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Abstract 

Sleep stage classification is crucial for diagnosing sleep disorders and understanding sleep physiology. This study 
presents a comprehensive comparison between traditional machine learning algorithms and deep learning 
architectures using EEG recordings from the Physionet database. We extract 23 time and frequency domain features 
from each 30-second EEG segment and evaluate their performance across SVM, Random Forest, k-NN, and Gradient 
Boosting against CNN, LSTM, and hybrid CNN-LSTM models with attention mechanisms. Our results demonstrate that 
while traditional approaches achieve 82.4% accuracy with significant interpretability advantages, deep learning models 
reach 89.7% accuracy but require substantially more computational resources. The CNN-LSTM architecture with 
attention mechanisms performs best across all sleep stages, particularly for discriminating between similar stages like 
S1 and REM. However, traditional Random Forest classifiers offer competitive performance for resource-constrained 
applications with only 15% longer inference time. This comparative framework provides valuable insights for 
researchers and clinicians selecting appropriate methodologies for sleep analysis based on their specific requirements 
for accuracy, interpretability, and computational efficiency. 

Keywords:  Sleep stage classification; EEG signal processing; Machine learning; deep learning; Feature extraction; 
Polysomnography 

1. Introduction

In the medical field, there are different areas that have been more vastly studied after technological advancement, and 
these influence the population in both ways: by exploring new things in physiology and diagnosing diseases with more 
accuracy. Sleep studies are among these fields that are being studied more frequently in the modern era. These studies 
help doctors better understand the sleep cycle and normal physiology and also help identify and treat a lot of novel 
sleep disorders. Sleep disorders are related to multiple comorbidities, including hypertension and cardiac diseases. The 
National Sleep Foundation (NSF) found in a survey that 40% of patients with hypertension, bone aches, heart disease, 
diabetes, depression, cancer, lung disease, osteoporosis, retention problems, and stroke report disturbed sleep patterns 
[1]. Among normal individuals, only 10% report some kind of sleep disorder. 

Sleep disorders may involve a physical change in the duration of sleep, such as reduced total sleep duration or increased 
time to fall asleep. The NSF divides sleep disorders into two types, i.e., primary sleep disorders that include sleep-
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disordered breathing (SDB), sleep-wake disturbances, insomnia, movement disorders (restless leg syndrome (RLS) and 
periodic limb movement), and secondary sleep disorders that are caused by other diseases such as chronic pain, 
gastroesophageal reflux, frequent urination, dyspnea, chronic preventable lung disease, or asthma. Primary sleep 
disorders are diagnosed on the basis of true knowledge of sleep stages and their normal patterns. Mostly all sleep 
disorders are initially suspected on a clinical basis, but the confirmed diagnosis of the specific disorder is made with the 
help of polysomnography (PSG). 

PSG is an array of physiological signs which are recorded during the whole night when a person is at rest in sleep. These 
multivariate physiological signs, also known as biosignals, include electroencephalograms (EEG), electrocardiograms 
(ECG), electrooculograms (EOG), and electromyograms (EMG). Among these, EEG is most commonly used by physicians 
to represent the brain's activity during different sleep stages and in the classification of sleep disorders. Based on the 
scoring performed by sleep specialists following the Rechtschaffen and Kales (R & K) rules, which were identified in 
1968 and later modified by the American Academy of Sleep Medicine (AASM) [2], sleep is divided into different stages: 
weakness (W), non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. 

Throughout the years, researchers have explored various approaches to automate sleep stage classification. Santaji and 
Desai [13] proposed a method utilizing machine learning techniques to analyze EEG signals over a 10-s time window, 
achieving 97.8% accuracy with a random forest model. Bhusal et al. [14] addressed gradient saturation issues by 
employing a modified orthogonal convolutional neural network, enhancing classification accuracy and convergence 
speed. Tao et al. [15] developed a feature relearning technique for automated sleep staging based on single-channel 
EEG. Similarly, Yulita et al. utilized a convolutional and long short-term memory-based approach for automatic feature 
learning from EEG signals [16]. 

