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Abstract 

The transmission of electrical energy is one of the most significant infrastructural undertakings. Traditional manual 
routing methods are still widely used in the sector despite its rapid expansion and high project costs. These methods 
are inefficient, expensive and time-consuming when compared to more current reliability evaluation techniques. The 
results of the findings revealed that the least amount of power outage for planned and unplanned as 95.4 and 14.2 
hours was recorded in 2022 as indicated from the data sheet. In 2022, the highest recorded operational hours (298.99 
hours) were achieved with a low failure rate (171.45 hours) and a high repair rate (8.15 hours). The average LOEE 
and LOLE recorded are 498.29 and 499.113 MW and 562.25 and 844.90 Mw/year for the year 2022 and 2023. The 
most reliability findings came from 2022, with MTTF, MTTR, and MBTF values of 101.67, 87.62, and 24. 23. Also,  Bus 
load A (100 MW) had the best operating reliability (0.98), according to the Roy Billinton Test 6 Bus System Performance 
Assessment. The RBTS bus's simulation results showed an average EENS of 37.96 MW, with a matching system 
reliability of 90.54% respectively. 
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1. Introduction

Power transmission networks are the foundation of the contemporary energy infrastructure in the world, and they 
are essential to maintaining the stability and dependability of the electrical supply. Many studies have been 
conducted on the examination of transmission network reliability, covering topics such network architecture, 
component failure analysis, and system performance evaluation [1], Emphasized the need for long-term planning for 
electric power systems, stressing the use of linear programming for network analysis and the investigation of bulk 
power transmission network designs. In the meanwhile,[2] stressed the need for better techniques to measure and 
increase system resilience and presented a spatial-temporal reliability and damage assessment method to estimate 
the impact of hurricanes on transmission networks. Globally, networks for transmitting electricity constitute a 
significant portion of the infrastructure sector[3]. Since power lines are needed to move power from power plants to 
transformer substations and then to consumers, they serve as the foundation of any power transmission network. 
The most popular kinds are Overhead Power Transmission Lines (OHPTL) because of their affordability, simplicity 
of upkeep, and superiority over alternative techniques like underground cables or microwave transmission [4] . 

With the integration of renewable energy and energy storage gaining prominence, evaluating their impact on 
transmission network reliability has become crucial. The study by [5] addressed the sizing of battery energy storage 
systems (BESS) alongside demand response and dynamic thermal rating systems to improve power grid security. 
This emphasizes the significance of analyzing integrated strategies involving renewable sources, storage, and 
demand response to enhance network reliability[6]. 
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In Nigeria, a nation striving for improved energy security, the reliability of transmission systems takes on even 
greater importance[7]. The work by[8] assessed the reliability of the Nigerian transmission system and highlighted 
the need for more effective reliability indices to address unpredicted outages. Therefore, considering the unique 
challenges faced by Nigeria's power infrastructure, such as insufficient maintenance and distribution losses, 
researching the reliability of specific voltage levels, such as 330KV, becomes vital. This research will not only 
contribute to identifying vulnerabilities but also guide the implementation of measures to enhan ce reliability, 
contributing to the country's efforts to modernize its energy landscape. 

By building upon the insights from these studies, this research aims to develop tailored reliability metrics, assess the 
impact of renewable energy integration, and enhance the resilience of Nigeria's 330KV transmission system. Through 
this, the study seeks to address gaps in the understanding of transmission system performance and contribute to the 
nation's pursuit of a reliable and sustainable energy infrastructure. 

2. Materials and methods 

2.1. Materials/Tools 

The chronological failure history of the Mando-Shiroro 330kV transmission network was collected and based on 
this data, reliability indices are determined. The procedure adopted in this section applies to the transmission 
network of Mando sub-station, Transmission Company of Nigeria. To properly carry out the Reliability evaluation 
of Mando-Shiroro 33kV Transmission network using Markov Chain analyses, this section outlines the material 
needed for the analyses as presents in the Table 1. Also, the data from the operation logbooks of the 330kV Mando 
control room was collected from Months of January to December for the year 2022 and 2023 as presented in Tables 
2 and 3 respectively.  

