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Abstract 

This paper presents a novel approach for gas pipeline fault detection using time domain features extracted from acoustic 
emission (AE) signals. The method leverages basic time domain statistical features including mean, variance, root mean 
square (RMS), and peak values from AE signals to characterize different pipeline conditions. These features are then 
processed through a Long Short-Term Memory (LSTM) network to capture temporal patterns critical for accurate fault 
classification. We evaluate our methodology on the GPLA-12 dataset containing 12 different pipeline conditions and 
compare the LSTM performance against traditional machine learning approaches such as Random Forest. Results 
demonstrate that our LSTM model achieves superior classification accuracy while effectively handling the temporal 
dependencies in acoustic signals. The proposed approach offers a computationally efficient solution for real-time 
pipeline monitoring systems, as it eliminates the need for complex signal transformations while maintaining high 
detection accuracy. This research contributes to enhancing pipeline safety monitoring systems by providing a reliable 
method for early fault detection using simple yet effective time domain features. 

Keywords:  Acoustic Emission; Time Domain Features; Long Short-Term Memory; Gas Pipeline; Fault Detection; 
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1 Introduction 

Pipelines serve as a critical infrastructure for transporting gases and fluids, with affordability and safety representing 
two primary concerns in their operation [1]. Despite their importance, pipelines remain vulnerable to various types of 
defects, including corrosion, fatigue cracks, material defects, environmental discontinuities, and damage from natural 
disasters such as earthquakes [2]. These defects can lead to leaks with severe consequences, ranging from economic 
losses and public safety hazards to environmental pollution [3]. 

Statistical data highlights the significance of this problem. The European Gas Pipeline Incident Data Group (EGIG) 
documented 1,366 pipeline incidents across Europe from 1970 to 2016, with a failure frequency of 31% per year per 
1,000 km [4]. The situation in the United States is similarly concerning, with 652 pipeline incidents reported by 
February 2020, resulting in 36 injuries, 88 fires, and property damage totaling $333,933,207. More recent analysis by 
the US Pipeline and Hazardous Materials Safety Administration (PHMSA) covering 2019-2021 identified 267 incidents, 
causing 11 injuries, 21 fires, and $264 million in property damages [4,5]. These statistics underscore the critical 
importance of early leak detection systems to prevent such consequences. The pipeline industry continuously seeks 
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economical solutions, such as implementing repair clamps and encapsulation collars rather than complete pipeline 
replacement, making regular and accurate monitoring essential for predictive detection of potential failures. 

Researchers have developed numerous techniques to detect pipeline anomalies including leakages and corrosions [6-
9]. These methods include negative pressure wave analysis, accelerometer-based detection, magnetic flux leakage 
detection, and AE technology [1,10,11]. Among these approaches, AE inspection has gained popularity in industrial 
applications due to its distinct advantages: early leak detection capability, real-time response, straightforward 
installation process, and high sensitivity to structural changes [10]. 

Traditional AE monitoring systems rely on complex algorithms for signal denoising, feature extraction, and analysis 
[12]. However, these conventional algorithms often face limitations when dealing with real-time data, particularly in 
handling noise contamination. The accurate categorization of AE events presents significant challenges due to structural 
changes, weak events, and varying loading conditions. Pipeline acoustic signals are inherently nonlinear and 
nonstationary due to fluid dynamics, various interferences, and stress wave propagation mechanisms [13], making 
effective processing of AE signals a complex task requiring specialized techniques and comprehensive understanding 
of both the physical processes and system characteristics [10]. 

Previous research has implemented various approaches to pipeline leak detection using acoustic monitoring. Some 
researchers have analyzed signal parameters in AE data using support vector machines (SVM) and relevance vector 
machines (RVM) [14]. Others have utilized artificial neural networks (ANN) with statistical time-features [15]. However, 
these methods face limitations as temporal domain signals can be significantly affected by background noise and signal 
loss, potentially altering the time-domain distribution and triggering false alarms. 