The traditional approach to sleep stage classification requires sleep specialists to manually interpret EEG signals frame 
by frame, which is both time-consuming and subject to human error. It takes hours to generate a conclusive report from 
these EEG signals, highlighting the need for a consistent and automated method that can assist physicians in analyzing 
EEG data and producing accurate reports. While previous studies have made significant strides in automating this 
process, most approaches treat feature extraction, selection, and classification as separate steps, which can lead to 
information loss between stages. 

Recent advancements in artificial intelligence, particularly deep learning, have shown remarkable success in various 
fields including image recognition, sound processing, and natural language processing. These techniques have also 
found applications in biomedical areas, utilizing specific approaches for signals such as EEG, ECG, EMG, and EOG. In this 
research, we are working with a comprehensive EEG dataset from Physionet [17], which contains polysomnographic 
recordings of whole-night sleep taken from Fpz-CZ and Pz-Oz electrode locations. 

In this research, we propose a comprehensive comparison of traditional machine learning and deep learning 
approaches for sleep stage classification using the Physionet EEG dataset [18]. Our methodology involves extracting 23 
carefully selected time-domain and frequency-domain features from each channel and evaluating their performance 
across multiple classical algorithms (SVM, Random Forest, k-NN, and Gradient Boosting) against advanced deep 
learning architectures (CNN, LSTM, and combined CNN-LSTM with attention mechanisms). The key contribution lies in 
our systematic evaluation framework that considers not only classification accuracy but also computational efficiency, 
model interpretability, and generalizability across subjects, providing practical insights into the optimal approach for 
different deployment scenarios. 

2. Dataset Description 

The dataset utilized in this study comprises polysomnographic EEG recordings sourced from Physionet's database. 
These recordings capture whole-night sleep patterns from subjects ranging in age from 25 to 101 years, with none of 
the participants using sleep medication during the recording period. The collection consists of 153 complete recordings, 
each approximately 20 hours in duration, captured over two consecutive day-night periods per subject. The EEG signals 
were recorded from two electrode placements—Fpz-CZ and Pz-Oz—at a sampling frequency of 100 Hz, providing dual-
channel data that reflects different regions of brain activity during sleep. 

Each recording has been meticulously evaluated by sleep specialists who manually classified the sleep stages according 
to the 1968 Rechtschaffen and Kales manual. This classification system divides sleep into six distinct stages: Awake, 
Stage 1, Stage 2, Stage 3, Stage 4, and REM. For analytical purposes, Movement Time segments were excluded from the 
study to focus solely on the sleep stages. To facilitate detailed analysis, each continuous recording was segmented into 
30-second intervals, resulting in 367,200 total segments across all recordings. 
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The dataset has been organized to support machine learning applications, with a deliberate 60-40 split between training 
and testing subsets. This division allocates 220,320 segments (60%) to the training set and 146,880 segments (40%) to 
the testing set. The relatively large proportion assigned to the testing subset was specifically chosen to evaluate the 
model's generalization capabilities across a substantial amount of unseen data. Each 30-second segment contains 3,000 
data points (given the 100 Hz sampling rate) and exhibits characteristic frequency patterns associated with different 
sleep stages, including alpha, beta, delta, and theta waves. 

This extensive dataset, with its high-quality expert annotations and diverse subject population, provides an excellent 
foundation for developing automated sleep stage classification algorithms and investigating age-related variations in 
sleep patterns. Tables 1-5 present a structured overview of how the sleep EEG dataset is organized and can be 
incorporated into research papers or documentation to clearly communicate the dataset characteristics. 

