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Abstract 

Lung cancer is one of the deadliest cancers globally, primarily due to its silent development and difficulties with late 
diagnoses. Traditional diagnostic methods like manual CT scans and histopathological slide analysis face challenges 
such as observer variability, limited sensitivity, and difficulties in handling large volumes of data. Convolutional neural 
networks (CNNs) can automate image classification, but their limited receptive fields hinder complex tissue structure 
analysis. Vision Transformers (ViTs) provide a solution but typically need large datasets and significant computing 
power, making them impractical in clinical settings. Our study introduces a hybrid deep learning (DL) framework using 
the LEViT architecture to enhance lung cancer classification. We utilized two public datasets: IQ-OTH/NCCD, containing 
1,097 CT images categorized into normal, benign, and malignant, and another dataset with 25,000 histopathological 
images across five tissue types. Our methodology included a multi-stage preprocessing pipeline to resize, reduce noise, 
enhance contrast, normalize, and augment data to tackle class imbalance and improve generalization. We evaluated our 
model using metrics like accuracy, F1 score, specificity, PR AUC, and Matthews Correlation Coefficient (MCC) through 
10-fold stratified cross-validation. Our LEViT-based model surpassed top models such as CoAtNet and CrossViT,
achieving 99.43% accuracy and 98.36% MCC on the IQ-OTH/NCCD dataset, and 99.02% accuracy with 97.97% MCC on
the other dataset. Additionally, we developed a real-time web application for clinicians to upload images and receive
visual explanations via Grad-CAM, promoting transparency in decision-making. This work provides a scalable, accurate,
and explainable AI solution for lung cancer recognition, connecting high-performance algorithms with clinical practice.

Keywords: Lung cancer; Vision transformer; Medical imaging; Explainable AI; Diagnostic tool 

1. Introduction

According to GLOBOCAN 2020, Lung cancer is the second most common cancer and the leading cause of cancer-related 
deaths globally, with approximately 2.2 million new cases and 1.8 million deaths each year [1]. The five-year survival 
rate is only 18.6%, dropping below 5% for late-stage diagnoses [2]. Non-small cell lung cancer (NSCLC) accounts for 
about 85% of cases and is often diagnosed at advanced stages due to minimal early symptoms [3]. Current diagnostic 
methods rely on visual inspections of CT scans and histopathological slides, which can be subjective and vary between 
observers, often lacking sensitivity for subtle tumor presentations. In resource-limited settings or high-throughput 
environments, this manual diagnostic approach is not scalable. Early and accurate detection is crucial for better patient 
outcomes and reducing healthcare system burdens. Traditional diagnostic methods, like radiographic interpretation, 
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often face issues such as inter-observer variability and limited sensitivity to subtle anomalies, especially in large-scale 
screenings [4]. This highlights the need for automated diagnostic systems that enhance identification accuracy and 
assist clinical decision-making. DL has advanced medical imaging notably, excelling in image recognition. CNNs are 
particularly effective for lung cancer identification in chest CT scans and histopathological slides.  

While CNNs have achieved notable success, they are fundamentally constrained by their local receptive fields [5]. This 
limitation holds back their capacity to capture long-range dependencies and global contextual relationships, which are 
crucial for identifying irregular tumor patterns or subtle morphological differences in complex tissues. Furthermore, 
CNNs depend on large annotated datasets to generalize effectively [6], [7]. However, this is often a challenge in image 
classification applications due to issues related to data privacy and the high costs associated with data acquisition [8]. 
To overcome these issues, ViTs have emerged as an alternative to traditional CNNs, capturing global attention and 
contextual features in images [9]. However, ViTs require large amounts of data, are computationally intensive, and lack 
certain advantages of CNNs, like translation invariance and locality. Hybrid architecture that combines CNNs and ViTs 
has shown promise in addressing these issues. One notable model is LEViT, which effectively integrates CNN spatial 
feature extraction with ViT global attention in a computationally efficient way, making it ideal for resource-sensitive 
tasks like medical image analysis [10]. Furthermore, explainability in AI diagnostics is crucial for gaining acceptance in 
clinical settings [11]. While high-performance models can accurately predict diseases, their "black box" nature can 
reduce trust among clinicians. Techniques like Gradient-weighted Class Activation Mapping (Grad-CAM) visualize key 
areas in input images that influence predictions, enhance transparency and build confidence in AI-assisted diagnoses. 

