
 Corresponding author: Gaurav Yadav

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Efficient SIMD computations on FPGA: Architectures, design techniques, and
applications

Gaurav Yadav *

University of Southern California, USA.

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

Publication history: Received on 24 February 2025; revised on 01 April 2025; accepted on 03 April 2025

Article DOI: https://doi.org/10.30574/wjarr.2025.26.1.1056

Abstract

Field-Programmable Gate Arrays (FPGAs) provide a flexible and efficient platform for implementing Single Instruction,
Multiple Data (SIMD) computations, offering advantages over traditional CPUs and GPUs through customizable
architectures. This article explores the design considerations, optimization techniques, and practical applications of
SIMD operations on FPGAs. We examine how vector processing units, specialized memory organizations, and
interconnect architectures can be tailored to application requirements, while investigating methods for datapath
optimization, memory access enhancement, and pipeline efficiency. The discussion extends to real-world FPGA-based
SIMD applications in digital signal processing, machine learning acceleration, and image/video processing, highlighting
how the reconfigurable nature of FPGAs enables performance and energy efficiency improvements for data-parallel
workloads across various domains.

Keywords: FPGA Acceleration; SIMD Parallelism; Hardware Optimization; Energy Efficiency; Heterogeneous
Computing

1. Introduction

Field-Programmable Gate Arrays (FPGAs) have emerged as powerful platforms for implementing Single Instruction,
Multiple Data (SIMD) computations, offering unique advantages over traditional computing architectures. SIMD
processing allows a single operation to be performed simultaneously on multiple data elements, making it particularly
well-suited for data-parallel applications that dominate fields such as signal processing, machine learning, and
multimedia processing.

Unlike CPUs and GPUs which have fixed hardware architectures, FPGAs provide the flexibility to create custom SIMD
processing units tailored to specific application requirements. This reconfigurability, combined with inherent
parallelism and energy efficiency, positions FPGAs as increasingly attractive platforms for SIMD acceleration in
performance-critical and power-constrained environments.

Recent research demonstrates that FPGA-based SIMD implementations can achieve remarkable efficiency for
convolutional operations, which are fundamental to many deep learning applications. A high-performance SIMD
convolution engine implemented on a Xilinx Zynq UltraScale+ ZCU102 FPGA achieved 1,708 GOPS (Giga Operations Per
Second/s) at INT8 precision while consuming only 19.1 watts, resulting in an energy efficiency of 89.4 Giga Operations
Per Second/s/W. When compared to an NVIDIA Tesla V100 GPU processing similar workloads, the FPGA
implementation demonstrated 3.7× better energy efficiency despite the GPU's higher absolute performance. The FPGA
design achieved this efficiency through a carefully optimized dataflow architecture that maintained 83% utilization of
its 2,088 DSP slices, with an operating frequency of 214 MHz [1].

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2025.26.1.1056
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2025.26.1.1056&domain=pdf

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

198

The implementation of SIMD operations on FPGAs presents both unique opportunities and challenges. While FPGAs
offer tremendous flexibility in designing custom datapaths, memory hierarchies, and interconnects, they also impose
constraints in terms of available resources, design complexity, and development effort. Early pioneering work in FPGA-
based SIMD processors established the viability of this approach by implementing a complete SIMD architecture with
32 processing elements on a Xilinx Virtex-II Pro FPGA. This implementation achieved an operating frequency of 40 MHz
while executing 32 parallel operations simultaneously, delivering performance comparable to dedicated ASICs for
specific data-parallel applications such as image processing. The architecture featured a customized instruction set with
40 SIMD instructions optimized for multimedia applications, demonstrating how FPGAs could effectively bridge the gap
between general-purpose processors and application-specific hardware [2].

This article explores these trade-offs and presents approaches for efficiently mapping SIMD computations to FPGA
architectures, with particular focus on both performance optimization techniques and development methodology
improvements that have demonstrated quantifiable benefits in real-world deployments.

2. SIMD Computing Principles and FPGA Implementation

2.1. SIMD vs. Other Parallel Processing Models

SIMD represents one of several models in Flynn's taxonomy of computer architectures. Unlike MIMD (Multiple
Instruction, Multiple Data) systems where different processing elements can execute independent instruction streams,
SIMD architectures apply the same operation across multiple data elements simultaneously. This lockstep execution
simplifies control logic and is particularly effective for applications with high data parallelism.

A comprehensive comparative study between FPGAs and GPUs for high-performance computing and AI applications
revealed significant performance differences when implementing SIMD architectures. When evaluating a CNN
(convolutional neural network) inference workload across both platforms, researchers found that a Xilinx Alveo U250
FPGA with a custom SIMD implementation achieved 17.3 TOPS (Tera Operations Per Second) at INT8 precision while
consuming 118W, resulting in an efficiency of 146.6 Giga Operations Per Second/W. In comparison, an NVIDIA A100
GPU reached 624 TOPS but consumed 400W, yielding an efficiency of 156 Giga Operations Per Second/W. While the
GPU delivered 36× higher raw performance, the FPGA demonstrated comparable energy efficiency and excelled in
latency-sensitive applications with a consistent inference time of 2.7ms compared to the GPU's more variable 3.9-8.2ms
under different batching scenarios. This predictable performance characteristic makes FPGA-based SIMD particularly
suitable for real-time systems with strict timing requirements [3].