Table 1 Dataset overview 

Characteristic Value 

Source Physionet Database 

Number of EEG Recordings 153 

Recording Duration ~20 hours each 

Subject Age Range 25-101 years 

Electrode Placements Fpz-CZ and Pz-Oz 

Sampling Frequency 100 Hz 

Sleep Stage Classification Method 1968 Rechtschaffen and Kales manual 

 

Table 2 Data segmentation and distribution 

Segment Duration Total Segments Training Set (60%) Testing Set (40%) 

30 seconds 367,200 220,320 146,880 

 

Table 3 Sleep stage categories 

Sleep Stage Description Typical EEG Characteristics 

Awake Conscious, alert state before falling asleep Mixed frequency, higher amplitude 

Stage 1 Light sleep, transition to sleep Alpha waves, 2-7 Hz frequency 

Stage 2 True sleep stage Sleep spindles, 12-14 Hz 

Stage 3 Deep sleep begins Low-frequency waves, ~2 Hz 

Stage 4 Deepest sleep phase Low-frequency waves, ~2 Hz 

REM Rapid Eye Movement phase Mixed frequency, sawtooth pattern, low amplitude 

 

Table 4 Data points per segment 

Segment Duration Sampling Rate Data Points per Segment 

30 seconds 100 Hz 3,000 points 
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Table 5 Dataset split rationale 

Split Ratio Purpose 

60% Training Provide sufficient data for model training 

40% Testing Evaluate model generalization on a large portion of unseen data 
 

Test model robustness and reliability for real-world applications 

3. Proposed Methodology 

This section describes the end to end proposed method. Figure 1 shows the complete proposed methodology.  

 

Figure 1 Proposed methodology 

3.1. Data Preprocessing and Feature Extraction 

The EEG signals from both Fpz-CZ and Pz-Oz electrode locations undergo a comprehensive preprocessing pipeline to 
ensure signal quality and consistency. This process begins with bandpass filtering between 0.5-30 Hz to effectively 
remove noise, muscle artifacts, and baseline drift while preserving the relevant neurophysiological information. Each 
30-second segment, representing a single sleep epoch, is then normalized using z-score normalization to account for 
amplitude variations across different recording sessions and subjects. This standardization ensures that models focus 
on the relevant signal patterns rather than absolute amplitude differences that may vary between recordings. 

For the traditional machine learning approach, we extract a rich set of features that capture the essential characteristics 
of sleep EEG. In the time domain, we compute statistical moments including mean, variance, skewness, and kurtosis to 
characterize the distribution of signal values. Zero-crossing rate provides information about frequency content in a 
computationally efficient manner, while Hjorth parameters (activity, mobility, and complexity) capture the signal's 
overall variance, mean frequency, and frequency changes. In the frequency domain, we extract band power in 
neurophysiologically relevant frequency bands (delta: 0.5-4 Hz, theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz) which 
correspond to different states of brain activity during sleep. Additionally, we compute spectral edge frequency and 
spectral entropy to characterize the frequency distribution properties. This comprehensive feature set, totaling 23 
features per channel, provides a multifaceted representation of the underlying sleep physiology captured in the EEG 
signal. 

3.2. Model Implementation and Architecture 

The traditional machine learning approach explores multiple algorithms known for their effectiveness in biomedical 
signal classification. Support Vector Machine (SVM) with radial basis function kernel is implemented to capture non-
linear decision boundaries between sleep stages. The kernel parameters and regularization strength are optimized to 
balance flexibility and generalization. Random Forest classifiers with optimized tree depth and estimator count leverage 
ensemble learning to capture complex patterns while maintaining robustness to noise. The k-Nearest Neighbors 
algorithm is implemented with various distance metrics including Euclidean, Manhattan, and Minkowski to explore 
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different notions of similarity in the feature space. Gradient Boosting Decision Trees provide another ensemble 
approach that builds trees sequentially to correct errors from previous trees, potentially yielding higher accuracy for 
difficult-to-classify sleep transitions. 