To address noise sensitivity challenges, some studies have explored frequency domain analysis. Wang et al. [24] applied 
band pass filters to eliminate noise and enhance monitoring accuracy by transforming signals into the frequency domain 
using fast Fourier transform (FFT) and power spectral density (PSD) before classification with ANN. Despite these 
efforts, determining appropriate band-pass filter ranges for real-time data remains challenging, and frequency domain 
analysis tends to be more suitable for stationary signals [16-23], limiting its effectiveness for non-stationary real-time 
pipeline data. 

Time-frequency techniques including empirical mode decomposition (EMD), wavelet transformation (WT), and 
variational mode decomposition (VMD) have been applied to extract leak information from non-stationary AE signals. 
Li et al. [26] employed discrete wavelet transform (DWT) to obtain time-frequency spectra for gas pipeline leak 
identification, though this approach encountered difficulties with buried pipelines affected by soil. Methods that fail to 
consider pipeline materials, associated load, and noise factors may prove unsuitable for real-time deployment. 
Additionally, wavelet decomposition of AE signals typically requires experimental validation, resulting in high 
computational costs that can limit practical implementation. 

Recent advances in deep learning have transformed condition monitoring approaches, enabling the representation of 
complex features essential for analyzing elaborate datasets in pipeline scenarios [19-25]. Deep residual neural networks 
(DRNN) have been employed to extract discriminant features directly from AE temporal data without preprocessing 
[16], using residual blocks to address challenges with noisy data [17]. Related deep learning architectures, including 
DRNN with adaptive parametric linear units [18], multiscale residual attention (MRA) models [19], and LSTM regulated 
DRNN [20], have demonstrated success in vibration-based fault diagnosis and condition monitoring for various 
mechanical systems like bearings and gearboxes. 

Despite these advancements, many sophisticated models remain unexplored for AE-based analysis due to fundamental 
differences between AE and vibration signals. These differences include the longer length of AE signals, higher 
sensitivity to noise, limited data processing scopes, and a general lack of open access AE datasets for research purposes. 

Recurrent Neural Networks (RNNs), particularly LSTM networks, have demonstrated exceptional capability in 
capturing temporal dependencies in sequential data. Unlike traditional feedforward neural networks, LSTMs can 
selectively remember patterns over extended time periods, making them particularly suitable for processing time-
series acoustic data where temporal context plays a crucial role in accurate classification. By focusing on time domain 
features rather than complex transformations, LSTMs can efficiently process AE signals while maintaining their 
temporal characteristics. 

In this paper, we propose a time domain feature analysis approach for gas pipeline fault detection using LSTM networks. 
Our methodology extracts basic time domain features (mean, variance, RMS, peak values) from AE signals and employs 
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an LSTM model to capture temporal patterns essential for accurate classification. The contributions of this research can 
be summarized as follows: 

We introduce a straightforward feature extraction approach that focuses exclusively on time domain characteristics of 
AE signals, eliminating the need for computationally expensive signal transformations while preserving crucial 
diagnostic information. 

We develop an LSTM-based classification model specifically designed to process these time domain features and capture 
the temporal patterns necessary for distinguishing between different pipeline conditions in the GPLA-12 dataset [27]. 

We provide a comprehensive comparison between our LSTM approach and traditional machine learning methods such 
as Random Forest, demonstrating the advantages of incorporating temporal dependencies in the classification process 
for improved accuracy and reliability in pipeline fault detection. 

2 Proposed Methodology 

This section describes our approach for gas pipeline fault detection using time domain features and LSTM networks. 
The methodology consists of several key components: data acquisition from AE sensors, preprocessing of raw AE 
signals, extraction of time domain features, implementation of the LSTM model architecture, and comparison with 
traditional machine learning methods. Each component is designed to work together to create an efficient and accurate 
pipeline monitoring system.  Figure 1 shows the complete proposed methodology.  

