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Abstract 

Lung cancer remains a leading cause of global cancer-related mortality. Early detection and accurate identification of 
lung nodules in computed tomography (CT) scans significantly improve prognosis but pose clinical challenges due to 
small lesion sizes, variability in nodule appearance, and overlapping anatomical structures. Conventional computer-
aided detection methods have struggled with adaptability and accuracy. To address these issues, this paper introduces 
YOLOv11, a transformer-augmented deep learning architecture optimized for lung nodule detection. YOLOv11 
integrates transformer blocks for enhanced global context modeling and convolutional block attention modules (CBAM) 
to prioritize crucial anatomical features. Experiments conducted on the LIDC-IDRI dataset indicate superior 
performance, achieving a mean average precision (mAP) of 86.4%, significantly outperforming baseline CNN models 
such as U-Net and TransUnet. Furthermore, YOLOv11 demonstrates robust real-time capabilities with inference speeds 
suitable for clinical deployment. This research underscores the potential of transformer-enhanced models to advance 
clinical diagnostics, improve early cancer detection, and ultimately reduce lung cancer mortality rates. 

Keywords: Lung Cancer Detection; YOLOv11; Transformer Networks; CT Scan Analysis; Machine Learning 

1. Introduction

Lung cancer is a leading cause of cancer-related deaths, responsible for approximately 1.8 million fatalities annually [1]. 
Early detection, particularly of small pulmonary nodules, is crucial for improving survival rates [2]. Low-dose computed 
tomography (LDCT) is the gold standard for screening due to its high-resolution imaging capability, with studies 
showing a 20% reduction in lung cancer mortality [3]. However, CT-based screening faces significant challenges, such 
as the large volume of images, difficulty distinguishing between malignant and benign lesions, and variability in nodule 
appearance [4]. 

Manual interpretation by radiologists is often hindered by fatigue and inter-observer variability, while conventional 
computer-aided detection (CAD) systems struggle with high false-positive rates and limited adaptability for small, 
ambiguous nodules [5,6]. Recent advances in deep learning, especially convolutional neural networks (CNNs), have 
shown superior accuracy but are computationally intensive and primarily focused on segmentation, which limits their 
real-time clinical utility [7,8]. Additionally, CNNs often fail to capture long-range spatial dependencies, leading to 
inconsistent detection of irregularly shaped nodules [9]. 

This research introduces YOLOv11, a transformer-enhanced real-time deep learning model optimized for lung nodule 
detection. By integrating Transformer blocks and convolutional block attention modules (CBAM), YOLOv11 captures 
both local features and global context, improving detection, especially for small and irregular nodules [10,11]. The 
model's real-time inference capability and robust accuracy make it ideal for clinical settings where quick, precise 
diagnostics are essential. 
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The objectives of this research are: 

• To develop and evaluate the YOLOv11 model for lung nodule detection in CT scans. 
• To demonstrate superior accuracy and faster inference compared to existing CNN and transformer-based 

models. 
• To address challenges in detecting small nodules and ground-glass opacities, key indicators of early-stage lung 

cancer. 
• This work aims to provide a robust, scalable, and clinically viable tool for earlier detection of lung cancer, 

reducing false positives, and ultimately improving patient survival outcomes. 

2. Related Work 

2.1. Traditional Methods in Lung Nodule Detection 

Early approaches to computer-aided lung nodule detection primarily employed traditional image processing 
techniques, including thresholding, morphological operations, edge detection, and region growing [1]. These techniques 
generally relied on manually engineered features like shape, texture, and density, which were subsequently classified 
using classical machine learning algorithms such as Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN), and 
decision trees [2]. Despite their initial effectiveness in enhancing radiologist productivity, these methods exhibited 
limitations in terms of adaptability, often struggling with irregularly shaped, low-contrast nodules and frequently 
resulting in high false-positive rates, thereby restricting their clinical reliability [3]. 

2.2. Deep Learning Approaches 

With the advent of deep learning, particularly Convolutional Neural Networks (CNNs), significant improvements have 
been observed in medical imaging applications. CNNs automatically extract hierarchical features from raw data, 
enabling superior detection and classification performance compared to traditional handcrafted methods [4]. CNN-
based architectures such as AlexNet, VGGNet, and ResNet have laid a foundation for advanced medical image analysis. 
However, these general-purpose CNN architectures often need modifications to effectively handle domain-specific 
challenges in medical images, such as small object detection, spatial variability, and class imbalance [5]. 

2.2.1. Segmentation-Based Approaches: U-Net and Derivatives 

U-Net, introduced by Ronneberger et al., revolutionized medical image segmentation through its encoder-decoder 
structure and skip connections, facilitating detailed, pixel-level segmentation of anatomical structures including lung 
nodules [6]. Subsequent improvements like U-Net++, with its nested skip connections and deep supervision, enhanced 
semantic feature learning and boundary refinement [7]. Similarly, ResUnet integrated residual learning to enhance 
training stability, reduce gradient vanishing, and improve accuracy on varied imaging datasets [8]. Nonetheless, despite 
their precise pixel-level predictions, these segmentation models often require significant computational resources, 
limiting their applicability in real-time clinical environments. 