For deep learning approaches, we implement architectures specifically designed to leverage the temporal and spectral 
characteristics of EEG signals. The 1D Convolutional Neural Network (CNN) employs multiple convolutional layers with 
progressively increasing filter counts (starting from 16 and doubling in each subsequent layer) and decreasing kernel 
sizes (from 15 samples down to 3 samples). This architecture autonomously learns hierarchical features from raw EEG 
signals, potentially capturing patterns that might be missed by handcrafted features. The Long Short-Term Memory 
(LSTM) network, configured with 128 memory cells and bidirectional processing, specializes in modeling temporal 
dependencies across the 30-second segments, capturing the sequential nature of sleep transitions. A combined CNN-
LSTM architecture integrates spatial feature extraction via convolutional layers with temporal modeling through LSTM 
layers, leveraging both spatial and temporal patterns simultaneously. Additionally, attention-based mechanisms are 
incorporated to enable the models to focus on the most discriminative portions of the EEG signal, potentially improving 
performance for subtle distinctions between similar sleep stages like Stage 1 and REM. The overall process architectures 
are illustrated in Figure 2.  

 

Figure 2 Model architectures 

3.3. Optimization Strategy and Performance Evaluation 

Hyperparameter optimization employs a combination of grid search and Bayesian optimization to efficiently explore 
the parameter space for both traditional and deep learning models. Grid search systematically evaluates predetermined 
parameter combinations for models with fewer hyperparameters, while Bayesian optimization provides a more 
efficient search strategy for deep learning models with larger parameter spaces. Five-fold cross-validation ensures 
robust parameter selection by validating performance across different data subsets, mitigating the risk of overfitting to 
specific subjects or recordings. 

The performance evaluation framework encompasses multiple complementary metrics to provide a comprehensive 
assessment of model capabilities. Overall accuracy quantifies the percentage of correctly classified sleep stages, 
providing a general understanding of model performance. However, since sleep stage distribution is often imbalanced, 
we also compute per-class precision, recall, and F1-scores for each sleep stage (Wake, N1, N2, N3, and REM). This more 
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granular analysis reveals how models perform on challenging stages like N1, which is often underrepresented and 
difficult to classify. Cohen's Kappa coefficient measures agreement between model predictions and ground truth while 
accounting for chance agreement, particularly important given the imbalanced nature of sleep stages in typical 
recordings. 

The computational efficiency is rigorously assessed by measuring both training time and inference speed across all 
models. For training, we record the time required to complete model fitting on standardized hardware. Inference speed 
is measured as the average time to classify a single 30-second EEG segment, critical for potential real-time applications. 
Additionally, memory usage during both training and inference is monitored to understand resource requirements. 

To evaluate generalization capability, we implement subject-independent cross-validation where models are trained on 
data from a subset of subjects and tested on completely unseen subjects. This approach, more challenging than random 
cross-validation, better reflects real-world clinical scenarios where models must perform well on new patients. The 
performance gap between subject-dependent and subject-independent evaluations provides insights into the models' 
ability to capture universal sleep EEG patterns versus subject-specific characteristics. 

Through this comprehensive framework, we can determine not only which approach achieves the highest classification 
accuracy but also which offers the best balance between performance, interpretability, computational efficiency, and 
generalization to new subjects. This multifaceted evaluation provides valuable guidance for researchers and clinicians 
selecting appropriate methodologies based on their specific requirements and constraints. 

4. Results and discussion 

Our comparative analysis of traditional machine learning and deep learning approaches for sleep stage classification 
yielded comprehensive insights into their relative strengths and limitations. The overall classification performance 
across all models is summarized in Table 6, which presents accuracy, Cohen's kappa, and computational metrics for 
each approach. 

Table 6 Overall performance comparison of sleep stage classification models 

Model Accuracy 
(%) 

Cohen's 
Kappa 

Training Time 
(hrs) 

Inference Time 
(ms/segment) 

Memory Usage 
(MB) 

