
 Corresponding author: Bhupender Kumar Panwar.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Optimizing costs and reducing DevOps Overhead with the Kafka to SNS-SQS
Integration: A comprehensive analysis

Bhupender Kumar Panwar *

Salesforce Inc., USA.

World Journal of Advanced Research and Reviews, 2025, 26(01), 585-592

Publication history: Received on 25 February 2025; revised on 02 April 2025; accepted on 04 April 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.1.1061

Abstract

The integration of Apache Kafka with AWS Simple Notification Service (SNS) and Simple Queue Service (SQS) represents
a strategic approach for organizations seeking to optimize their event-driven architectures. This article explores how
this hybrid model addresses the inherent challenges of traditional Kafka deployments by leveraging cloud-native
messaging services. By decoupling message production from consumption through SNS's fan-out capabilities and SQS's
serverless queuing, enterprises can significantly reduce infrastructure costs while eliminating complex operational
overhead. The Kafka to SNS-SQS pattern enhances system reliability through AWS-managed durability features and
simplified failure handling mechanisms, ultimately creating a more resilient and maintainable architecture that allows
engineering teams to redirect resources from system maintenance to business innovation.

Keywords: Event-Driven Architecture; Infrastructure Optimization; Serverless Messaging; Devops Automation;
Cloud-Native Integration

1. Introduction

1.1. Evolution of Event-Driven Architectures: Challenges and Opportunities

The transformation of enterprise software architecture has accelerated dramatically with the adoption of event-driven
approaches, enabling organizations to build more responsive and scalable systems. This evolution represents a
fundamental shift from traditional request-response patterns toward more loosely coupled, asynchronous
communication models that better reflect the complexity of modern business operations.

1.2. Foundations of Modern Event-Driven Systems

Event-driven architectures (EDAs) operate on the principle that significant state changes within systems generate
events that can trigger reactions across distributed services. According to comprehensive analysis, these architectures
typically consist of four essential components that work in concert: event producers that detect and publish state
changes, event routers that distribute notifications to interested parties, event consumers that process and react to
these notifications, and event storage systems that maintain a durable record of event history [1]. This architectural
pattern enables systems to respond dynamically to changing conditions without tight coupling between components.
Within this framework, Apache Kafka has emerged as a dominant technology for implementing the event router and
storage components, particularly in scenarios requiring high throughput and strong durability guarantees. The publish-
subscribe messaging pattern at the core of EDAs allows multiple consumers to independently process the same events
without knowledge of one another, creating powerful composability characteristics that traditional architectures
struggle to achieve [1].

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.1.1061
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.1.1061&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(01), 585-592

586

1.3. Operational Challenges in Traditional Implementations

While event-driven architectures offer significant design advantages, traditional implementations encounter
operational challenges that can undermine their benefits. Kafka deployments require substantial infrastructure
investment and specialized expertise, with organizations reporting increasing operational overhead as systems scale.
The management of consumer groups presents particular complexities, requiring sophisticated coordination to handle
partition assignment, rebalancing operations, and offset management [2]. Consumer implementations must also
incorporate robust error handling logic, including retry mechanisms and dead-letter capabilities, further increasing
development and maintenance complexity. These operational challenges divert technical resources from business
innovation toward infrastructure management activities, creating tension between architectural aspirations and
operational realities. Additionally, the static nature of traditional Kafka consumer deployments conflicts with variable
processing demands, forcing organizations to provision for peak capacity and accept underutilization during normal
operations [2].

1.4. Cloud-Native Integration Opportunities

The emergence of cloud-native messaging services presents compelling opportunities to address operational challenges
while preserving the architectural benefits of event-driven systems. AWS messaging services offer differentiated
capabilities that complement Kafka's strengths while eliminating operational complexity. SNS provides fully managed
topic-based publish-subscribe capabilities that enable fan-out to multiple destinations, while SQS delivers durable
queuing with configurable retention periods and built-in dead-letter functionality [2]. When integrated with Kafka,
these services create a hybrid architecture that preserves Kafka's production capabilities while leveraging AWS's
operational expertise for message delivery and consumption. This approach enables truly elastic consumption models
where processing resources scale automatically with demand, eliminating the need for pre-provisioned capacity. The
serverless nature of these services further enhances the value proposition by removing infrastructure management
requirements entirely, allowing organizations to focus engineering resources on business logic rather than messaging
infrastructure [2].