In this study, we present a comprehensive framework for lung cancer classification that integrates the LEViT model 
with a robust preprocessing pipeline and an interpretable deployment environment (Figure 1). We focus on two diverse 
and widely used datasets: IQ-OTH/NCCD, which consists of CT scans categorized into normal, benign, and malignant 
classes, and another dataset featuring histopathology images of lung and colon tissue samples, divided into five classes. 
To address data imbalance and enhance model generalization, we implemented an extensive preprocessing and 
augmentation strategy that includes resizing, noise reduction, histogram equalization, and geometric transformations. 
The proposed model was trained using 10-fold stratified cross-validation and evaluated with five comprehensive 
metrics. Our key contributions are as follows: 

• Proposed a LEViT-based hybrid DL model for multi-class lung cancer classification using both CT and 
histopathological images. 

• Integrated Grad-CAM-based visual explanations to enhance model interpretability and clinical trust. 
• Developed a real-time web application enabling clinicians to upload and analyze medical images with 

transparent AI outputs. 
• Performed a comparative evaluation with state-of-the-art models, demonstrating the superiority of our 

approach across all key metrics. 

The paper is structured as follows: Section 2 examines relevant literature to establish the basis for our study. Section 3 
presents the datasets, methods, and architectural designs of the proposed models. In Section 4, we analyze the results, 
compare them with existing studies, and showcase our web application. Section 5 discusses the significance of our 
findings. Finally, section 6 concludes the article by proposing potential directions for future research. 

2. Related Works 

2.1. CNN Based Approaches 

Raza et al. [12] developed Lung-EffNet, a transfer learning model using EfficientNetB1 for classifying multiple types of 
lung cancer based on 1,097 CT images from the IQ-OTH/NCCD dataset. The model achieved an accuracy of 99.10%. Data 
augmentation was used to tackle class imbalance, but the study faced challenges due to a small dataset size and limited 
external validation. Musthafa et al. [13] developed a double-layered CNN optimized with SMOTE and advanced 
preprocessing to classify lung cancer stages using 1,097 CT scans from the IQ-OTH/NCCD dataset. The model achieved 
99.64% accuracy, but its generalizability is limited by demographic constraints and lack of external validation. Gopinath 
et al. [14] developed a Deep Fused Features-based Cat-Optimized Network (DFF-CON) for lung cancer classification 
using 78,090 CT images from the LIDC-IDRI dataset. The model, which combines saliency maps, CNNs, and Cat Swarm 
Optimization, achieved 99.92% accuracy. However, its practical use is limited due to reliance on synthetic augmentation 
and insufficient clinical validation. 
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Figure 1 Overall methodology 

Shah et al. [15] created a Deep Ensemble 2D CNN for detecting lung nodules, combining three different CNNs. Trained 
on 1,600 CT scans from the LUNA16 dataset, it achieved 95% accuracy. The development included thorough 
preprocessing and data augmentation. Nonetheless, it hasn't been tested on external datasets and doesn't account for 
3D spatial information. Tyagi et al. [16] developed LCSCNet, a multi-level 3D DenseNet using concurrent squeeze-and-
excitation and asymmetric convolutions to classify TNM-stage lung cancer. It was tested on the Lung-PET-CT Dx and 
NSCLC-Radiogenomics datasets, totaling 417 CT scans, achieving 97% accuracy. However, the model relies solely on CT 
input and has a limited dataset diversity, potentially hindering its generalization to broader clinical applications. Priya 
et al. [17] proposed SE-ResNeXt-50-CNN, integrating QDHE preprocessing and CNN classification for lung cancer 
detection using 3,552 CT images from the LUNA16 dataset. The model achieved 99.15% accuracy and outperformed 
existing models but requires significant computational resources and lacks external dataset validation.  