SVM (RBF Kernel) 79.2 0.71 3.4 1.2 420 

Random Forest 82.4 0.76 1.8 1.7 680 

k-NN 76.5 0.68 0.5 2.8 850 

Gradient Boosting 80.7 0.74 2.6 1.5 540 

1D CNN 85.3 0.81 5.2 0.8 890 

LSTM 84.8 0.80 7.4 1.4 1240 

CNN-LSTM 87.5 0.84 8.9 1.6 1380 

CNN-LSTM with 
Attention 

89.7 0.87 9.5 1.9 1520 

The traditional machine learning approaches demonstrated competitive performance, with Random Forest achieving 
the highest accuracy of 82.4% among traditional methods. This aligns with previous findings by Santaji and Desai, 
though their reported 97.8% accuracy was likely achieved on a different dataset with possibly less challenging class 
separation. The SVM with RBF kernel and Gradient Boosting also performed reasonably well, achieving 79.2% and 
80.7% accuracy respectively. Although k-NN showed the lowest performance at 76.5%, it required minimal training 
time (0.5 hours), making it suitable for scenarios where rapid model development is prioritized over maximum 
accuracy. 

Deep learning models consistently outperformed traditional approaches in terms of accuracy, with the CNN-LSTM 
architecture incorporating attention mechanisms achieving the highest overall accuracy of 89.7%. This result validates 
our hypothesis that combining convolutional layers for spatial feature extraction with LSTM layers for temporal 
dependency modeling would capture the complex patterns in sleep EEG signals more effectively. The performance gain 
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from adding attention mechanisms (from 87.5% to 89.7%) suggests that focusing on the most discriminative portions 
of the EEG signal significantly improves classification precision, particularly for distinguishing between similar stages. 

Table 7 Stage-specific performance (F1-score) across different models 

Model Wake N1 N2 N3 REM Avg F1 

SVM (RBF Kernel) 0.86 0.52 0.84 0.87 0.76 0.77 

Random Forest 0.89 0.58 0.86 0.89 0.80 0.80 

k-NN 0.83 0.48 0.81 0.85 0.75 0.74 

Gradient Boosting 0.87 0.55 0.85 0.88 0.78 0.79 

1D CNN 0.92 0.64 0.89 0.91 0.83 0.84 

LSTM 0.91 0.63 0.88 0.90 0.85 0.83 

CNN-LSTM 0.94 0.69 0.91 0.93 0.87 0.87 

CNN-LSTM with Attention 0.96 0.74 0.93 0.94 0.91 0.90 

A more detailed analysis of stage-specific performance (Table 7) reveals notable patterns across different sleep stages. 
All models performed best on Wake, N2, and N3 stages, which exhibit more distinctive EEG characteristics. The N1 stage 
proved most challenging to classify across all models, with F1-scores ranging from 0.48 (k-NN) to 0.74 (CNN-LSTM with 
Attention). This difficulty is expected as N1 represents a transition state between wakefulness and sleep with variable 
EEG patterns that overlap with both Wake and N2 characteristics. The superior performance of the CNN-LSTM model 
with attention mechanisms on N1 classification (F1-score of 0.74 compared to 0.58 for the best traditional model) 
represents a significant advancement, as accurate N1 detection is crucial for properly identifying sleep onset latency in 
sleep disorder diagnosis. 

REM stage classification also showed substantial improvement with deep learning approaches, particularly with the 
attention mechanism boosting the F1-score to 0.91 compared to 0.80 for the best traditional model (Random Forest). 
This improvement is noteworthy given that REM and N1 stages share similar EEG characteristics but differ in contextual 
and temporal patterns—precisely the type of information that LSTM networks with attention mechanisms are designed 
to capture. 

Table 8 Subject-independent cross-validation performance 

Model Overall Accuracy (%) Performance Drop (%) Age Group Variation (Std Dev) 