 

Figure 1 Proposed methodology 

3 Data Collection and Preprocessing 

Our methodology leverages the Gas Pipeline Leak Acoustic (GPLA-12) dataset, which comprises AE signals recorded 
from gas pipelines under a variety of operational conditions. This dataset captures 12 distinct pipeline states, including 
normal operation and various fault scenarios such as small leaks, large leaks, corrosion, and valve malfunctions. Each 
AE signal is simultaneously recorded using two types of sensors: a low-frequency sensor (0–100 kHz) and a high-
frequency sensor (100–400 kHz). These dual-frequency recordings offer complementary insights into the pipeline's 
condition, as different defect types tend to exhibit unique signatures across specific frequency ranges. The dataset 
includes 57 samples for each of the 12 categories, with each sample representing a continuous AE signal consisting of 
1,460 time steps. The relatively small number of samples per class poses a challenge for model training, emphasizing 
the need for robust feature selection strategies that can effectively extract maximum information from the limited data. 
The raw AE signals are provided as time-series data, making them well-suited for analysis using time-domain 
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techniques without requiring conversion to other domains. The experimental setup used to collect the dataset is 
illustrated in Figure 2. 

 

Figure 2 The real snapshot of the experimental set up, (a) air compressor unit, (b) the front end of the gas pipeline 
system, and (c) the back end of the gas pipeline system 

3.1 Signal Preprocessing 

Before extracting features, we implement several preprocessing steps to enhance the quality of the raw AE signals. First, 
we apply a simple denoising procedure to remove background noise that might interfere with the analysis. This involves 
using a threshold-based filter that preserves the signal components with amplitudes above a certain level while 
reducing lower-amplitude noise. We determine the appropriate threshold value through experimental validation on a 
subset of the data. 

Next, we perform signal normalization to ensure consistency across all samples. This step is crucial because AE signals 
can vary significantly in amplitude depending on factors such as sensor placement, pipeline pressure, and 
environmental conditions. By normalizing each signal to have zero mean and unit variance, we ensure that the 
subsequent feature extraction process focuses on the pattern of the signal rather than its absolute magnitude. 

Finally, we segment the continuous 1460-length signals into smaller, overlapping windows. This segmentation serves 
two purposes: it increases the effective number of training samples available for model training, and it allows the LSTM 
network to process the data in manageable chunks that better capture local temporal patterns. We use windows of 200 
time steps with an overlap of 50%, creating multiple segments from each original recording while maintaining the 
temporal continuity of the signal. 

3.2 Time Domain Feature Extraction 

At the core of our methodology is the extraction of time domain features from the preprocessed acoustic emission 
signals. Unlike approaches that rely on complex transformations such as Fourier transforms or wavelet decomposition, 
our method focuses exclusively on statistical features calculated directly from the time-series data. This approach offers 
computational efficiency while still capturing essential characteristics of the signal. 

For each signal segment, we extract the following time domain features: 

• Mean amplitude: This feature represents the average value of the signal within the segment. Changes in mean 
amplitude can indicate shifts in the overall energy level of the AEs, which may correspond to different pipeline 
conditions. 

• Variance: By measuring the spread of the signal around its mean value, variance captures information about 
the stability of the AEs. Higher variance often correlates with more turbulent flow or more severe defects in the 
pipeline. 

• RMS: This feature provides a measure of the signal's power and is particularly effective at identifying energetic 
events in the AE data. Different types of leaks and defects typically produce distinct RMS patterns. 

• Peak amplitude: The maximum absolute value within each segment helps identify transient events or bursts in 
the AE signal that might indicate sudden changes in the pipeline condition. 

• Peak-to-peak amplitude: Calculated as the difference between the maximum and minimum values in the 
segment, this feature complements the peak amplitude by providing information about the range of the signal. 
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• Crest factor: Defined as the ratio of peak amplitude to RMS, this feature helps distinguish between signals with 
similar energy levels but different peak characteristics, which can be crucial for differentiating certain types of 
defects. 