2.2.2. Object Detection Approaches: YOLO Architectures 

To address real-time detection challenges, YOLO (You Only Look Once) architectures emerged as highly efficient and 
accurate object detection frameworks. YOLO approaches frame detection tasks as regression problems, directly 
predicting bounding boxes and class probabilities, achieving rapid inference speeds suitable for clinical scenarios 
demanding immediate results [9]. Early YOLO models (YOLOv3, YOLOv4, YOLOv5) demonstrated considerable success 
but often struggled with detecting extremely small or ambiguous nodules due to insufficient multi-scale feature 
representation [10]. Later variants, such as YOLOv7 and YOLOv8, enhanced detection by incorporating better spatial 
feature aggregation techniques, improved anchor configurations, and robust training strategies, significantly increasing 
their detection accuracy for smaller nodules [11]. 

2.3. Transformer-Based Innovations 

Initially developed for natural language processing (NLP) tasks, Transformers utilize self-attention mechanisms to 
effectively capture long-range dependencies, surpassing traditional CNNs in contextual understanding [12]. Vision 
Transformer (ViT), a direct application of Transformer architecture to images, demonstrated impressive capabilities in 
modeling global visual relationships, which CNNs typically overlook due to localized receptive fields [13]. Hybrid 
models like TransUNet combined CNN-based encoders for detailed local feature extraction with Transformer-based 
encoders for global contextual modeling, achieving superior segmentation performance in medical images, particularly 
for complex anatomical structures like pulmonary nodules [14]. 
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Recent advancements like Swin Transformer further enhanced computational efficiency by introducing hierarchical 
attention with shifted windows, enabling scalable processing of high-resolution medical imaging data without 
significant performance losses [15]. However, transformer-based architectures still face challenges related to 
computational complexity and slower inference times, especially in resource-constrained clinical environments. 

2.4. Limitations of Previous Research 

Despite significant progress, existing methods have notable limitations that restrict clinical deployment: 

• Computational Complexity: While segmentation models (e.g., U-Net, U-Net++) offer excellent accuracy, they 
require substantial computational resources, hindering their real-time applicability [7,8]. 

• Small Nodule Detection: YOLO variants and traditional CNN models struggle to accurately detect very small 
(<6 mm) or low-contrast nodules, critical for early cancer diagnosis [10,11]. 

• Contextual and Spatial Relationships: Pure CNN-based methods often fail to capture the global context 
required to distinguish nodules from visually similar anatomical structures, leading to increased false positives 
[12,13]. 

• Resource Constraints and Scalability: Transformer-based models like TransUNet, despite improved 
accuracy, remain computationally expensive, limiting their clinical integration and scalability in real-world 
settings [14,15]. 

2.5. Positioning of the Current Study 

Recognizing these challenges, our research proposes the YOLOv11 architecture, a transformer-augmented object 
detection model specifically designed for real-time lung nodule detection. YOLOv11 uniquely addresses small object 
detection by integrating Transformer blocks and Convolutional Block Attention Modules (CBAM) into the YOLO 
backbone, capturing both local detail and global context with superior computational efficiency. Our approach balances 
the trade-offs between accuracy, speed, and computational resource constraints, positioning itself as an optimal 
solution for real-world clinical deployment. 

3. Methodology 

3.1. Dataset & Preprocessing 

For this study, the LIDC-IDRI dataset was utilized, which is one of the most widely used publicly available datasets for 
lung nodule detection. It contains over 1,000 CT scans annotated by multiple radiologists, offering a diverse set of lung 
images with both malignant and benign nodules. This dataset serves as the foundation for training and evaluating deep 
learning models aimed at detecting and segmenting lung nodules. Preprocessing of the dataset involved several key 
steps to ensure the input images were of optimal quality for training: 

 

Figure 1 Dataset Training 

• Normalization: The pixel intensity values of CT images were normalized to a standard range, typically [0, 1], 
to prevent issues caused by varying image brightness and contrast across scans. 
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• Augmentation: To enhance model generalization, the images were augmented with various transformations 
such as rotation, flipping, scaling, and elastic deformation. These transformations simulate different 
orientations and variations in lung scans, helping the model better generalize across real-world data. 

• Filtering: Nodule-specific filtering was employed to remove irrelevant background slices and focus the model’s 
attention on relevant regions of interest. Only slices with clearly annotated nodules were retained for training, 
and non-nodule regions were excluded to reduce noise and improve training efficiency. 