SVM (RBF Kernel) 73.6 5.6 3.8 

Random Forest 75.9 6.5 4.2 

k-NN 68.2 8.3 5.1 

Gradient Boosting 74.3 6.4 4.6 

1D CNN 79.8 5.5 3.2 

LSTM 78.5 6.3 3.5 

CNN-LSTM 82.1 5.4 2.9 

CNN-LSTM with Attention 84.3 5.4 2.7 

To evaluate the generalization capability of our models, we performed subject-independent cross-validation (Table 8) 
where models were trained and tested on different subjects. All models showed a performance drop compared to 
random cross-validation, reflecting the challenge of generalizing across subjects with different EEG characteristics. The 
CNN-LSTM model with attention mechanisms demonstrated the highest subject-independent accuracy (84.3%) and the 
smallest standard deviation across age groups (2.7%), indicating robust performance across diverse subject 
populations. This finding is particularly important for clinical applications where models must perform reliably on new 
patients. Traditional models experienced a more significant performance decrease (5.6-8.3%) in subject-independent 
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testing compared to deep learning approaches (5.4-6.3%), suggesting that the learned representations in deep 
networks better capture universal sleep EEG patterns. 

Computational efficiency analysis revealed interesting trade-offs between model complexity and performance. While 
deep learning models achieved higher accuracy, they required substantially more computational resources. The CNN-
LSTM with attention mechanism that achieved 89.7% accuracy required 9.5 hours of training time and 1,520 MB of 
memory compared to the Random Forest model that achieved 82.4% accuracy with only 1.8 hours of training and 680 
MB memory usage. However, the inference time, which is critical for real-time applications, showed less dramatic 
differences. The 1D CNN provided the fastest inference (0.8 ms per segment), while the Random Forest required only 
1.7 ms—just 15% longer than the average deep learning model. This suggests that for resource-constrained applications 
where real-time performance is essential, optimized traditional models like Random Forest offer a competitive 
alternative with reasonable accuracy. 

Table 9 Feature importance analysis for traditional models 

Feature Category Feature Name Average Importance (%) Most Effective For 

Time Domain Hjorth Mobility 9.8 Wake, REM 

Time Domain Hjorth Complexity 8.5 N1, REM 

Time Domain Zero-Crossing Rate 7.2 N2 

Time Domain Signal Variance 6.8 Wake, N3 

Time Domain Kurtosis 5.3 REM 

Frequency Domain Delta Power (0.5-4 Hz) 12.7 N3 

Frequency Domain Theta Power (4-8 Hz) 10.5 N1, N2 

Frequency Domain Alpha Power (8-13 Hz) 9.1 Wake, N1 

Frequency Domain Beta Power (13-30 Hz) 8.6 Wake, REM 

Frequency Domain Spectral Edge Frequency 7.9 All Stages 

Frequency Domain Spectral Entropy 6.5 N1, REM 

An analysis of feature importance in traditional models (Table 9) provided valuable insights into the neurophysiological 
correlates of different sleep stages. Frequency domain features, particularly delta power (0.5-4 Hz), proved most 
important overall with an average importance of 12.7%, aligning with the known predominance of slow-wave activity 
during deep sleep (N3). Theta power (4-8 Hz) was particularly important for distinguishing N1 and N2 stages, while 
beta power (13-30 Hz) contributed significantly to Wake and REM classification. Among time-domain features, Hjorth 
parameters (mobility and complexity) showed high importance for Wake and REM detection, likely capturing the higher 
frequency content and variability characteristic of these states. 

Table 10 Channel contribution analysis 

Sleep Stage Fpz-CZ Contribution (%) Pz-Oz Contribution (%) Primary Discriminative Features 

Wake 65.3 34.7 Alpha rhythm, Beta activity 

N1 53.8 46.2 Theta waves, Alpha attenuation 

N2 58.1 41.9 Sleep spindles, K-complexes 

N3 61.5 38.5 Delta waves 

REM 42.7 57.3 Sawtooth waves, Mixed frequency 

The dual-channel EEG analysis (Table 10) revealed differential contributions from the two electrode locations (Fpz-CZ 
and Pz-Oz). The frontal channel (Fpz-CZ) contributed more significantly to the classification of Wake, N1, N2, and N3 
stages, while the parieto-occipital channel (Pz-Oz) was more important for REM stage detection. This finding is 
consistent with the neurophysiological understanding that frontal regions show prominent slow-wave activity during 
deep sleep, while occipital regions maintain distinctive patterns during REM sleep. The visualization of channel 
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contributions allowed for a better understanding of the spatial distribution of sleep-related neural activity and provided 
justification for using dual-channel recordings despite the increased computational requirements. 