Table 1 Equipment and their uses in the Markov model-based reliability and availability Analysis of Mando-Shiroro 
330kV power transmission network. 

SNO Equipment/Tools Model Specification Uses 

1. MATLAB® Version 2023a  Used for modelling of reliability 
analysis 

2. Data collection Sources from 330kV Mando transmission 
station 

Used for running the reliability analysis 

3. Computer HP 1 TRB, 500 GB RAM Used for installation of MATLAB 
Software 

 

Table 2 Raw data sheet results of Mando-Shiroro 330kV transmission network year 2022. 

Schedules Forced shut down Planned shut down 

Month Time 
In 

(hr) 

Time 
Out 

(hr) 

Outrage 
Duration 

(hr) 

Energy 
Loss 

(MWh) 

Time 
In 

(hr) 

Time 
Out 

(hr) 

Outrage 
Duration 

(hr) 

Energy 
Loss 

(MWh) 

January 11:54 12:52 0.98 215.992 11:13 15:13 4.38 0 

February 0 0 0 0 0 0 0 0 

March 0 0 0 0 0 0 0 0 

April 0 0 0 0 0 0 0 0 

May 18:17 16:31 2.7 0 0 0 0 0 

June 02:18 18:44 15.66 85.8 2:16 16:31 14.23 14.23 

July 16:07 22:34 12.31 2450.5 17:51 18:44 0.88 0.88 
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August 11:28 22:34 10.87 2173.34 0 0 0 0 

September 17:03 16:27 95.40 0 13:05 14:17 1.20 240 

October 0 0 0 0 0 0 0 0 

November 13:29 13:49 1:51 0 0 0 0 0 

December 10:10 15:14 7.83 562.52 0 0 0 0 

Total 99.66 136.85 18.38 5488.15 44.08 64.05 20.69 255.11 

 
 

Table 3 Raw data sheet results of Mando-Shiroro 330kV transmission network year 2023.   

Schedules Forced shut down Planned shut down 

Month Time 
In 

(hr) 

Time 
Out 

(hr) 

Outrage 
Duration 

(hr) 

Energy 
Loss 

(MWh) 

Time 
In 

(hr) 

Time 
Out 

(hr) 

Outrage 
Duration 

(hr) 

Energy 
Loss 

(MWh) 

January 12:30 16:40 0.42 0 0 0 0 0 

February 12:59 13:21 0.37 107.07 09:05 17:50 428 21457 

March 11:03 07:34 2.21 1285.35 0 0 0 0 

April 19:03 18:00 69.02 0 11:34 15:32 3.97 0 

May 0 0 0 0 0 0 0 0 

June 00:07 16:07 1318.03 67985.03 09:34 18:33 8.98 0 

July 18:14 18:45 0.52 2450.5 0 0 0 0 

August 21:27 18:03 117.6 0 0 0 0 0 

September 0 0 0 0 0 0 0 0 

October 0 0 0 0 0 0 0 0 

November 0 0 0 0 0 0 0 0 

December 18:14 18:41 0.52 562.52 0 0 0 0 

Total 112.57 125.91 1508.69 72390.5 29.73 51.15 440.95 2145.7 

2.2. Method 

The Mando-Shiroro 330kV transmission network was modelled using mathematical model based on continuous time 
Markov Chain analysis to check the availability and reliability of the transmission network for the year 2022 and 
2023. The transmission network work was modelled based on the two-state Markov process with constant failure 
and repair rates i.e. transition rates. Furthermore, Roy Billinton Test 6 Bus System Performance assessment was 
conducted to check the check in the reliability and expected energy not used (EENS).  