2. Understanding the Kafka to SNS-SQS Architecture

The Kafka to SNS-SQS architecture represents a sophisticated approach to event-driven systems that combines the
strengths of traditional message brokers with cloud-native messaging services. This integration creates a powerful
hybrid architecture that preserves the robust production capabilities of Kafka while leveraging AWS's fully managed
consumption services.

2.1. Architectural Components and Integration Points

The foundation of this architecture begins with Apache Kafka serving as the primary event source, providing durable
storage and high-throughput message ingestion capabilities. AWS's reference architecture documentation
demonstrates that successful implementations often feature multiple Kafka topics organized by domain boundaries,
with each topic containing related event streams [3]. The bridge between Kafka and AWS services is established through
dedicated connector applications that continually poll Kafka partitions and transform these messages into the SNS
format. These connectors must be designed with careful consideration for error handling, with best practices suggesting
circuit breaker patterns that can protect downstream systems during failure scenarios. The SNS topics act as
distribution points that implement the publish-subscribe pattern, enabling a single message to be delivered to multiple
destination systems simultaneously. The final component involves SQS queues that provide temporary message storage
with configurable retention periods of up to 14 days, creating a buffer that decouples producers from consumers [3].

2.2. Message Flow and Transformation Mechanics

The journey of a message through this hybrid architecture involves several transformation stages that preserve
semantic integrity while adapting to different protocol requirements. When events are published to Kafka, they are
assigned sequential offsets within partitions that guarantee ordering – a critical feature for event sequencing. The Kafka
to SNS connector applications apply specific transformation logic to convert Kafka's record format into the JSON
structure expected by SNS, including metadata mapping that preserves crucial information such as timestamps,
partition identifiers, and custom headers [4]. This transformation process requires careful handling of message
schemas, particularly when evolving data structures over time. The connector implementations often utilize schema
registries to ensure compatibility across systems, applying version-specific serialization and deserialization processes
that maintain backward compatibility. Once messages reach SQS queues, they become available for consumption
through long-polling mechanisms that optimize network efficiency by reducing empty responses during low-traffic
periods [4].

World Journal of Advanced Research and Reviews, 2025, 26(01), 585-592

587

2.3. Scalability and Performance Characteristics

The Kafka to SNS-SQS architecture delivers exceptional scalability characteristics that address limitations in traditional
messaging patterns. According to AWS implementation guidance, SNS can achieve throughput rates limited primarily
by API throttling limits, which start at several thousand messages per second for standard accounts [3]. This throughput
capacity scales automatically without manual intervention, contrasting with Kafka clusters that require explicit scaling
operations. The architecture shows particular strength in handling asymmetric workloads where production and
consumption rates differ significantly. When consumption systems experience processing delays, messages accumulate
in SQS queues rather than causing backpressure on producers – a common challenge in pure Kafka implementations.
For failure handling, the architecture implements sophisticated recovery mechanisms, including visibility timeout
extensions, dead-letter queues, and transparent retries, creating resilience without complex client-side implementation
[4].

Figure 1 Kafka to SNS-SQS architecture [3, 4]

3. Cost optimization analysis

The transition from traditional Kafka deployments to integrated Kafka-SNS-SQS architectures yields substantial
financial benefits through infrastructure optimization and operational efficiency improvements. This hybrid model
enables organizations to reduce their total cost of ownership while maintaining or enhancing message processing
capabilities.

3.1. Infrastructure Cost Comparison Framework

Traditional Kafka implementations require significant infrastructure investment across the entire message processing
pipeline. The dedicated consumer instances that poll Kafka topics necessitate continuous operation regardless of actual
workload, creating persistent infrastructure costs even during periods of low utilization. AWS messaging services
introduce a fundamentally different economic model by separating the cost structure into distinct components with
different pricing characteristics. SNS pricing is based on the number of notifications published, with the standard tier
priced at $0.50 per million publish requests [5]. This consumption-based pricing eliminates the need for pre-
provisioned capacity, creating a direct alignment between actual usage and cost. SQS complements this model with a
similar usage-based structure, charging approximately $0.40 per million requests for standard queues [5]. When
compared to the fixed costs of EC2 instances required for dedicated Kafka consumers, this model produces substantial
savings as organizations avoid paying for idle capacity during normal operational periods.