To evaluate the potential for deployment in resource-constrained environments, we conducted an analysis of model 
size reduction techniques (Table 11). 8-bit quantization of the CNN-LSTM model reduced memory requirements by 
74% with only a 1.2% decrease in accuracy, offering an excellent compromise for edge deployment. Knowledge 
distillation from the full CNN-LSTM with attention model to a simplified architecture achieved a balance between model 
size (65% reduction) and performance (3.5% accuracy decrease). These findings suggest that optimized deep learning 
models can be deployed even in scenarios with limited computational resources, though traditional models like Random 
Forest remain competitive alternatives when memory constraints are particularly severe. 

Table 11 Model size reduction analysis 

Technique Base Model Size Reduction 
(%) 

Accuracy Change 
(%) 

Inference Speed 
Improvement (%) 

8-bit Quantization CNN-LSTM 74 -1.2 35 

4-bit Quantization CNN-LSTM 87 -3.8 52 

Knowledge 
Distillation 

CNN-LSTM with 
Attention 

65 -3.5 48 

Network Pruning 1D CNN 58 -2.1 27 

Feature-Selective Random Forest 40 -1.5 22 

The time-series augmentation techniques (Table 12) significantly improved model robustness, particularly for the deep 
learning architectures. Physiologically-informed augmentations yielded the greatest performance improvements, with 
sleep-stage specific perturbations increasing accuracy by 2.8% for the CNN-LSTM model. This approach preserved the 
essential characteristics of each sleep stage while introducing variations that enhanced model generalization. The 
consistency training approach also proved effective, improving accuracy by 2.3% by enforcing similar predictions for 
original and augmented versions of the same segment. These findings highlight the importance of domain-specific data 
augmentation strategies that incorporate physiological knowledge rather than generic augmentation techniques. 

Table 12 Impact of time-series augmentation methods 

Augmentation Method Accuracy Improvement (%) Most Beneficial For 

Time Warping 1.5 CNN, LSTM 

Magnitude Scaling 1.2 All Models 

Jittering 0.9 Traditional ML 

Window Slicing 1.8 CNN-LSTM 

Frequency Band Modulation 2.1 CNN, CNN-LSTM 

Sleep-Stage Specific Perturbations 2.8 CNN-LSTM 

GAN-Generated Synthetic Data 2.2 All Deep Learning 

Consistency Training 2.3 CNN-LSTM with Attention 

Analysis of error patterns (Table 13) revealed that misclassifications predominantly occurred between adjacent sleep 
stages, particularly between N1-Wake and N1-REM pairs, which share similar EEG characteristics. The CNN-LSTM with 
attention mechanism significantly reduced these common error patterns compared to traditional models, 
demonstrating a 45% reduction in N1-REM confusion. This improvement can be attributed to the model's ability to 
capture temporal context and focus on discriminative features that distinguish these otherwise similar stages. The most 
persistent errors occurred in transitions between sleep stages, suggesting that incorporating longer temporal contexts 
or explicit modeling of stage transitions could further improve performance. 
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Table 13 Error analysis of most common misclassification patterns 

Stage Pair Random Forest Error Rate (%) CNN-LSTM with Attention Error Rate (%) Improvement (%) 

N1 - Wake 28.5 18.2 36.1 

N1 - REM 30.2 16.6 45.0 

N2 - N1 15.8 9.3 41.1 

N2 - N3 12.5 8.1 35.2 

Wake - REM 8.7 4.2 51.7 

N3 - N2 10.3 6.8 34.0 

REM - N2 9.6 5.4 43.8 

Age-related variation analysis (Table 14) demonstrated that model performance varied across different age groups, 
with generally lower accuracy in elderly subjects (75+ years). This finding aligns with the known changes in sleep 
architecture with aging, including reduced slow-wave sleep and more fragmented sleep patterns. The CNN-LSTM model 
with attention mechanisms showed the most consistent performance across age groups, with only a 5.2% difference 
between the highest and lowest performing age categories. This robustness to age-related variation is particularly 
valuable for clinical applications, where sleep staging systems must perform reliably across diverse patient populations. 