2.2.1. Markov Chain analysis state model 

The Markov technique is a state space approach to reliability evaluation, where the power system is defined as 
existing in any one-of a few finite system states at a particular instant in time. Throughout the lifetime of the power 
system, transitions at certain rates will be made between power system states as components fail and are repaired, 
and a certain probability of existing in a particular state can be derived from these transition rates where, the 
occurrences of such failures being independent of their own failure and repair rates. Also, developing mathematical 
equations used in solving the probabilities and analyzed to find the reliability indices, MTTF (Mean Time To 
Failure), MTBF (Mean Time Before Failure), MTTR (Mean Time To Repair) and Availability to provide insight on 
the Mando-Shiroro transmission network. Equations 1 to 18 present the equations that govern transitions for 
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Transmission Line failures between the normal and failure statuses. Figure 1 presents the Markov chain analysis 
state model developed for the Mando-Shiroro 330KV transmission network. 

 

Figure 1 Markov Chain analysis state model. 

The mathematical model developed for the Markov chain analysis on the probability state of the Mando-Shiroro 
transmission network is shown in Equation 1. 

𝑑𝑝𝑎(𝑡)

𝑑𝑡
= 𝑝𝑎(𝑡)𝐴𝑎   …………………………..               (1) 

Where 𝑝𝑎(𝑡) is the row vector that contains normal and failure status probabilities i.e. 𝑝𝑎(𝑡) and 𝑞𝑎(𝑡) as shown in 
Equation 2. 

𝑝𝑎(𝑡)  = [𝑝𝑎(𝑡),  𝑞𝑎(𝑡)]  ………………………….. (2) 

Furthermore, the normal and failure status probabilities add up to 1 as in Equation 3. 

Also𝑝𝑎(𝑡) + 𝑞𝑎(𝑡)= 1  ………………………….. (3) 

Where 0≤ 𝑝𝑎(𝑡) ≥ 1 and 0 ≤ 𝑞𝑎(𝑡) ≥ 1 

In addition, 𝐴𝑎  is the transition intensity matrix as expressed in Equation 4: 

𝐴𝑎 = [
−𝜆𝑎 𝜆𝑎

𝜇𝑎 −𝜇𝑎
]  ………………………….. (4) 

The initial condition represents the probability of normal status set to one and the probability of failure status set to 
zero is as present in Equation 5.  
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𝑝𝑎 (0) = [1 0]  ………………………….. (5) 

The solution to the above differential equations gives the probabilities of normal and failure statuses depicted in 
Equations 6, 7 and 8 respectively. 

𝑝𝑎(𝑡) =
𝜇𝑎

𝜆𝑎+𝜇𝑎
+

𝜆𝑎

𝜆𝑎+𝜇𝑎
exp (−(𝜆𝑎 + 𝜇𝑎)𝑡)  ………………………….. (6) 

𝑝𝑎(𝑡) = 1 − 𝑞𝑎(𝑡) ………………………….. (7) 

𝑞𝑎(𝑡) =
𝜆𝑎

𝜆𝑎+𝜇𝑎
−

𝜆𝑎

𝜆𝑎+𝜇𝑎
exp (−(𝜆𝑎 + 𝜇𝑎)𝑡)  ………………………….. (8) 

Where 𝜆𝑎= failure rate 

𝜇𝑎= repair rate 

If only long-term status probabilities are of interest, the normal and failure status probabilities are expressed in 
Equations 9 and 10 as follows:  

𝑝𝑎(∞) =
𝜇𝑎

𝜆𝑎+𝜇𝑎
   …………………………..                (9) 

𝑞𝑎(∞) =
𝜆𝑎

𝜆𝑎+𝜇𝑎
    ………………………….. (10) 

The reliability indices will be calculated using the following formulae in Equation 10, 11 and 12 respectively.  