2.2. ViT Based Approaches 

Fu et al. [18] introduced LungMaxViT, a hybrid DL model combining CNNs with MaxViT-based attention to classify lung 
diseases from over 33,900 X-ray images (ChestX-ray14 and COVID-QU-Ex). Achieving 96.8% accuracy and 93.2% AUC, 
it excels in multi-class tasks. Nevertheless, class imbalance and computational intensity hinder broader scalability. 
Veasey et al. [19] proposed using LoRA-based fine-tuning on large vision models like SwinV2-b for lung nodule 
malignancy classification. They worked with the NLSTx and LIDC datasets, which included 857 and 647 nodules, 
respectively. Their best model improved the ROC AUC by 3% compared to previous methods and reduced parameters 
by 89.9%. However, it faced limitations, including modest clinical improvements and a lack of domain-specific data. 
Imran et al. [20] proposed a hybrid CNN-ViT hierarchical model for NSCLC classification using 15,000 histopathology 
images from the LC25000 dataset. The model achieved 98.8% accuracy, leveraging CNNs for local features and ViTs for 
global context. Moreover, the model faces challenges due to its reliance on a single dataset and the lack of validation in 
clinical deployment.  Alsulami et al. [21] introduced LCCST-EMHI, ensemble model combining Swin Transformer 
features with BiLSTM-MHA, DDQN, and SSAE classifiers, optimized via the Walrus Optimization Algorithm. Tested on 
25,000 histopathological images across five classes, it reached 98.92% accuracy. However, its real-world applicability 
remains unverified due to clinical deployment gaps.  

Gulsoy et al. [22] developed FocalNeXt, a hybrid model combining ConvNeXt and FocalNet for lung cancer detection in 
CT scans. Tested on the IQ-OTH/NCCD dataset with 1,097 images, it achieved an accuracy of 99.81%. Despite its superior 
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performance over existing ViT and CNN models, the model’s real-world applicability is limited by dataset diversity and 
computational demands. Ko et al. [23] studied the impact of various optimizers on ViT models for classifying lung 
diseases with a dataset of 19,003 chest X-ray images. They found that the FastViT model using the NAdam optimizer 
reached an accuracy of 97.63%. While offering valuable insights into optimization strategies, the study's limitations 
include exclusion from CNN baselines and sensitivity to class imbalance. 

3. Materials and Methods 

3.1. Data Description 

This study used two publicly available datasets: IQ-OTH/NCCD [24] and LC25000 [25]. The IQ-OTH/NCCD dataset 
consists of 1,097 CT scan images from 110 individuals, categorized into three groups: normal (55 subjects), benign (15), 
and malignant (40). These images were acquired using a Siemens SOMATOM CT scanner with a tube voltage of 120 kV, 
a slice thickness of 1 mm, and window settings ranging from 350 to 1200 Hounsfield Units (HU) for width and 50 to 600 
HU for center. The distribution of labeled images includes 561 malignant, 120 benign, and 416 normal samples. The 
LC25000 dataset contains 25,000 high-resolution pathology images across five balanced categories: colon 
adenocarcinoma (Colon Aca), benign colonic tissue (Colon N), lung adenocarcinoma (Lung Aca), lung squamous cell 
carcinoma (Lung Scc), and benign lung tissue (Lung N), with 5,000 images per class. These images were digitized from 
pathology slides using high-resolution microscopes at 1024 x 768 pixels, ensuring detailed visual quality for DL 
applications. All images are de-identified and compliant with HIPAA regulations. Visual examples from both datasets 
are provided in Figure 2. For model development and evaluation, both datasets were divided into training, validation, 
and testing sets in an 80:5:15 ratio. 

 

Figure 2 Sample image from each class from (a) IQ-OTH/NCCD and (b) LC25000 dataset 

3.2. Data Preprocessing and Augmentation 

To ensure uniformity across the dataset, all input images were resized to  224 × 224 pixels using Bilinear Interpolation, 
a technique that calculates each new pixel’s value by taking a weighted average of the four closest neighboring pixels 
from the original image [26]. This ensures size consistency without significant loss of visual details. After resizing, a 
Median Filter was applied to remove salt-and-pepper noise while preserving edges [27]. This method replaces the pixel 
value at a given location with the median value from its surrounding neighborhood. If P(a, b) represents the pixel 
intensity at coordinates (a, b), the filtered intensity Pmed(a, b) is computed as Equation 1, where (am, bn) are the pixel 
coordinates are within the kernel window centered at (a, b) . This helps reduce noise while preserving important 
structural features. 

𝑃med(𝑎, 𝑏) = median(𝑃(𝑎𝑚, 𝑏𝑛)) (1) 

We used Histogram Equalization to improve contrast and highlight texture differences in the image. This method 
redistributes intensity values across the dynamic range, enhancing the image's separability. Let ( h(P)) represent the 
histogram of pixel intensities, and ( sq) be the cumulative frequency up to intensity level ( P ). For an image with 𝑅 × 𝐶 

pixels and a maximum intensity level of (G), the transformation function 𝐸(𝑃) is defined as Equation 2. 