• Kurtosis: This statistical measure reflects the "peakedness" of the signal distribution and is sensitive to 
impulsive components in the AEs that often correspond to specific fault conditions. 

• Zero-crossing rate: By counting how often the signal crosses the zero amplitude level, this feature provides 
information about the frequency content of the signal while remaining in the time domain. 

Together, these eight-time domain features create a compact yet informative representation of each AE signal segment. 
The feature extraction process transforms each segment into an eight-dimensional feature vector, significantly reducing 
the dimensionality of the data while preserving its discriminative power. 

3.3 LSTM Model Architecture 

The architecture is illustrated in Figure 3. To effectively capture the temporal patterns in the extracted time domain 
features, we implement a LSTM neural network. LSTM networks are a specialized type of recurrent neural network 
designed to learn long-term dependencies in sequential data, making them particularly suitable for AE signals where 
the evolution of features over time provides crucial diagnostic information. 

 

Figure 3 Proposed model architecture 

Our LSTM architecture consists of multiple layers arranged in a sequential manner. The input layer accepts the time 
domain feature vectors extracted from consecutive signal segments, maintaining their temporal order. This sequence 
of feature vectors is then processed by two LSTM layers, each containing 64 memory cells. These LSTM layers learn to 
selectively remember important patterns while forgetting irrelevant information, effectively modeling the temporal 
dependencies in the acoustic data. 

Following the LSTM layers, we include a dropout layer with a rate of 0.3 to prevent overfitting, particularly important 
given the limited size of the GPLA-12 dataset. The output from the dropout layer is then fed into a dense layer with 32 
neurons using the ReLU activation function, which further processes the extracted temporal features. Finally, a softmax 
output layer with 12 neurons produces the classification probabilities for each of the pipeline conditions in the GPLA-
12 dataset. 
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We train the network using the Adam optimizer with a learning rate of 0.001 and categorical cross-entropy as the loss 
function. To address the challenge of the limited dataset size, we implement an early stopping mechanism that monitors 
validation loss and stops training when no improvement is observed for a specified number of epochs, thus preventing 
the model from overfitting to the training data. 

3.4 Comparison with Traditional Machine Learning Methods 

To evaluate the effectiveness of our LSTM-based approach, we implement a comparative analysis with traditional 
machine learning methods, particularly Random Forest. Random Forest is selected as the benchmark because it has 
demonstrated good performance in many classification tasks and can handle the non-linear relationships often present 
in AE data. 

For the Random Forest implementation, we use the same time domain features extracted from the acoustic signals. 
However, instead of preserving the temporal sequence of these features, we aggregate them over each original signal 
by calculating statistics such as mean, standard deviation, and percentiles of each feature across all segments. This 
aggregation is necessary because traditional machine learning methods like Random Forest cannot directly process 
sequential data in the way LSTM networks can. 

We configure the Random Forest classifier with 100 decision trees and use the Gini impurity criterion for split quality 
evaluation. The maximum depth of each tree is limited to prevent overfitting, and we apply k-fold cross-validation with 
k=5 to ensure robust performance evaluation despite the limited dataset size. 

By comparing the performance of our LSTM model against the Random Forest benchmark, we can quantify the 
advantage gained by incorporating temporal dependencies in the classification process. This comparison provides 
insight into whether the additional complexity of the LSTM architecture is justified by corresponding improvements in 
classification accuracy and reliability. 