𝜆 =
𝑁

∑ 𝑇𝑢𝑖
𝑁
𝑖=1

    …………………………..  (10) 

𝑟 =
∑ 𝑇𝑑𝑖

𝑁
𝑖=1

𝑁
    ………………………….. (11) 

𝑓 =
𝑁

∑ (𝑇𝑢𝑖+𝑇𝑑𝑖)𝑁
𝑖=1

   ………………………….. (12) 

Where 𝑇𝑢𝑖= uptime 

𝑇𝑑𝑖= downtime  

𝑁 = Number of outages over time 

Using the methodology described above, for each critical 330kV feeder field data i.e. number of outages, outage duration 
per year basis is collected, the MTBF, MTTR, MTTF, failure frequency, Availabilities and Unavailability are computed 
with their formulars as presented in Equations 13 to 18 respectively [9]. 

𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑏𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
              ………………………….. (13) 

𝑀𝑇𝑇𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑜𝑤𝑛 𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑝𝑎𝑖𝑟
                                         …………………………..         (14) 

𝑀𝑇𝑇𝐹 = 𝑀𝑇𝐵𝐹 − 𝑀𝑇𝑇𝑅                                     …………………………..  (15) 

𝐹𝑟𝑒𝑞𝑢𝑛𝑐𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =
1

𝑀𝐵𝑇𝐹+𝑀𝑇𝑇𝑅
                                              …………………………..                 (16) 

𝐴𝑣𝑎𝑖𝑙𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝑅

𝑀𝐵𝑇𝐹+𝑀𝑇𝑇𝑅
                                  …………………………..                            (17) 

𝑈𝑛𝑎𝑣𝑎𝑖𝑙𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝑅

𝑀𝐵𝑇𝐹+𝑀𝑇𝑇𝑅
                      …………………………..                          (18) 

• Assumptions of Markov Chain analysis state model 
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Running a Markov-based reliability and availability analysis of Mando-Shiroro 330kV transmission network 
typically involved the following assumptions: 

o The model was run as steady state three state system (Operational, failure and repair).  
o The model was discrete in nature. 
o The system simplifies the analysis of past transition. 
o The transition probability between states (Operational to failure and failed to operational) is constant over 

time. 
o The failure and repair times assumed to follow exponential distribution. 
o The system components considered are transmission lines. 
o System reliability and availability are typically measured using metrics such as Mean Time Between failure 

(MTBF), Mean Time To Repair (MTTR), Mean Time To Failure (MTTF) and availability (A).  
o Individual components failure is assuming to be independent unless there are specific correlations (e.g., 

due to common causes like weather condition, age-related failures)  

2.2.2. Roy Billiton test 6 bus system performance assessment 

A reliability evaluation technique called the Roy Billinton Test (RBT) is used to gauge how well power network 
function, especially in terms of their capacity to provide electricity under a range of circumstances [10]. The RBT 
aids in determining the operational efficacy and dependability of the transmission infrastructure when it is applied 
to the Mando-Shiroro power transmission network. The assessment involves simulating different scenarios, 
including equipment failures, maintenance schedules, and load variations, to determine the likelihood of power 
outages and the overall system reliability. Key performance indicators, such as system average expected energy not 
supplied (EENS) in MW and system reliability (%), are analyzed. The modelling and analysis of IEEE-6 bus system 
using Markov model has resulted that the probability of acceptable states is decreasing as time scale increases and 
probability of unacceptable state is increasing as time scale increases as shown in Figure 2. Frequency and duration 
values of each state have resulted in the frequency and duration values decrease as state increases. 

 

Figure 2 Single line diagram of the IEEE 6-BUS RBTS 

Figure 3. Presents the method carried out to performed assessment of Roy Billinton 6 Bus Test System on the 
Mando-Shiroro 330kV transmission network. 
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Figure 3 Methodological block flow diagram for Roy Billinton Test 6 Bus system Performance assessment 

One standard used to assess the reliability of electricity systems is the Roy Billinton Test. It offers a framework for 
evaluating a power network's reliability indices and simulating its performance under various conditions [11]. 
Table 4 presents the assumption parameters used in running Roy Billinton Test 6 Bus System Performance 
Assessment using MATLAB environment. 