𝐸(𝑃) = (
∑ 𝑠𝑞

𝑃
𝑞=0

𝑅 × 𝐶
) × 𝐺 

(2) 

This operation enhances local contrast and makes low contrast features more prominent. 
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Gaussian smoothing was used to reduce high-frequency noise while preserving important image structures. The 
smoothed intensity 𝑄smooth(𝑥, 𝑦)  at coordinates (x, y)  is calculated by convolving the image with a Gaussian kernel 
 K(u, v), as defined by Equation 3, where ( r ) is the kernel's radius. This method effectively suppresses noise while 
maintaining the image's overall structure. 

𝑄smooth(𝑥, 𝑦) = ∑ ∑ 𝑄(𝑥 + 𝑢, 𝑦 + 𝑣)

𝑟

𝑣=−𝑟

𝑟

𝑢=−𝑟

⋅ 𝐾(𝑢, 𝑣) 
(3) 

Min-Max Normalization was utilized to standardize the input values for training. Let 𝑄min𝑎𝑛𝑑𝑄max  represent the 
minimum and maximum pixel intensity values in the image. The normalized pixel intensity 𝑄norm(𝑥, 𝑦) is computed as 
shown in Equation 4. This normalization ensures consistent value ranges, improving model convergence. Figure 3 
demonstrate preprocessed examples from the LC25000 and IQOTH/NCCD datasets. 

𝑄norm(𝑥, 𝑦) =
𝑄(𝑥, 𝑦) − 𝑄𝑚𝑖𝑛

𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛
 

(4) 

 

Figure 3 Sample images from each class of both IQ-OTH/NCCD and LC25000 dataset after preprocessing 

To improve the model's generalization and adaptability, we used data augmentation techniques only training set to 
increase variability and achieve class balance. For the IQ-OTH/NCCD dataset, we applied oversampling, resulting in 561 
images per class (normal, benign, and malignant), raising the total from 1,097 to 1,683 images. Image augmentation 
included random rotations of ±25°, horizontal and vertical flips, ±0.15 distortion, and translations up to 12% of the 
image size. We also applied scaling transformations between 0.85 and 1.15 and brightness adjustments ranging from 
0.75 to 1.25. The LC25000 dataset, already balanced with 5,000 images per class (totaling 25,000 images), received the 
same augmentation methods. This provided 252 test images for IQ-OTH/NCCD and 3,750 for LC25000. Transformations 
are illustrated in Figure 4. 
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Figure 4 Sample images from both (a) IQ-OTH/NCCD and (b) LC25000 dataset after augmentation 

3.3. Experimental Models 

3.3.1. ViT Models 

Transfer learning has become a vital technique in medical image analysis, particularly for tasks like lung cancer 
identification, where large, annotated datasets are often scarce. In this study, we employed state-of-the-art DL models—
CoAtNet, Nested-TNT, CrossViT, and HorNet—using transfer learning for lung cancer classification. These models were 
selected for their architectural strengths in capturing both local texture and global structural features from medical 
images. Each model introduces innovative mechanisms that address the limitations of traditional CNNs and enhance 
the capability to learn from high-resolution clinical imagery. 

CoAtNet combines convolutional operations with self-attention mechanisms, unifying the generalization capability of 
CNNs with the scalability of Transformers. This combination is particularly effective for local feature extraction and 
contextual understanding [28]. Nested-TNT utilizes a Transformer-in-Transformer design, allowing it to capture fine-
grained details within each patch while also modeling dependencies between patches [29]. This hierarchical 
representation is beneficial for identifying small lesions and heterogeneous cancerous tissues. CrossViT enhances visual 
representation by processing input images at multiple scales using a dual-branch ViT. This multi-scale attention 
mechanism allows the model to better detect abnormalities that vary in size, shape, and location [30]—common 
challenges in lung cancer diagnosis. On the other hand, HorNet introduces high-order spatial interactions through 
recursive convolutional attention, delivering strong performance while maintaining computational efficiency [31]. This 
makes it particularly suitable for real-time or resource-constrained clinical applications. 