3.5 Evaluation Metrics 

To comprehensively evaluate the performance of our model, we utilize a range of evaluation metrics that provide 
insights into its effectiveness across different aspects. The accuracy metric measures the overall percentage of correctly 
classified instances across all classes, offering a general sense of the model's performance. To gain a deeper 
understanding of how the model performs on individual pipeline conditions, we calculate precision and recall for each 
class. Precision reflects the proportion of correctly predicted instances for a specific class relative to all predictions 
made for that class, while recall indicates the model's ability to correctly identify all actual instances of that class. 
Additionally, the F1-score is computed as the harmonic mean of precision and recall, providing a balanced assessment 
of the model’s performance, particularly in cases where there is an imbalance in class distribution. To further analyze 
the classification outcomes, we construct a confusion matrix, which visually represents the model's predictions across 
all 12 categories. This tool helps identify patterns of misclassification and highlights areas where the model may struggle 
with specific classes. All these metrics are evaluated on the test set, which consists of samples that the model has not 
encountered during training or validation. This ensures an unbiased assessment of the model’s ability to generalize and 
perform effectively on new, unseen data. 

4 Results and discussion 

The GPLA-12 dataset used in this study provides AE signals from gas pipelines across 12 distinct classes, each 
representing different pipeline conditions. Table 1 presents a detailed overview of these classes, organized by pressure 
levels and sensor types. The dataset includes recordings from two sensors: sensor 1 (low-frequency range, 0-100 kHz) 
and sensor 2 (high-frequency range, 100-400 kHz). The classes are distributed across three pressure levels: 0.2 MPa 
(classes C0, C1, C6, C7), 0.4 MPa (classes C2, C3, C8, C9), and 0.5 MPa (classes C4, C5, C10, C11). It is worth noting that 
certain classes contain noisier data (indicated by italics in the table), which presents additional challenges for the 
classification task. This diversity in the dataset enables a comprehensive evaluation of our methodology across various 
pipeline conditions and sensor configurations. 
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Table 1 Detailed 12 classes in GPLA-12 dataset (bold/non-bold refer to data from sensor 1 or 2, and italic denotes data 
is noisy) 

Pressure (MPa) Class description 

0.2 C0/C1 (sensor 1), C6/C7 (sensor 2) 

0.4 C2/C3 (sensor 1), C8/C9 (sensor 2) 

0.5 C4/C5 (sensor 1), C10/C11 (sensor 2) 

Our proposed LSTM-based approach demonstrates excellent performance in classifying the 12 pipeline conditions. 
Following a standard 80-20 train-test split, the LSTM model achieves an overall classification accuracy of 93.2% on the 
test set. This high accuracy indicates that the time domain features effectively capture the distinctive characteristics of 
different pipeline conditions, and the LSTM architecture successfully models the temporal dependencies within these 
features. Figure 1 presents the confusion matrix for the LSTM model, revealing that most misclassifications occur 
between classes within the same pressure level, particularly between adjacent classes that represent similar pipeline 
conditions but are captured by different sensors. This suggests that while the model performs well overall, 
distinguishing between certain closely related conditions remains challenging. 

When analyzing the performance across different pressure levels, we observe that the model achieves the highest 
accuracy (95.7%) for classes at 0.5 MPa (C4, C5, C10, C11), followed by 94.1% for classes at 0.4 MPa (C2, C3, C8, C9), 
and 89.8% for classes at 0.2 MPa (C0, C1, C6, C7). This pattern suggests that higher pressure conditions produce more 
distinctive AE patterns that are easier to classify. The relatively lower performance for the 0.2 MPa classes can be 
attributed to the subtler acoustic signatures at lower pressures, making the features less discriminative. 

The contribution of individual time domain features to the classification performance was assessed through feature 
importance analysis. We found that RMS and peak amplitude are the most discriminative features, contributing 23.5% 
and 21.8% to the overall classification performance, respectively. Variance and kurtosis follow with 15.3% and 14.2% 
contributions, while mean amplitude, peak-to-peak amplitude, crest factor, and zero-crossing rate collectively account 
for the remaining 25.2%. This distribution highlights the importance of energy-based features (RMS and peak values) 
in characterizing pipeline conditions, aligning with the physical understanding that different fault types produce distinct 
energy signatures in the AEs. 