3.2. Architectural Efficiency and Resource Utilization

The economic advantages of the Kafka-SNS-SQS integration extend beyond simple infrastructure cost reduction through
fundamental improvements in overall system efficiency. In traditional event processing systems, ensuring adequate

World Journal of Advanced Research and Reviews, 2025, 26(01), 585-592

588

performance during peak loads requires substantial overprovisioning, resulting in average CPU utilization rates of only
8-17% across many production deployments [6]. This inefficiency stems from the static nature of provisioned
infrastructure that cannot adapt to changing workloads without manual intervention. The serverless nature of SNS-SQS
consumption eliminates this waste by allowing downstream processing resources to scale elastically with actual
demand. Academic analysis of production event processing systems demonstrates that implementing dynamic scaling
strategies can improve resource utilization by more than 30% compared to static provisioning approaches [6]. These
efficiency gains translate directly to cost savings while simultaneously enhancing system responsiveness during
unexpected traffic spikes.

3.3. Operational Cost Analysis

Beyond direct infrastructure expenses, the Kafka-SNS-SQS model delivers substantial benefits by reducing operational
overhead and engineering costs. Traditional Kafka deployments require specialized expertise for cluster management,
consumer group configuration, and performance tuning—activities that consume valuable engineering resources. The
fully managed nature of AWS messaging services eliminates many of these operational burdens. Research examining
enterprise messaging systems reveals that operational tasks related to Kafka consumer management typically consume
15-20% of development team capacity [6]. By offloading these responsibilities to AWS-managed services, organizations
can redirect engineering resources toward higher-value activities that directly enhance business capabilities. The
elimination of maintenance windows, patching cycles, and scaling operations creates additional efficiency by removing
coordination overhead and potential service disruptions. The SNS service's proven reliability with a 99.9% SLA further
reduces operational costs associated with incident response and recovery activities [5].

Table 1 Infrastructure Cost Comparison Between Traditional Kafka and Hybrid Model [5, 6]

Component Traditional Kafka Deployment Kafka-SNS-SQS Model Cost Reduction

Consumer Infrastructure Fixed capacity EC2 instances Pay-per-use serverless 40-60%

Scaling Operations Manual intervention required Automatic elasticity 35-45%

Operational Overhead 15-20% of engineering capacity Minimal management 67%

Total Cost of Ownership Baseline Reduced TCO 30-45%

4. Operational Efficiency and devops Impact

The integration of Kafka with SNS-SQS introduces profound transformations in operational practices and DevOps
workflows. This architectural approach significantly reduces the engineering burden associated with maintaining
complex messaging systems while enhancing reliability and observability.

4.1. Reduction in Maintenance Overhead

Traditional event-streaming architectures require substantial engineering investment for ongoing maintenance
activities. Research examining cloud-based messaging systems reveals that organizations typically allocate 20% of their
development capacity to maintaining message broker infrastructure, with Kafka clusters requiring particularly
intensive monitoring and tuning [7]. This maintenance burden stems from the inherent complexity of distributed
messaging systems, which must handle partition management, leader election, and replication coordination to ensure
reliable operation. The maintenance activities include regular rebalancing operations that redistribute message
partitions across brokers to maintain optimal performance—procedures that frequently cause temporary processing
delays and require careful orchestration. By transferring message distribution and buffering responsibilities to AWS-
managed services, the Kafka-SNS-SQS architecture eliminates many of these maintenance requirements. AWS assumes
responsibility for the underlying infrastructure that powers both SNS and SQS, including scaling operations, hardware
replacement, and performance optimization. This transfer of responsibility allows engineering teams to focus on
application logic and business capabilities rather than infrastructure concerns, creating opportunities for accelerated
innovation cycles and reduced time-to-market for new features [7].

4.2. Monitoring and Observability Enhancements

Effective monitoring represents a critical success factor for event-driven systems, directly impacting both reliability and
operational efficiency. Traditional Kafka deployments present monitoring challenges due to their distributed nature
and the complexity of consumer group dynamics. Organizations must typically implement multi-layered monitoring

World Journal of Advanced Research and Reviews, 2025, 26(01), 585-592

589

approaches that combine infrastructure metrics, broker statistics, and application-level telemetry to gain
comprehensive visibility. This monitoring complexity is reflected in research indicating that observability remains the
primary operational challenge for 56% of organizations operating event-driven systems [8]. The Kafka-SNS-SQS
architecture addresses these challenges through native integration with AWS CloudWatch, providing unified visibility
across the entire message processing pipeline. This integration delivers detailed metrics, including message delivery
rates, processing latencies, and error conditions across both SNS topics and SQS queues. The architecture further
enhances operational visibility through built-in dead-letter queue (DLQ) mechanisms that capture and preserve
messages that fail to process, enabling detailed analysis of failure patterns without complex custom implementation [8].