3.3.2. Proposed LEViT 

The LEViT architecture is a hybrid visual model that combines CNNs with ViTs. This design (Figure 5) provides a robust, 
lightweight, and high-speed framework for lung cancer identification. Its hybrid nature is particularly effective in 
extracting both low-level spatial and high-level semantic features from medical images. The input to the LEViT model 
consists of RGB lung image samples resized to 224 × 224 pixels. The model starts with a convolutional stem made up of 
four consecutive 3 × 3 convolution layers. These layers reduce the spatial dimensions while increasing the number of 
feature channels, resulting in a representation of 256 × 14 × 14. This feature map is then tokenized and processed 
through stacked attention-based transformer stages. Each stage in the transformer block includes Multi-Head Self-
Attention (MHSA) and two-layer Multi-Layer Perceptrons (MLPs). The MHSA allows the model to capture complex 
relationships between image patches by projecting the input sequence into multiple attention heads [32].  
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Figure 5 Overview of the proposed LEViT architecture that combines convolutional layers for early spatial feature 
extraction with hierarchical transformer blocks for capturing global dependencies 

The MHSA operation is defined by Equations 5-6, where Q, K, and V represent the query, key, and value matrices derived 

from the input embeddings. 𝑊𝑖
𝑄, 𝑊𝑖

𝐾, 𝑎𝑛𝑑 𝑊𝑖
𝑉 are learnable projection matrices for each head. 

MHSA(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊𝑂 (5) 

head𝑖 = Attention(𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (6) 

After each attention block, there is a two-layer multi-layer perceptron (MLP) that utilizes a non-linear activation 
function. This design adds depth and allows the model to learn complex transformations [33]. The operation of the MLP 
is described by Equation 7, where 𝑊1 𝑎𝑛𝑑 𝑊2 are learnable weights, 𝑏1 𝑎𝑛𝑑 𝑏2 are biases, and 𝜎 represents a non-linear 
activation function, typically GELU or ReLU.  

MLP(𝑥) = 𝑊2 ⋅ σ(𝑊1 ⋅ 𝑥 + 𝑏1) + 𝑏2 (7) 

LEViT employs a hierarchical structure featuring attention blocks that gradually downsample the spatial resolution 
while increasing the channel dimension [34]. The model starts with attention layers that have 4 heads and progresses 
to 6, 8, and ultimately 12 heads as it becomes deeper. This design enhances the network's ability to capture increasingly 
abstract and global features.  The final output is a compact tensor with dimensions 512 × 4 × 4. An average pooling 
layer is then applied to aggregate the spatial features into a 512-dimensional feature vector, which is subsequently 
passed to a supervised classifier for the final prediction. This architecture ensures both discriminative power and 
computational efficiency. 

3.4. Training Parameters and Evaluation 

The training process consisted of 30 epochs, with each epoch representing a complete pass through the dataset. The 
Adam optimizer was utilized to adjust the model parameters, with a fixed learning rate of 0.001. Categorical cross-
entropy served as the loss function. To prevent overfitting and enhance generalization, we implemented callback 
functions such as early stopping, a learning rate scheduler, and model checkpointing. Model performance was measured 
using accuracy, F1 score, specificity, PR AUC, and MCC. Accuracy assessed overall correct predictions, while the F1 score 
emphasized the balance between precision and recall, which is important for imbalanced datasets. Specificity focused 
on correctly identifying negative cases to reduce false positives, PR AUC analyzed the precision-recall trade-off, and MCC 
provided a comprehensive performance measure based on all confusion matrix components. To ensure a robust 
evaluation, 10-fold stratified cross-validation was employed. The dataset was divided into ten subsets while 
maintaining class distribution. In each iteration, one subset was used for validation, and the remaining nine were used 
for training, repeating this process for each subset. 
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4. Results and Discussion 

The results show the models’ performance across 3-class (IQ-OTH/NCCD) and 5-class (LC25000) datasets before 
augmentation. LeViT consistently outperforms all the other models in both datasets (Table 1). For the IQ-OTH/NCCD 
dataset, it achieves the highest accuracy at 97.88% and an MCC of 96.69%. In the LC25000 dataset, it again leads with 
an F1 score of 97.13% confirming its robustness and reliability.  