Table 4 Assumption Parameters for Roy Billinton Test 6 Bus System Performance Assessment 

Parameters A B C D E F 

Bus number 1 2 3 4 5 6 

Bus capacity (MW) 100 50 75 60 80 40 

3. Results and discussion 

This section presents the relevant results and discussion carried out on this research work reliability evaluation of 
Mando-Shiroro 330kV transmission network using Markov chain analysis. 

3.1. Markov chain analysis of Mando-Shiroro 330kV transmission network  

This sub section presents the results of reliability, operational (Availability), failure and under repair (Unavailability) 
rate for the 330kV Mando-Shiroro power transmission network as depicted in Figure 4. 
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Figure 4 Reliability for monthly analysis year 2022 and 2023 using Markov chain analysis 

The reliability projection for many months in 2022 and 2023 is shown in Figure 4. Based on Figure 4.  It is evident 
that in 2022, reliability peaked in January with a value of 0.74. From there, it fell to zero in February, March, and April 
before rising steadily from May (0.357). June and July then remained stable from June to September before falling to 
zero in October, and reliability reappeared in November and December with values of 0.65 and 0.594. Nonetheless , 
the same pattern was seen in Figure 4 for the year 2023, with the maximum highest reliability of 0.566 being attained 
in January. January exhibits greater dependability, which could be explained by the fact that it was the first month of 
the year and that end-of-year maintenance was in place. This aligns well with the research conducted by Bo, et al. 
[12]  from their research showed that the highest reliability of 0.987 was recorded in January.  

However, the total results showed that January had the best reliability rate of any month, with a very good rate. The 
highest reliability rate was recorded in the year 2022, at 0.74, compared to the lowest in the year 2023, at 0.556. 
Additionally, the average dependability for the years 2022 and 2023 is 0.56 and 0.35, respectively, indicating that the 
year 2022 has a 0.205 higher reliability rate. This is because the year 2022 has a consistently lower component failure 
rate. 

3.1.1. Probability rate of Repair, failure, LOLE and LOEE 

 

Figure 5 Probability of failure and repair rate of Mando-Shiroro 330kV transmission network 
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Figure 6 Loss of energy expected of Mando-Shiroro 330 kV Transmission network 

Figure 5 presents the results of probability of failure and repair rate for the year 2022 and 2023 on Mando -Shiroro 
330kV transmission network. It can be observed from Figure 5 that the maximum repair rate occurred at 0.74 
probability (43.5 hours), while the lowest at 0.1 hours, similarly, the minimum repair rate recorded at 0.1 hours for 
the year 2022. However, it can be noticed from Figure 5; that year 2023 shows that at maximum, 64.5 hours was 
utilized for repairing at the probability rate of 0.566, while the minimum repairing rate is 0.00 hours at 0.332 chance 
probability. Moreover, the maximum failure rate occurred at 315 hours (0.566 probability) and minimum o f 288 
hours recorded for the year 2023. This may be failure rate at the year 2023 which is 315 hours compared to the year 
2022 (43.5 hours), this indicated that the probability chances of power reliability in the year 2022(0.74) is greater 
than the year 2023 (0.566). 

Furthermore, Figure 6 presents the results of 100 simulation carried out for the Loss of energy expected of Mando -
Shiroro 330 kV Transmission network. It can be observed from Figure 6 that the normal distribution shows almost 
the same pattern for the year 2022 and 2023 respectively. The average Loss of energy expected (LOEE) 498.29 and 
499.113 MW verified for the year 2022 and 2023. Which is very high compared to the international standard of less 
than 5.0 hours (Kumar et al., 2024). The loss of load expected for the simulated data indicated the average of 562.25 
and 844.90 MW/year for the year 2022 and 2023 respectively. 

3.1.2. Reliability Evaluation Indices Output of MATLAB simulation for year 2022 and 2023 

 

Figure 1 Results of reliability evaluation year 2022 and 2023 

 



International Journal of Science and Research Archive, 2025, 15(01), 1217-1232 

1226 

The output simulation findings for the 330kV Mando-Shiroro transmission network are shown in Figure 7.  These 
indices include failure rate, Mean Time Before Failure (MTBF), Mean Time To Repair (MTTR), Mean Time To Failure 
(MTTF), availability, and unviability respectively. 