4.3. Resilience and Failure Handling Improvements

Failure management represents one of the most significant operational advantages of the Kafka-SNS-SQS architecture.
Traditional Kafka consumer implementations require the custom development of sophisticated retry logic, backoff
strategies, and dead-letter mechanisms—capabilities that demand substantial engineering investment and ongoing
maintenance. Research examining event-driven system implementations indicates that error-handling logic typically
accounts for 30-40% of consumer application code, creating both development complexity and potential for
implementation defects [8]. The Kafka-SNS-SQS architecture addresses these challenges through built-in resilience
features that handle common failure scenarios automatically. SQS provides configurable visibility timeout settings that
temporarily hide messages during processing, automatically returning them to the queue if processing is not completed
within the specified window. This mechanism creates inherent retry capabilities without custom implementation.
Additionally, SQS offers native dead-letter queue functionality that automatically redirects messages to secondary
queues after exceeding retry limits, preserving failed messages for analysis while preventing processing blockages [7].
These built-in resilience features dramatically reduce the engineering effort required to implement robust error
handling while simultaneously improving overall system reliability.

Table 2 Maintenance Overhead Reduction After Migration to Hybrid Architecture [7, 8]

Operational Activity Traditional Kafka Kafka-SNS-SQS Reduction Percentage

Infrastructure Maintenance (hrs/week) 18.7 6.1 67%

Scaling Operations (hrs/operation) 7.3 0.5 93%

Monitoring Configuration (initial setup hrs) 230 45 80%

Incident Frequency (monthly) 12.4 2.7 78%

5. Implementation Strategy and Best Practices

Transitioning from traditional Kafka architectures to the integrated Kafka-SNS-SQS model requires careful planning and
execution to maximize benefits while minimizing operational disruption. A strategic implementation approach enables
organizations to realize incremental value while mitigating risks associated with architectural transformation.

5.1. Migration Approach from Existing Kafka Deployments

Successful migration to hybrid messaging architectures demands a methodical approach that preserves system integrity
throughout the transition process. Research examining enterprise-level data migration strategies indicates that
organizations achieve optimal results through phased implementation models that maintain parallel processing paths
during transition periods [9]. This approach allows for continuous service delivery while incrementally shifting message
volume to the new architecture. The migration process typically begins with comprehensive system analysis to identify
message flows amenable to the SNS-SQS delivery model, particularly focusing on asynchronous processing workflows
that can tolerate potential reordering. Studies of enterprise migrations reveal that organizations implementing
structured testing frameworks with predefined success criteria experience 11% faster migration completion compared
to those using ad-hoc validation approaches [9]. The testing methodology should include targeted performance analysis
under various load conditions to verify throughput capabilities and latency characteristics across the hybrid
architecture. Particular attention must be given to evaluating the transformation layer that bridges Kafka and AWS
services, as this component represents a critical performance boundary. Research demonstrates that organizations
employing canary deployment strategies for initial transitions reduce production incidents by 76% compared to those
implementing direct cutover approaches [9].

World Journal of Advanced Research and Reviews, 2025, 26(01), 585-592

590

5.2. Message Transformation and Protocol Adaptation

The integration between Kafka and AWS messaging services requires sophisticated transformation logic to bridge the
different message formats and delivery semantics. Kafka's binary message format with rich metadata must be adapted
to the JSON-based structure expected by SNS, preserving critical information while complying with service constraints.
Research exploring hybrid event processing architectures emphasizes the importance of implementing efficient
transformation mechanisms that minimize latency while maintaining message fidelity [10]. High-performance
implementations typically leverage dedicated transformation services that process messages in micro-batches,
achieving throughput rates of up to 45,000 messages per second on standard compute instances [10]. The
transformation layer must address several protocol discrepancies, including encoding differences, header mapping
strategies, and size limitations. The adaptation process should implement robust error handling to address
transformation failures, particularly for edge cases involving malformed messages or unexpected data structures.
Research indicates that organizations implementing comprehensive exception handling within transformation services
experience 29% fewer processing interruptions compared to implementations with minimal error management [10].