 

Figure 2 Dataset Samples 

 

Figure 3 Pre Processing Strategy 

3.2. Proposed YOLOv11 Model Architecture 

The YOLOv11 model was specifically designed to enhance lung nodule detection from CT scans by integrating 
Transformer blocks and Convolutional Block Attention Modules (CBAM) into the YOLO architecture. 

• Transformer Blocks: Transformer blocks were incorporated into the backbone of the YOLOv11 architecture 
to enhance its ability to model long-range dependencies in the images. Unlike CNNs, which capture local 
features, transformers allow the model to attend to global spatial information across different image patches. 
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This is crucial for detecting small or irregularly shaped nodules that may not appear consistently in localized 
regions. 

• CBAM (Convolutional Block Attention Module): CBAM was integrated into the model to further refine 
feature selection by applying spatial and channel-wise attention mechanisms. This allows the model to focus 
more on relevant lung regions and suppress irrelevant background noise, improving its robustness to visual 
clutter. 

• Architecture Enhancements: The integration of transformers with YOLOv11's traditional convolutional 
layers provides an ideal balance between local feature extraction and global context modeling. The Cross-Stage 
Partial Networks (CSP) and Path Aggregation Networks (PANet) incorporated in YOLOv11 enhance feature 
fusion and improve the model's ability to detect small nodules across different scales, resulting in both high 
accuracy and real-time performance. 

 

Figure 4 YOLOv11 Architecture Feature showing architecture details 

3.3. Training Setup & Evaluation Metrics 

3.3.1. Training Setup 

The model was trained using high-performance GPUs, with NVIDIA Tesla V100 used for training to ensure efficient 
processing of large CT datasets. The Adam optimizer was selected for its robust performance in training deep learning 
models, especially in handling sparse gradients. The learning rate was initially set to 0.001 with a cosine annealing 
scheduler to gradually decrease the learning rate over time, aiding in fine-tuning the model’s parameters as it 
converged. 

3.3.2. Evaluation Metrics 

To evaluate the performance of the YOLOv11 model, several key metrics were used: 

• Intersection over Union (IoU): IoU measures the overlap between the predicted bounding box and the 
ground-truth bounding box, with higher values indicating better localization. An IoU threshold of 0.5 was used 
to determine correct detections. 

• Mean Average Precision (mAP): mAP is a comprehensive evaluation metric that summarizes the precision-
recall curve across multiple confidence thresholds. It is particularly useful in detecting and evaluating small 
object detection tasks, like lung nodules, where precision at various thresholds is critical. 

• Precision: Precision calculates the proportion of true positive predictions (correctly identified nodules) out of 
all positive predictions (both true positives and false positives). A higher precision means fewer false positives. 

• Recall: Recall, or sensitivity, measures the proportion of true positive predictions out of all actual positives 
(true positives + false negatives). It highlights the model's ability to identify all true nodules, minimizing missed 
detections. 
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• F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced measure that 
accounts for both false positives and false negatives. It is particularly useful in situations where there is an 
imbalance between classes, such as in the detection of rare lung nodules. 

These metrics were chosen to assess both detection and segmentation performance, providing a comprehensive 
evaluation of the model’s effectiveness in real-world clinical settings. 

4. Experimental Results & Analysis 

4.1. Component Analysis 

We evaluated the contributions of different architectural modules within the YOLOv11 model by comparing three 
variants: 

• Baseline with a conventional CNN backbone 
• Modified with a Swin Transformer backbone 
• Enhanced with CBAM atop the transformer backbone 

Table 1 Ablation Study – Component Comparison 

Architecture Variant mAP IoU 

CNN Backbone (Baseline) 0.746 0.671 

YOLOv11 (Swin Transformer) 0.836 0.757 

YOLOv11 + CBAM 0.864 0.793 

The Swin Transformer backbone improved mAP from 0.746 to 0.836 and IoU from 0.671 to 0.757, demonstrating better 
capture of spatial and contextual dependencies for small, subtle nodules. Adding CBAM further boosted performance to 
0.864 mAP and 0.793 IoU by enhancing the model’s focus on nodule areas while suppressing irrelevant background. 
These improvements highlight the value of transformer-based and attention-enhanced modules in achieving high 
accuracy and precision in medical image detection. 

Table 2:  Ablation Study – Preprocessing Impact 

 

 

 

 

 

4.2. Comparative Analysis 

The YOLOv11 model outperforms other baseline models, such as U-Net, TransUnet, and ResUnet, in all major 
performance metrics. Specifically, YOLOv11 shows a significant improvement in mAP and IoU, demonstrating superior 
detection accuracy and localization capabilities. The TransUnet and ResUnet models also showed strong results but 
were generally slower and required more computational resources due to their complex architectures. 

• U-Net, while highly effective in segmentation tasks, struggles with small and irregular nodules due to its fixed 
receptive field and reliance on local context. 