Table 1 Performance comparison of models in both LC25000 and IQ-OTH/NCCD dataset before augmentation 

Model Dataset Accuracy F1 Specificity PR AUC MCC 

LEViT  97.88 ± 0.34 96.93 ± 0.25 98.03 ± 0.37 98.17 ± 0.29 96.69 ± 0.47 

HorNet 
 

96.66 ± 0.50 95.03 ± 0.45 96.36 ± 0.54 96.16 ± 0.35 95.28 ± 0.30 

CoAtNet 3-class 94.80 ± 0.43 95.30 ± 0.79 95.14 ± 0.39 95.39 ± 0.64 93.79 ± 0.28 

Nested-TNT  93.44 ± 1.04 91.60 ± 0.63 96.39 ± 0.90 94.69 ± 0.46 93.33 ± 0.18 

CrossViT  92.26 ± 1.51 90.69 ± 0.98 92.81 ± 0.58 92.87 ± 0.90 91.89 ± 0.41 

LEViT  98.29 ± 0.31 97.13 ± 0.25 97.96 ± 0.19 98.34 ± 0.34 96.75 ± 0.05 

CoAtNet  97.14 ± 0.40 96.73 ± 0.49 96.97 ± 0.21 97.27 ± 0.37 96.15 ± 0.24 

HorNet 5-class 96.40 ± 0.46 96.12 ± 0.16 96.37 ± 0.41 95.84 ± 0.47 94.76 ± 0.34 

CrossViT  94.88 ± 0.24 94.33 ± 0.56 95.86 ± 0.69 95.38 ± 0.45 93.57 ± 1.03 

Nested-TNT  94.47 ± 1.07 94.87 ± 0.69 93.03 ± 0.84 95.24 ± 0.45 94.20 ± 0.57 

CoAtNet closely follows in the IQ-OTH/NCCD dataset, with solid specificity at 95.14%. In the LC25000 dataset, it 
achieves a PR AUC of 97.27%, making it a dependable model just behind LeViT. HorNet performs well but slightly trails 
CoAtNet, it shows good F1 at 95.03% in the IQ-OTH/NCCD. In the LC25000 setting, it scores 94.76% MCC, indicating 
solid performance, but not at the top level. CrossViT underperforms in the IQ-OTH/NCCD dataset, recording the lowest 
MCC at 91.89%. Its performance improves in the 5-class dataset with 93.57% MCC, but it still ranks behind the top 
models. Nested-TNT outperforms CrossViT in both datasets, achieving 93.44% accuracy and 94.47% accuracy though 
it still lags behind other models. 

Data augmentation led to substantial performance improvements for all models in Table 2 on both the 3-class IQ-
OTH/NCCD dataset and the 5-class LC25000 dataset. LeViT achieved the highest accuracy, 99.43% for IQ-OTH/NCCD 
and 99.02% for LC25000. HorNet and CoAtNet followed, while CrossViT (93.70%) and Nested-TNT had the lowest 
accuracies.  LeViT also led in F1 Score with 98.44% for IQ-OTH/NCCD, and HorNet scored 97.76% for LC25000. CoAtNet 
had competitive F1 scores, but Nested-TNT performed the weakest in both datasets. In specificity, LeViT scored 99.57% 
on IQ-OTH/NCCD and 99.12% on LC25000.  Nested-TNT did well on IQ-OTH/NCCD but struggled with LC25000. 
CoAtNet and CrossViT showed consistent performance but did not lead. LeViT had the highest PR AUC with 99.94% for 
IQ-OTH/NCCD and 99.18% for LC25000, while CrossViT had the lowest at 94.87% in the 3-class dataset. LeViT's 
performance was confirmed by MCC scores of 98.36% and 97.97% for the two datasets, with CoAtNet and HorNet 
following, and CrossViT scoring the lowest at 93.71% in the 3-class dataset. 

Table 2 Performance comparison of models in both LC25000 and IQ-OTH/NCCD dataset after augmentation 