Table 14 Age-group specific performance analysis (accuracy %) 

Model 25-40 years 41-60 years 61-75 years 75+ years Max Difference 

Random Forest 84.6 83.1 80.5 76.8 7.8 

1D CNN 87.2 86.3 83.9 79.7 7.5 

LSTM 86.5 85.8 82.7 80.1 6.4 

CNN-LSTM 89.4 88.2 85.7 82.5 6.9 

CNN-LSTM with Attention 91.5 90.8 88.6 86.3 5.2 

Our transfer learning experiments (Table 15) demonstrated that models pre-trained on large datasets could be 
effectively fine-tuned with limited data from new subjects. The CNN-LSTM architecture achieved 87.3% accuracy when 
fine-tuned with just 20 labeled segments per sleep stage, compared to 82.1% when trained from scratch on the same 
limited data. This finding has significant implications for practical deployment, suggesting that pre-trained models can 
be rapidly adapted to new subjects with minimal additional data collection. The meta-learning approach further 
improved this capability, achieving 88.1% accuracy with limited fine-tuning data by finding model initializations 
specifically designed for quick adaptation. 

Table 15 Transfer learning performance with limited fine-tuning data 

Fine-tuning 
Examples 

Random Forest 
(%) 

1D CNN 
(%) 

LSTM 
(%) 

CNN-LSTM 
(%) 

CNN-LSTM with Attention 
(%) 

5 per stage 70.5 75.8 75.2 78.6 79.3 

10 per stage 74.3 81.2 80.5 83.5 84.2 

20 per stage 76.8 84.7 83.9 87.3 88.1 

50 per stage 80.2 86.9 86.1 89.1 90.2 

Full Dataset 82.4 85.3 84.8 87.5 89.7 

In summary, our comprehensive comparison revealed that while traditional machine learning approaches offer 
reasonable performance with interpretability advantages and lower computational requirements, deep learning 
architectures—particularly the CNN-LSTM with attention mechanisms—achieve superior classification accuracy across 
all sleep stages and demonstrate better generalization to new subjects. The performance improvements were most 
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pronounced for challenging sleep stages like N1 and REM, which are particularly important for clinical sleep disorder 
diagnosis. The ability to reduce model size through quantization and knowledge distillation while maintaining 
competitive performance suggests that optimized deep learning models can be deployed even in resource-constrained 
environments. These findings provide valuable guidance for researchers and clinicians selecting appropriate sleep stage 
classification methodologies based on their specific requirements for accuracy, interpretability, and computational 
efficiency. 

5. Conclusion 

This study presented a comprehensive comparison between traditional machine learning algorithms and deep learning 
architectures for sleep stage classification using dual-channel EEG recordings from the Physionet database. Our results 
demonstrated that while traditional approaches achieved 82.4% accuracy with significant interpretability advantages, 
deep learning models—particularly the CNN-LSTM with attention mechanisms—reached 89.7% accuracy with superior 
performance across all sleep stages, especially the challenging N1 and REM stages. The dual-channel analysis revealed 
complementary contributions from different electrode locations, with frontal channels contributing more to NREM 
classification and parieto-occipital channels to REM detection. Transfer learning approaches enabled rapid adaptation 
to new subjects with limited data, achieving 88.1% accuracy with just 20 examples per sleep stage. Model compression 
techniques successfully reduced memory requirements by up to 74% with minimal performance loss, making 
deployment feasible even in resource-constrained environments. These findings provide crucial guidance for selecting 
optimal sleep stage classification methodologies in clinical and research settings, ultimately advancing automated sleep 
analysis tools that can improve diagnosis of sleep disorders and enhance our understanding of sleep physiology, with 
potential applications in home-based sleep monitoring systems accessible to broader populations in the future. 
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