The comparison findings from the MATLAB simulation for the reliability assessment of the Mando-Shiroro 330KV 
transmission network for the years 2022 and 2023 are displayed in Figure 7. Failure rates for the years 2022 and 2023 
are 2.84 and 3.85, respectively, which means that the year 2023 will have a 1.01 higher failure rate than the year 2022. 
The years 2023 and 2022 had the highest availability and unavailability records, respectively, at 4.91 and 5.32. The year 
2022 had the highest unavailability record, at 2.9, compared to 2023's 0.22. The unavailable results for 2022 are like 
the findings of  [13]  Additionally, the MBTF, MTTR, and MTTF results for the years 2022 and 2023 were 24.23, 87.62, 
and 101.67, 18.4, 0.46, and 17.94, respectively. The results of this study for MTTR and MBTF are extremely like those of 
Chen, et al. [14].  

3.2. Comparative Analysis  

Table 5 presents the results of comparative analysis of different model approaches on power transmission and 
reliability study. It can be observed from Table 5 that Markov-based model chain analysis suppresses all the models 
in terms of reliability as 98 %, while the Sequential Monte Carlo simulation procedure came in second with 91 % 
reliability, then Spatial and   Weighted Least Squares have 78 and 68% respectively. This indicated that the Markov 
Model Based Reliability and Availability Analysis has the potential to solve the practical operation of the Mando-
Shiroro power transmission network if carefully adopted. 

Table 5 Comparative Analysis of Power Transmission system based on Different model Approach for System Reliability.  

Source Type of system Type of model Outcome of model Overall 
system 
reliability 
(%) 

Ahiakwo, 
et al. [15] 

State estimation of the Nigerian 
330KV transmission network 
using the Weighted Least 
Square optimization technique 

Weighted Least 
Squares 

The model was developed 
with 1.14% of maximum 
voltage error in comparison 
with state estimate result  

68 

Zhang, et 
al. [16] 

Spatial-Temporal Reliability 
and Damage Assessment of 
Transmission Networks under 
Hurricanes 

spatial-temporal 
reliability and 
damage 
assessment 
method 

The model was able assess 
the spatial-temporal 
reliability with less 1.10 % 
error 

78 

Kothona, 
et al. [17] 

Optimal demand response 
scheduling with real-time 
thermal ratings of overhead 
lines for improved network 
reliability 

Sequential Monte 
Carlo simulation 
procedure 

The model was able to 
Enhancement’s reliability and 
economic metrics of the 
system with 5 % 

91 

Current 
study 

Markov Model Based Reliability 
and Availability Analysis: A case 
Study of Mando-Shiroro 330kV 
Power Transmission Network 

Markov Model 
Based system  

Bus load A (100 MW) had the 
best operating reliability 
(0.980 base Markov base 
model analysis. 

98 

3.3. Roy Billinton Test 6 Bus System Performance Assessment 

It can be observed from Figure 8 bus A, with 100MW capacity has the maximum reliability of 0.95 followed by bus 
E (40 MW) with a reliability of 0.93 and bus D which is (60MW) with the lowest reliability. However, this indicates 
that reliability depends on the effective repair time. Also;[18, 19] used the same bus capacity to run Roy Billinton 
Test 6 Bus System Performance Assessment. The results of the results obtained from bus capacity 100MW was 
similarly to results obtained from the work of [20].  
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Figure 2 Reliability Indices results for Roy Billinton Test 6 Bus System Performance Assessment 

Table 6 shows the results of simulation of indices obtained from Roy Billinton Test 6 Bus System Performance 
Assessment. It can notify from the Table the RBTS (Roy Billinton Test System) bus 6. Table 6 shows that the 
simulated Markov simulated optimized results will be dependable if used as a power transmission network. The 
expected energy not supplied (EENS) for the simulated Mando-Shiroro transmission network was 37.96 MW, which 
is above the bench with 3.96 MW and 35% difference. This can be linked to the station's enhanced ideal monthly 
frequency maintenance. Furthermore, the EENS and system dependability results were nearly identical to those of  
[22] research findings as 38.56 MW and 90.43% respectively. 