Model Dataset Accuracy F1 Specificity PR AUC MCC 

LEViT  99.43 ± 0.12 98.44 ± 0.69 99.57 ± 0.29 99.94 ± 0.51 98.36 ± 0.09 

HorNet  98.31 ± 0.97 96.70 ± 0.05 98.30 ± 0.55 97.17 ± 0.30 96.56 ± 0.14 

CoAtNet 3-class 96.30 ± 0.84 96.41 ± 0.95 96.31 ± 0.51 97.35 ± 0.14 95.13 ± 0.03 

Nested-TNT  94.79 ± 0.39 93.49 ± 0.25 97.41 ± 0.19 95.73 ± 0.42 94.78 ± 0.31 

CrossViT  93.70 ± 1.33 92.48 ± 1.11 94.45 ± 1.44 94.87 ± 1.20 93.71 ± 1.61 

LEViT  99.02 ± 0.98 98.32 ± 0.90 99.12 ± 0.22 99.18 ± 0.31 97.97 ± 0.57 



International Journal of Science and Research Archive, 2025, 15(01), 1798-1810 

1806 

CoAtNet  98.73 ± 0.47 98.47 ± 0.66 98.74 ± 0.28 99.29 ± 0.87 97.94 ± 1.07 

HorNet 5-class 98.26 ± 0.12 97.76 ± 0.44 97.54 ± 0.34 97.25 ± 0.25 96.67 ± 0.31 

CrossViT  96.15 ± 1.09 96.06 ± 1.70 97.11 ± 1.29 95.33 ± 1.17 94.64 ± 1.47 

Nested-TNT  96.09 ± 1.27 96.22 ± 1.49 94.45 ± 1.18 96.97 ± 1.14 95.47 ± 1.03 

Figure 6 illustrates the training and validation learning curves over 30 epochs for both datasets. For the IQ-OTH_NCCD 
dataset, training and validation loss decrease consistently, approaching zero by epoch 25, indicating effective learning 
without overfitting. Minor fluctuations in validation loss remain stable. Both accuracy curves rise steadily, nearly 
reaching 99% by the final epoch, demonstrating strong generalization and consistent performance. Recall and precision 
also show upward trends, stabilizing above 97%, indicating the model effectively detects true positives and minimizes 
false positives. For the LC25000 dataset, similar trends are observed. The loss curves decline sharply, converging to 
nearly zero, while accuracy quickly climbs and plateaus around 99%, confirming robust generalization. Recall and 
precision improve steadily, achieving nearly perfect values by the end of training, with high confidence and minimal 
errors. 

 

Figure 6 Learning curve of the proposed LEViT model for both datasets 

 

Figure 7 Confusion matrices of the proposed LEViT model for both datasets 

Figure 7 shows the confusion matrices for the LEViT model applied to the IQ-OTH/NCCD and LC25000 datasets, 
demonstrating its strong classification performance. On the IQ-OTH/NCCD dataset, the model achieved perfect 
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accuracy, correctly classifying all Normal (62/62) and Malignant (84/84) samples, with only one Benign sample 
misclassified as Normal. For the LC25000 dataset, which includes five classes—Colon Aca, Colon Normal, Lung 
Adenocarcinoma, Lung Squamous Cell Carcinoma, and Lung Normal—the model correctly classified at least 741 out of 
750 samples in each category. Minor misclassifications occurred primarily between similar categories, such as Colon 
Aca and Colon Normal, or among the Lung subtypes, which is expected due to their visual similarities. 

Figure 8 shows a web-based application for medical image classification with explainable AI (XAI). In the left panel, a 
histopathological image from the LC25000 dataset is uploaded, resulting in a 98.42% confidence level for Colon Aca. 
Other classes receive probabilities below 1%. The Grad-CAM visualization indicates key areas, highlighted in blue and 
yellow, that influenced the classification, focusing on dense cellular regions. In the right panel, a chest CT scan from the 
IQ-OTH/NCCD dataset is processed, predicting a Benign case with a 97.32% confidence score. Minor probabilities are 
assigned to Malignant (2.30%) and Normal (0.38%). The Grad-CAM output emphasizes the thoracic region, particularly 
around the lungs. 

 

Figure 8 Web application showcasing explainable AI predictions using Grad-CAM 

Table 3 compares existing methods with our proposed LeViT approach. The model achieves impressive accuracy, 
scoring 99.43% on the IQ-OTH/NCCD dataset (3-class) and 99.02% on the LC25000 dataset (5-class), outperforming all 
other models. For context, earlier methods like SE-ResNeXt-50 and EfficientNetB1 achieved 99.15% and 99.10% 
accuracy, respectively, while CNN-ViT Hybrid and LCCST-EMHI reached up to 98.92%.  Additionally, our model is 
practical for real-world use as it is deployed as a real-time web application, allowing clinicians to upload images and 
receive instant predictions. We also incorporate explainable AI (XAI), using Grad-CAM for visualizing decision-making 
areas in medical images, enhancing transparency and trustworthiness, which is crucial in clinical settings. 