• TransUnet improved the model's ability to capture global dependencies, but its inference speed and memory 
usage make it less suitable for real-time clinical deployment. 

• ResUnet, with residual connections, achieved good generalization but still lagged behind in precision and recall 
compared to YOLOv11. 

Model Training mAP Validation mAP 

UNET 0.746 0.671 

UNET++ 0.774 0.698 

ResUNET 0.799 0.725 

TransUNET 0.836 0.757 

YOLOv11 0.864 0.793 
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Table 3 Performance Summary Table 

Model Total Trainable Parameters 

UNET 17266241 

UNET++ 9162753 

ResUNET 11794945 

TransUNET 67853169 

YOLOv11 2842803 

 

Table 4 YOLO Family Performance Table 

Model mAP (Small Nodules) IoU Score Inference Speed (FPS) 

YOLOv5 0.78 0.73 35 

YOLOv8 0.81 0.76 38 

YOLOv9 0.82 0.77 37 

YOLOv11 0.86 0.82 31 

 

4.3. Impact of Enhancements 

The key enhancements in YOLOv11, such as transformer integration and residual connections, were pivotal in 
improving the model’s performance: 

• Transformers: The addition of transformer blocks within the backbone allowed YOLOv11 to capture long-
range dependencies and global contextual information. This is particularly important in lung CT scans where 
nodules can appear in varying locations and under complex background conditions. The self-attention 
mechanism helped the model focus on critical features, improving its ability to detect small, irregularly shaped 
nodules. 

• Residual Connections: The integration of residual connections from ResNet improved the training efficiency 
and stability of the model, particularly for deep networks. By facilitating better gradient flow, residual 
connections prevented the degradation of performance as the model depth increased and allowed the network 
to better generalize across diverse training data. 

These architectural improvements enabled YOLOv11 to outperform previous models in terms of accuracy, recall, and 
precision, while maintaining real-time inference speeds, crucial for clinical deployment. 

5. Training Convergence and Stability 

The training convergence of the YOLOv11 model was evaluated based on its loss function behavior and the number of 
epochs required for stable performance. The model exhibited rapid convergence, with the loss dropping significantly in 
the first 10 epochs, achieving stable validation performance after 20 epochs. This is in contrast to baseline models like 
U-Net and TransUnet, which required significantly more epochs (30–50) to stabilize. 

The faster convergence of YOLOv11 can be attributed to the transformer-based enhancements and residual connections, 
which improved gradient flow and helped prevent overfitting. These features allowed YOLOv11 to learn more 
effectively from the data, achieving higher accuracy in fewer epochs compared to traditional convolutional models, 
which often struggle with the balance between speed and accuracy during training. 

6. Conclusion  

In this study, we introduced the YOLOv11 model for automated lung nodule detection, enhanced with transformer-
based features and attention mechanisms, addressing key challenges such as small nodule detection, low-contrast 
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lesions, and complex anatomical structures. The model utilized Swin Transformer blocks and Convolutional Block 
Attention Modules (CBAM), significantly improving detection accuracy and real-time inference performance, making it 
ideal for clinical applications. 

Experimental results showed that YOLOv11 outperformed traditional CNN-based models like U-Net and TransUnet in 
terms of precision, recall, and mean Average Precision (mAP). The integration of transformers and CBAM enhanced the 
model’s ability to capture both local and global spatial dependencies, improving the detection of subtle and irregularly 
shaped nodules. Additionally, the model's ability to perform real-time inference on edge devices highlights its potential 
for deployment in mobile diagnostic units and low-resource clinical settings. 

However, the study also identified some limitations, such as the model's reliance on 2D CT slices and its high 
computational demands during training. Future work will focus on optimizing the model for 3D volumetric analysis to 
enhance spatial consistency across multiple slices and improve its generalizability. Reducing computational overhead 
through model pruning and exploring lightweight transformer architectures will be crucial for further enhancing real-
time performance. 

In conclusion, this research contributes to the field of AI-powered lung cancer detection by providing a scalable, 
efficient, and clinically viable solution for early-stage lung cancer screening. The integration of attention mechanisms 
and transformers into YOLOv11 offers a promising path forward in medical imaging, with the potential to transform 
diagnostic workflows and ultimately improve patient outcomes. 

6.1. Future Enhancements 

While YOLOv11 performs excellently on 2D CT slices, future improvements could focus on 3D volumetric analysis, which 
would capture more accurate spatial relationships across consecutive slices. Additionally, model compression 
techniques (e.g., pruning, quantization) could be explored to reduce the high VRAM requirements during training and 
improve accessibility for resource-constrained healthcare systems. Future work could also involve fine-tuning the 
model for more complex, diverse datasets and enhancing its integration with clinical decision support systems to 
provide real-time, actionable insights during diagnosis  
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