Table 6 Results of simulation indices Roy Billinton test 6 bus system performance assessment compared to benchmark. 

Roy Billinton Test 6 bus Mando-Shiroro 330KV Bench mark[21] Shahbazian, et al. [22] 

Average EENS (MW) 37.96  40 38.56 

3.3.1. Roy Billinton Test System (RBTS) 6 Bus System simulation 

The Table presents the results obtained from the MATLAB environment runs for the RBTS 6 bus system analysis. A 
benchmark for power system design and reliability studies is the Roy Billinton Test System. In particular, the 6 -bus 
system functions as a condensed model that may be used to analyze the reliability of electrical power networks in 
various operational circumstances. Its numerous parts, which include buses, loads, transformers, and generators, 
can be used to model and assess system performance [20]. The system performance assessment was run on 
different scenarios such as components failure, load variation and maintenance schedule against the EENS and 
System reliability which are most significant tools in checking the quality and efficiency of a power transmission 
network. The simulation was carried out under the following parameters as follows:  

3.3.2. Effect of components failure on EENS and system reliability 

The outcomes of component failure are shown in Figure 9 together with the percentage of system dependability 
and the average predicted energy not provided. The Figure shows how component failure impacted both system 
dependability and EENS. The graph for system reliability remained nearly linear, but the EENS improved. A further 
rise in the percentage of components resulted in a sharp decline in both the EENS and system reliability, making 
the components failure from 10% to 30% manageable. Component failure poses a serious threat to the power 
transmission system network and has a substantial impact on the power system. According to Martyushev et al. 
(2023) components failure above 25 % led to increase in the EENS and decreases the system reliability.  
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Figure 9 Effect of component failure on EENS and system reliability 

3.3.3. Effect of load variation on EENS and system reliability 

Figure 10 shows how the loading rate affects EENS and system reliability. Figure 9 demonstrated that the average 
expected system not supplied (AEENS) increased as the load rate increased, indicating that a larger load resulted 
in a more appropriate power supply. Nonetheless, Figure 10 shows that since the system’s reliability remained 
nearly constant, increases in the loading rate resulted in a consistent power supply. The results of this study are 
consistent with those of Hou et al. (2023) who found that an increase in loading rate increased system reliability 
overall. Also, Kabir et al. (2023) in their work suggested that power loading rate led to lower system reliability.  

 

Figure 10 Effect of load variation on EENS and system reliability 
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3.3.4. Effect of maintenance schedule on EENS and system reliability 

 

Figure 11 Effect of maintenance schedule on EENS and system reliability 

Figure 11 shows the results of the maintenance schedule's effect on ENNS and system reliability , the figure shows 
that when the percentage of the maintenance schedule was increased from 10% to 20%, the average expected 
energy not supplied stayed constant at 37.47 MW. However, when the schedule maintenance was increased from 
30% to 40%, the EENS decreased slightly from 40% to 50%, and the changes were made to 37.80 and 37.19 MW, 
respectively. Moreover, it also shows that the system reliability followed a similar pattern to the EENS against the 
percentage of schedule maintenance that changed from 10% to 20%. The system reliability value remained 
constant at 90%, then slightly decreased at 30% (90.51%), and then increased to 40% and 50% of schedule 
maintenance, resulting in values of 90.46 and 90.71, respectively. Overall findings showed that schedule 
maintenance raises EENS, which is bad for power transmission systems. The more the schedule maintenance, the 
higher the EENS. The results of this research work are in good agreement with the work of Mishra et al. (2024) on 
the influence of schedule maintenance on EENS and system reliability, more specifically that reduced schedule 
maintenance is more favorable to system reliability. 