5.3. Performance Optimization and Throughput Management

Maintaining system performance across the hybrid architecture requires thoughtful configuration and monitoring to
ensure optimal message processing. Research examining high-performance monitoring in hybrid event processing
systems emphasizes the importance of buffer management strategies that prevent message accumulation at integration
points [10].

Figure 2 Implementation strategy and best practices for the Kafka to SNS-SQS integration [9, 10]

The connector components bridging Kafka and SNS must implement adaptive polling mechanisms that respond to
downstream processing capabilities, adjusting consumption rates to prevent overwhelming SNS API limits. Studies
demonstrate that implementations utilizing exponential backoff strategies during rate-limiting scenarios maintain an
85% higher average throughput compared to static polling approaches [10]. Additionally, the architecture must
implement appropriate batching strategies to optimize SNS publishing efficiency, with research indicating optimal
performance at batch sizes between 10-25 messages depending on the average message size. Monitoring represents a
critical aspect of performance management, with high-performing implementations establishing comprehensive
dashboards that correlate metrics across system boundaries. Research shows that organizations implementing end-to-

World Journal of Advanced Research and Reviews, 2025, 26(01), 585-592

591

end tracing across the hybrid architecture identify performance bottlenecks 62% faster than those monitoring
individual components in isolation [9].

6. Case Studies and Future Directions

The Kafka to SNS-SQS architecture demonstrates exceptional value across diverse industry implementations, providing
a robust foundation for scalable event processing while significantly reducing operational complexity. This section
explores real-world applications, implementation insights, and emerging patterns in hybrid messaging architectures.

6.1. Real-World Implementation Examples

The hybrid messaging architecture has proven particularly effective in high-throughput scenarios requiring reliable
message delivery across distributed systems. Cloud messaging implementations leveraging similar architectural
principles have demonstrated the ability to handle billions of messages daily while maintaining consistent performance
characteristics [11]. Financial services organizations have been early adopters, implementing the pattern to process
transaction streams that require both high throughput and guaranteed delivery. A major European payment processor
deployed this architecture to handle transaction volumes exceeding 5,000 messages per second during peak periods
while ensuring regulatory compliance through comprehensive audit trails. The implementation allowed them to replace
dedicated consumer instances with elastic processing resources that adjusted automatically to workload variations.
Similar benefits have emerged in retail environments, where the architecture supports inventory synchronization
across distributed systems. The pattern's inherent fault tolerance capabilities, including automatic retries and dead-
letter queues, provide crucial reliability for business-critical operations where message loss could result in inventory
discrepancies or fulfillment errors [11].

6.2. Lessons Learned from Production Deployments

Organizations implementing hybrid messaging architectures have identified several critical success factors that
significantly impact deployment outcomes. Effective message routing strategies represent a foundational element, with
sophisticated implementations utilizing content-based routing to direct messages based on payload characteristics
rather than simple topic subscriptions [12]. This advanced routing enables dynamic processing paths that adapt to
message attributes without requiring producer modifications. Connection management emerges as another critical
consideration, particularly in architectures spanning multiple network boundaries. Implementation experience
demonstrates the importance of connection pooling and circuit-breaking patterns that protect system components
during partial outages or network degradation. Organizations have also discovered that comprehensive monitoring
spanning both Kafka metrics and AWS service telemetry provides essential visibility for operational management. The
correlation of metrics across system boundaries enables rapid identification of performance bottlenecks and processing
delays that might otherwise remain hidden within individual components [12].

6.3. Emerging Patterns and Future Directions

The evolution of hybrid messaging architectures continues through integration with complementary services that
enhance capabilities beyond basic message delivery. The publish-subscribe pattern underlying these architectures has
proven particularly amenable to extension through additional processing layers that implement sophisticated event-
processing capabilities [12]. Organizations are increasingly implementing complex event processing (CEP) layers that
identify patterns across multiple message streams, enabling real-time analytics without custom implementation. This
capability proves particularly valuable for use cases requiring correlation across distinct event types, such as fraud
detection systems that analyze transaction patterns across multiple channels. Another emerging pattern involves the
implementation of event sourcing models that leverage the hybrid architecture as an event store, capturing complete
state change histories for subsequent replay and analysis. This approach enables powerful debugging capabilities and
audit trails while maintaining system performance. As these architectures mature, implementations increasingly
incorporate event discovery mechanisms that enable dynamic subscription management, allowing new consumers to
discover and process events without explicit configuration changes [12].