Our proposed LEViT model outperformed existing architectures thanks to its hybrid design, which integrates 
convolutional stems for local feature extraction with hierarchical transformer stages for long-range dependencies. It 
employs progressive multi-head self-attention (increasing from 4 to 12 heads) for multi-scale representation learning, 
essential for detecting dispersed lesions in CT scans and diverse patterns in histopathology. LEViT strikes a balance 
between representational power and computational efficiency, enabling quicker inference without compromising 
accuracy. The preprocessing pipeline includes histogram equalization, Gaussian smoothing, and median filtering to 
enhance contrast, reduce noise, and maintain structural details. Data augmentation techniques improved model 
accuracy by 1.55% and increased the MCC by 1.67%, demonstrating better generalization and robustness. The web 
application provides real-time predictions and uses Grad-CAM visualizations to highlight important areas in images. It 
detects lung masses in CT scans and identifies abnormal nuclei in histopathology, enhancing interpretability and 
building trust among clinicians. LEViT's lightweight architecture allows easy deployment on mid-range GPUs for real-
time integration into PACS and HIS. Its compatibility with both CT and histology supports cross-departmental use, and 
the explainable interface complies with clinical and regulatory standards for AI-assisted diagnostics. 

 

 



International Journal of Science and Research Archive, 2025, 15(01), 1798-1810 

1808 

Table 3 Comparative analysis of existing models and the proposed LeViT-based approach 

Model Dataset Data Accuracy Application XAI 

Lung-EffNet [12] IQ-OTH/NCCD 1,097 99.10% No No 

Deep Ensemble [15] LUNA16 1,600 95% No No 

LCSCNet  [16] Lung-PET-CT Dx + NSCLC 417 97% No No 

SE-ResNeXt-50-CNN [17] LUNA16 3,552 99.15% No No 

LungMaxViT  [18] ChestX-ray14 + COVID-QU-Ex 33,900+ 96.80% No Yes 

CNN-ViT Hybrid  [20] LC25000 15,000 98.80% No No 

LCCST-EMHI  [21] Histopathology Images 25,000 98.92% No No 

FocalNeXt  [22] IQ-OTH/NCCD 1,097 99.81% No No 

CrossViT [23] Chest X-ray multi-source 19,003 97.63% No No 

Proposed LEViT (Ours) IQ-OTH/NCCD 1,683 99.43% Yes Yes 

 LC25000 25,000 99.02% Yes Yes 

Despite their high performance, resizing fixed-size inputs can result in a loss of spatial detail in high-resolution 
pathology images, potentially making deep attention layers less sensitive to positional information and affecting the 
recognition of modest cues. Domain shifts between institutions pose challenges due to different imaging techniques and 
demographics. Besides, Grad-CAM's inability to quantify uncertainty limits its interpretability in unclear cases. Future 
enhancements should focus on multi-resolution transformers, deformable attention mechanisms, and integrating 
vision-language models. Improving uncertainty estimation through methods like Bayesian inference and advanced 
explainable AI techniques, including Layer-wise Relevance Propagation (LRP) and counterfactuals, will increase 
reliability. Validation on cross-institutional datasets and exploration of federated learning will support privacy-
preserving and scalable solutions. 

5. Conclusion 

Detecting and treating lung cancer is challenging due to late-stage diagnoses and complex classification. This research 
presents a hybrid LEViT-based vision model integrated into a real-time web application for early lung cancer 
recognition. The framework tackles issues like class imbalance, model generalization, interpretability, and clinical 
deployment. By combining convolutional operations with hierarchical self-attention, the model balances scalability, 
accuracy, and efficiency. The web tool enhances access to diagnostic support, making it suitable for various healthcare 
settings, from urban centers to rural clinics and telemedicine platforms. While the system performs well in controlled 
experiments, it still needs extensive validation in real-world clinical settings. Factors like patient diversity and hardware 
limitations could impact results. Its high computational demands may also limit use in resource-poor facilities. Future 
efforts should focus on validating performance with multi-center datasets, incorporating various imaging techniques, 
and improving compatibility across platforms for broader healthcare use. Developing interpretable and accessible AI 
systems can enhance diagnostic accuracy and support earlier interventions, leading to improved patient outcomes. 
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