3.4. Practical Implication  

Markov models as one of the influential tools in reliability and availability analysis for stochastic system 
behavior[23]. The Markov model played crucial roles in the analysis of power transmission network maintenance 
and stability efficiency on power grid, particularly for complex system lie the Mando -Shiroro 330kV transmission 
network, which serves as a crucial link in Nigeria’s power infrastructure. They effectively account for constant failure 
and repair rate, enabling detailed assessment of system performance under various operational states. The practical 
implications of Markov Model base analysis are as follows: 

3.4.1. Systematic prediction of system failure 

Markov based models help engineers in predicting the like hood of system failure over time, it is done by modelling 
it failure and repair rate different components of the 330V power transmission network such as (Circuit breakers 
and transformer) to evaluate the system performance [24]. The rates of transmission between the failed and repaired 
states operational of the system can be quantified, established more visibility into potential vulnerabilities and failure 
hotspots in the network [25]. For example, a component with a high failure rate may need to be replaced or undergo 
more frequent maintenance to avoid unscheduled downtime. 

3.4.2. Maintenance schedule optimization 

Markov based models support optimal maintenance determination based on different components of the reliability 
network. For instance, preventing periodic maintenance via planned based predictive failure rate [26]. If a 
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component is more likely to fail after a certain period, the Markov model can recommend replacing or maintaining it 
before a failure occurs. This helps in reducing the risk of unscheduled downtime, improving system availability, and 
ensuring that the network remains stable[27]. 

3.4.3. Systematic availability evaluation 

Availability refers to the fraction of time the system is operational and can perform its intended function[28]. By 
modelling the various operational states and failure modes of the Mando-Shiroro 330kV network, Markov models 
allow engineers to calculate the system’s availability. This can be used to determine how much time the system is 
expected to be down for repairs or maintenance and help in assessing whether the network meets the required 
availability standards. If the system's availability is found to be lower than required, modifications can be made to 
improve it, such as upgrading certain components or enhancing repair processes[29]. 

3.4.4. Enhance network resilience 

By utilizing the Markov model for ongoing analysis, the Mando-Shiroro 330kV network can be designed to become 
more resilient to unexpected disruptions. Markov models can simulate the behavior of the network under various 
failure scenarios, helping to design more robust systems and backup mechanisms (e.g., redundant lines or spare 
parts). This enhances the overall resilience of the power transmission network, ensuring that the grid can recover 
more quickly from disturbances[30]. 

3.4.5. Decision support and risk management 

Markov models allow for a quantifiable assessment of the risks associated with different components of the 
transmission network[31]. By providing a clear view of failure rates, repair times, and system reliability, operators 
can make informed decisions about resource allocation, risk mitigation strategies, and system upgrades. This data -
driven decision-making helps prioritize investments in infrastructure and minimizes the likelihood of catastrophic 
failures that could result in large-scale blackouts or power losses[32]. 

4. Conclusion 

This study highlights the critical role of reliability evaluation in the energy transmission sector, especially through 
the application of Markov Chain analyses to the Mando-Shiroro 330kV Transmission network. The findings show 
appreciable improvement in operational efficiency and reliability matrices, with 2022 recording the lowest power 
outages and highest operational hours. These results highlight the necessity for modern evaluation techniques such 
as Roy Billinton Test 6 Bus System Performance Assessment to replace traditional methods of the System 
Performance Assessment as revealed from The RBTS bus's simulation results showed an average EENS of 37.96 
MW, with a matching system reliability of 90.54% respectively. However, adopting the Markov Model Based 
Reliability and Availability Analysis in practical operation of the Mando-Shiroro power network will enhance the 
reliability of power supply, while the Roy Billinton Test System (RBTS) 6 Bus System simulation will solve the 
problem of component failure, maintenance schedule and load variation in system reliability. 

The application of Markov model-based reliability and availability analysis provides significant practical 
applications for power transmission networks like the Mando-Shiroro 330kV system. By predicting failures, 
optimizing maintenance, identifying critical components, and improving decision-making, operators can enhance 
the system’s reliability, availability, and overall resilience. 
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