss decrease steadily with less fluctuation, and the gap between the two 
curves narrows. This indicates that the augmented dataset has improved the model's ability to generalize across 
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different skin lesion patterns. The increase in diversity and balance in the training data helps the model avoid overfitting 
and learn more representative features across all classes. 

 

Figure 5 Learning curve of the proposed EfficientFormerV2 before and after augmentation 

Before augmentation, the training and validation accuracy increased steadily, but the validation accuracy lagged and 
showed notable variability, particularly between epochs 15 and 25, indicating inconsistency. After augmentation, both 
accuracy curves progressed nearly in parallel, surpassing 98% by the end of training. The close alignment and minimal 
variance between the curves demonstrate strong generalization, confirming that the augmented data improved learning 
efficiency and enhanced classification reliability. 

The confusion matrices before and after data augmentation provide a clear overview of the class-wise prediction 
performance of the EfficientFormerV2 model across all the categories (Figure 6). Before augmentation, the model had 
several misclassifications. In the Monkeypox category, it correctly identified 192 out of 194 samples, misclassifying one 
as Chickenpox and another as Normal. The Chickenpox category had 76 correct predictions out of 80, with two 
misclassified as Measles and one each as Monkeypox and Normal. For Measles, the model accurately classified 64 out of 
67 samples, misclassifying one as Chickenpox and two as Normal. The Normal category performed well, with only one 
error, where a sample was misclassified as Monkeypox.  

 

Figure 6 Confusion matrix of the proposed EfficientFormerV2 before and after augmentation 

After implementing data augmentation, the model's performance improved significantly. Both Monkeypox and Normal 
categories achieved 100% accuracy, eliminating all previous misclassifications. Chickenpox had one error, 
misclassifying one sample as Normal, while Measles had a single misclassification as Monkeypox. These results 
demonstrate the positive impact of data augmentation on the model's ability to distinguish between classes, particularly 
in diseases with subtle visual differences. The reduced confusion between Chickenpox and Measles indicates that the 
model has developed better class-specific features from the varied training data. 

The Grad-CAM visualization demonstrates (Figure 7) how the EfficientFormerV2 model interprets four classes of skin 
lesions: Monkeypox, Measles, Chickenpox, and Normal. The top row displays the original images, while the bottom row 
presents heatmaps that highlight the region’s most influential to the model’s predictions. For Monkeypox, the model 
shows strong activation over clustered pustular lesions, effectively capturing key features such as raised vesicles. The 
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heatmap for Measles reveals a broader attention pattern, consistent with the diffuse nature of its rash, showcasing the 
model’s ability to identify subtle visual cues. In the case of Chickenpox, the focus is on grouped vesicles, but with less 
intensity than Monkeypox, which may contribute to occasional misclassifications. For the Normal class, the heatmap 
shows minimal activation, confirming that the model correctly identifies healthy skin without being influenced by non-
lesion areas. 

 

Figure 7 Grad-CAM visualizations highlighting lesion-specific model attention 

Table 4 compares various models for classifying monkeypox and pox-type skin lesions. Among the models listed, the 
proposed EfficientFormerV2 model stands out with a performance score of 99.86% on a balanced dataset of 4,000 
images, outperforming all other models in accuracy and dataset size. Moreover, it incorporates XAI features like Grad-
CAM, which helps in interpreting AI decisions in clinical settings. The use of diverse augmentation techniques likely 
enhanced the model's generalization and robustness.  

Table 4 Performance comparison of existing models with proposed model 

Model Data Result Augmentation XAI 

ViT + DenseNet201 Ensemble [11] 2,400 81.91 Yes No 

Mpox-XDE  [10] 770 98.7 Yes Yes 

Ensemble CNN [9] 300 98.33 Yes Yes 

Ensemble [12] 755 93.71 Yes No 

VGG16 + LRP [8] 2,310 93.29 Yes Yes 

DeepGenMon [7] 1,506 98.5 Yes No 

MSMP-Net [13] 755 87.03 Yes No 

Our proposed EfficientFormerV2 4,000 99.86 Yes Yes 

In comparison, models like Mpox-XDE and DeepGenMon achieved high performance scores of 98.7% and 98.5%, 
respectively, but they were trained on smaller datasets. DeepGenMon's lack of explainability limits its clinical 
transparency. The Ensemble CNN model performed well with a score of 98.33%, but with only 300 images, its scalability 
and generalization are questionable. Other models, such as VGG16 + LRP, Ensemble, and MSMP-Net, scored between 
87.03% and 93.71%, despite using data augmentation and some explainability tools. The ViT + DenseNet201 Ensemble 
scored 81.91%, possibly due to inadequate training or dataset issues. 