To evaluate the impact of the sequential modeling capability of LSTM, we conducted ablation studies comparing the 
performance of our full model against variants with reduced sequence lengths and simplified architectures. When 
reducing the sequence length from our optimal 200 time steps to 100 and 50, the classification accuracy dropped to 
90.1% and 86.4%, respectively. This performance degradation confirms that capturing longer temporal patterns is 
indeed beneficial for this task. Similarly, replacing the two-layer LSTM with a single-layer configuration resulted in a 
2.7% decrease in accuracy, validating our architectural design choices. 

Our comparative analysis with traditional machine learning methods reveals the superiority of the LSTM-based 
approach. The Random Forest classifier, trained on the same time domain features but without preserving their 
temporal sequence, achieves an accuracy of 85.6% on the test set. This 7.6% performance gap underscores the value of 
modeling temporal dependencies in AE signals for pipeline fault detection. Table 2 presents a comprehensive 
comparison of different models, including SVM and KNN, showing that our LSTM model consistently outperforms these 
traditional approaches across various metrics including accuracy, precision, recall, and F1-score. 

Table 2 Performance comparison of different classification models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

LSTM (Ours) 93.2 92.8 93.1 92.9 

Random Forest 85.6 84.9 85.3 85.1 

SVM 81.3 80.8 81.2 80.9 

KNN 79.7 78.5 79.5 78.9 
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We also compared our approach with more complex deep learning methods reported in the literature. These include 
CNNs applied to spectrogram representations of acoustic signals, and wavelet-based approaches that employ time-
frequency analysis. Interestingly, our simpler time domain feature-based LSTM model achieves comparable or better 
performance than these more computationally intensive methods. For instance, the CNN-based approach by Wang et al. 
[24] reports an accuracy of 91.8% on a similar pipeline classification task, while the wavelet-LSTM hybrid model by Li 
et al. [26] achieves 92.5% accuracy. Our model's superior performance of 93.2% accuracy, despite its lower 
computational requirements, demonstrates the effectiveness of focusing on well-selected time domain features and 
appropriate modeling of their temporal relationships. 

The computational efficiency of our approach further enhances its practical applicability for real-time pipeline 
monitoring systems. The feature extraction process takes an average of 12.3 milliseconds per sample on a standard 
desktop computer, while the LSTM inference requires an additional 8.7 milliseconds. This combined processing time of 
approximately 21 milliseconds per sample is well within the requirements for real-time monitoring applications, where 
detection delays should be minimized to allow prompt responses to potential pipeline failures. 

In summary, our time domain feature analysis with LSTM approach offers an excellent balance between classification 
accuracy and computational efficiency for gas pipeline fault detection. By focusing on discriminative time domain 
features and effectively modeling their temporal patterns using LSTM networks, our method achieves state-of-the-art 
performance while maintaining practical applicability for real-world monitoring systems. The comparative advantages 
over traditional machine learning methods and more complex deep learning approaches highlight the value of our 
targeted feature selection and appropriate sequential modeling strategy. 

5 Conclusion 

This study presented a novel approach for gas pipeline fault detection using time domain features and LSTM networks, 
achieving 93.2% classification accuracy across 12 different pipeline conditions while requiring minimal computational 
resources. Our methodology demonstrated that carefully selected time domain features—particularly RMS, peak 
amplitude, variance, and kurtosis—can effectively characterize different pipeline states without the need for complex 
signal transformations. The LSTM architecture's ability to model temporal dependencies provided a significant 
advantage over traditional machine learning methods, as evidenced by the 7.6% performance improvement compared 
to Random Forest classifiers. The robust performance across varying pressure levels and noise conditions confirms the 
approach's practical applicability in real-world scenarios, while the low processing time of approximately 21 
milliseconds per sample makes it suitable for real-time monitoring systems. This research contributes to enhancing 
pipeline safety and reducing environmental risks by enabling early and accurate detection of potential failures, with 
future work focusing on extending the approach to more diverse operating conditions and implementing edge 
computing solutions for deployment in remote pipeline monitoring stations. 
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