7. Conclusion

The Kafka to SNS-SQS integration model provides organizations with a powerful blueprint for modernizing their event
streaming infrastructure while addressing the dual challenges of cost optimization and operational complexity. By
leveraging AWS's managed messaging services alongside Kafka's robust production capabilities, enterprises can
achieve the ideal balance of reliability, scalability, and maintenance simplicity. This hybrid approach eliminates the
burden of managing consumer scaling, reduces infrastructure provisioning concerns, and simplifies error handling

World Journal of Advanced Research and Reviews, 2025, 26(01), 585-592

592

through native AWS mechanisms. As event-driven architectures continue to proliferate across industries, this
integration pattern offers a compelling path forward for organizations seeking to maximize the business value of their
real-time data streams while minimizing the associated technical debt and operational overhead. The resulting
architecture delivers immediate cost benefits and positions teams for greater agility and innovation in an increasingly
data-driven landscape.

References

[1] Seetharamugn, "The Complete Guide to Event-Driven Architecture," Medium, 30 Aug. 2023. [Online]. Available:
https://medium.com/@seetharamugn/the-complete-guide-to-event-driven-architecture-b25226594227

[2] James Beswick, "Choosing Between Messaging Services for Serverless Applications," AWS Compute Blog, 28 Sep.
2020. [Online]. Available: https://aws.amazon.com/blogs/compute/choosing-between-messaging-services-for-
serverless-applications/

[3] AWS, "Building Event-Driven Architectures on AWS," Amazon Web Services, 2022. [Online]. Available:
https://d1.awsstatic.com/SMB/building-event-driven-architectures-aws-guide-2022-smb-build-websites-and-
apps-resource.pdf

[4] Sunny Srinidhi, "Emulating Apache Kafka with Amazon SNS and SQS," Contact Sunny Blog, 22 Jan. 2020. [Online].
Available: https://blog.contactsunny.com/tech/emulating-apache-kafka-with-amazon-sns-and-
sqs#google_vignette

[5] Biswanath Mukherjee, "The Purpose of AWS Messaging Services and Choosing the Right One," Medium, 1 Jan.
2024. [Online]. Available: https://medium.com/@biswanath.ita/the-purpose-of-aws-messaging-services-and-
choosing-the-right-one-759fadbf59a5

[6] Tobias Pfandzelter et al., "Streaming vs. Functions: A Cost Perspective on Cloud Event Processing,"
arXiv:2204.11509v2, 12 Aug. 2022. [Online]. Available: https://arxiv.org/pdf/2204.11509

[7] Tiago Boldt Sousa et al., "Engineering Software for the Cloud: Messaging Systems and Logging," ResearchGate,
July 2017. [Online]. Available:
https://www.researchgate.net/publication/321139340_Engineering_Software_for_the_Cloud_Messaging_Syste
ms_and_Logging

[8] nordlys.studio, "Monitoring & Observability in Event-Driven Systems," LinkedIn, 27 April 2023. [Online].
Available: https://www.linkedin.com/pulse/monitoring-observability-event-driven-systems-nordlysstudio

[9] Nurul Shafiqa and Azhar Iskandar, "Optimizing Enterprise-Level Data Migration Strategies," ResearchGate, Vol.
6, no. 1, March 2023. [Online]. Available:
https://www.researchgate.net/publication/386214557_Optimizing_Enterprise-
Level_Data_Migration_Strategies

[10] Yosuke Ozawa et al., "A Hybrid Event-Processing Architecture based on the Model-driven Approach for High-
Performance Monitoring," ResearchGate, Aug. 2007. [Online]. Available:
https://www.researchgate.net/publication/4264273_A_Hybrid_Event-
Processing_Architecture_based_on_the_Model-driven_Approach_for_High_Performance_Monitoring

[11] Firebase, "FCM Architectural Overview," Google Firebase Documentation, 2023. [Online]. Available:
https://firebase.google.com/docs/cloud-messaging/fcm-architecture

[12] ByteByteGo, "Event-Driven Architectural Patterns," ByteByteGo Newsletter, 24 Oct. 2024. [Online]. Available:
https://blog.bytebytego.com/p/event-driven-architectural-patterns

https://firebase.google.com/docs/cloud-messaging/fcm-architecture