Our proposed framework outperforms traditional architectures with its hybrid design, merging convolutional inductive 
biases and efficient token mixing through Mobile Block 4D (MB⁴D) and Mobile Block 3D (MB³D). This structure enables 
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fine-grained local feature extraction early on and models long-range dependencies with multi-head self-attention in 
deeper layers. Unlike standard Vision Transformers, EfficientFormerV2 uses spatially aware tokenization after 
convolutional encoding to preserve essential morphological details in skin lesions. The architecture features depthwise 
separable convolutions, residual pooling paths, GeLU activations, and LayerNorm, resulting in improved 
representational efficiency, low latency, and stable convergence, validated by stratified cross-validation. 

Our data preprocessing and augmentation pipeline enhanced generalization and reduced overfitting. We normalized 
inputs and applied geometric (rotation, shifting, zooming) and photometric (brightness, hue, contrast) augmentations 
to mimic real-world variability. Additional transformations like Gaussian noise and elastic distortion increased intra-
class diversity, particularly for similar categories like Chickenpox and Measles. Techniques such as cutout and color 
jittering improved global lesion context learning and minimized over-reliance on localized features. This balanced 
training set resulted in significant improvements across all evaluation metrics, demonstrating the pipeline’s 
effectiveness in developing robust decision boundaries with limited data. 

The proposed framework combines data-driven learning with explainability and deployment efficiency. 
EfficientFormerV2 features a low parameter count and token-efficient attention, making it suitable for real-time 
diagnostics on edge devices. Its integration with Grad-CAM provides saliency maps that highlight lesion-relevant 
regions, enhancing diagnostic validation and regulatory compliance while fostering user trust in AI-assisted healthcare 
tools. With a low computational footprint and minimal memory requirements, EfficientFormerV2 is ideal for mobile and 
point-of-care systems, especially in resource-limited settings. Its quick inference capabilities and clear outputs support 
dermatologist-AI collaboration for fast monkeypox screening, reducing the need for expert interpretation or lab testing. 
The system’s real-time interpretable predictions make it a strong candidate for scalable public health surveillance. 

Despite these advantages, several technical limitations persist. It was trained and validated on a single dataset (MSID), 
limiting its exposure to variations between clinics and diverse demographics. While Grad-CAM provides explanations, 
it doesn’t offer causal interpretability and is sensitive to noise and input changes. Additionally, EfficientFormerV2's fixed 
receptive fields and static patch tokenization may perform poorly on lesions with irregular or varying shapes. It also 
doesn’t address robustness against domain shifts, adversarial attacks, or changes in real-world data distribution, which 
are essential for reliable deployment. Lastly, the assumption of independent and identically distributed (i.i.d.) data may 
not hold true in multi-site clinical settings. 

Future work will focus on improving domain generalization and adaptation through techniques like CORAL, MMD-based 
alignment, and adversarial feature disentanglement to handle domain shifts. We will enhance spatial modeling using 
deformable attention modules and scale-invariant convolutions for better detection of irregular lesion structures. We 
also plan to explore interpretable architectures such as ProtoPNet and Concept Bottleneck Models (CBMs) for clearer 
decision-making. To reduce reliance on large, labeled datasets, we will implement self-supervised learning methods, 
including contrastive frameworks (MoCo, SimCLR) and masked image modeling. Lastly, we will evaluate certified 
adversarial robustness using interval-bound propagation and randomized smoothing to ensure safe deployment in 
high-risk clinical settings. 

5. Conclusion 

This study presents a new hybrid DL framework for monkeypox and pox-type lesions recognition using the efficient 
EfficientFormerV2 architecture. Our approach combines convolutional inductive biases with token-efficient attention, 
achieving high accuracy and low inference latency, making it viable for real-time clinical use. We implemented a strong 
augmentation pipeline and stratified training to tackle issues of limited and imbalanced datasets, enhancing the model's 
generalization and stability. Grad-CAM integration provides transparency by highlighting key areas crucial for 
diagnosis. Our model outperforms current methods in identification and supports XAI in dermatology. This framework 
shows promise for trustworthy AI-assisted diagnosis in resource-limited settings. Future work will focus on domain 
adaptation and interpretable architectures to improve reliability and clinical application. 
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