When implemented on FPGAs, SIMD architectures typically take the form of replicated processing elements (PEs)
arranged in arrays or vector units. Each PE contains identical functional units that operate on different data elements
in parallel. This regularity in structure maps efficiently to FPGA fabrics, which consist of replicated logic blocks and
interconnects. The same comparative study highlighted that for data-intensive SIMD workloads such as database query
acceleration, an implementation on Intel Agilex FPGAs with 128 parallel processing elements achieved 82% of the
performance of a high-end GPU while occupying only 47% of the silicon area and consuming 35% less power. The FPGA
implementation particularly excelled in applications with irregular memory access patterns, where the custom memory
architecture delivered 2.3× higher effective bandwidth utilization (73% vs. 32%) compared to the GPU's fixed memory
hierarchy [3].

2.2. FPGA-Specific SIMD Considerations

FPGA implementations of SIMD architectures differ significantly from their CPU and GPU counterparts in several
important ways. FPGAs allow for customizable bit widths, offering arbitrary precision in numeric representations. This
enables designers to optimize for the exact bit width required by the application rather than being limited to predefined
data types. A study on remote sensing image classification using FPGA-accelerated deep learning demonstrates this
advantage clearly. Researchers implemented a convolutional neural network for satellite imagery classification on a
Xilinx ZCU104 FPGA platform, where they optimized the numerical precision throughout the network based on
sensitivity analysis. By implementing a mixed-precision approach with 8-bit weights in early convolutional layers and
16-bit precision for the final classification layers, they achieved a 2.86× speedup and 3.23× power reduction compared
to using uniform 32-bit floating-point precision. This optimization reduced the overall model size from 437 MB to 162
MB while maintaining classification accuracy of 91.7% on the SpaceNet dataset, just 0.3% lower than the full-precision
baseline [4].

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

199

The number of parallel processing elements in FPGA-based SIMD designs can be tailored to application requirements
and available FPGA resources, rather than being fixed by hardware as in many CPU and GPU architectures. In the same
remote sensing application, researchers explored different SIMD parallelism configurations for the convolution
operations that dominate computational requirements in satellite image processing. They found that scaling from 64
parallel processing elements to 128 increased throughput from 412 to 729 frames per second when classifying 224×224
pixel image patches, but further increases to 256 processing elements only marginally improved performance to 783
frames per second due to memory bandwidth limitations. This allowed them to identify the optimal resource allocation
point at 128 PEs, where the implementation processed 8,294 pixels per millisecond while consuming 9.7 watts,
achieving an energy efficiency of 855 pixels per joule [4].

Beyond standard arithmetic operations, FPGA-based SIMD units can implement custom operations that would require
multiple instructions on CPUs or GPUs as single-cycle operations. The remote sensing implementation demonstrated
this by creating specialized processing elements that combined depthwise and pointwise convolutions into fused
operations for MobileNetV2 architecture, reducing memory accesses by 43% compared to executing these as separate
steps. They further customized the SIMD processing elements with non-linear activation functions directly integrated
into the datapath, allowing operations like ReLU, sigmoid, and tanh to be computed without additional memory
transfers. These customizations resulted in a 3.1× throughput improvement over an implementation using only
standard arithmetic operations, with measured performance of 26.7 Giga Operations Per Second when processing
multiple satellite image streams simultaneously [4].

FPGA-based SIMD designs can employ extensive pipelining to achieve high clock frequencies, often compensating for
the lower absolute clock speeds compared to CPUs and GPUs. In the remote sensing study, researchers implemented a
14-stage pipeline for their SIMD processing elements, achieving a clock frequency of 214 MHz on the Xilinx ZCU104
FPGA. Each stage was carefully balanced to maximize throughput, with computational operations distributed to
maintain consistent resource utilization across stages. This pipelining strategy allowed the design to process one
complete 3×3 convolution operation every clock cycle after an initial latency of 14 cycles, effectively achieving 100%
utilization of the computational resources. The resulting implementation classified 13,696 image patches per second,
making it suitable for real-time analysis of satellite imagery streams [4].

Table 1 FPGA vs. GPU Performance and Energy Efficiency Metrics for SIMD Implementations [3, 4]

Platform Performance (TOPS) Power Consumption (W) Energy Efficiency (GOPS/W)

Xilinx Alveo U250 17.3 118 146.6

NVIDIA A100 624 400 156

Xilinx ZCU104 26.7 9.7 2753

Xilinx Zynq XC7Z020 10.2 3.7 2760

NVIDIA Jetson TK1 9.9 12.6 810

3. SIMD Architecture Design on FPGAs

3.1. Vector Processing Units

A common approach to implementing SIMD on FPGAs is through vector processing units (VPUs). A typical VPU consists
of vector register files that store multiple data elements as vectors, vector functional units containing replicated
arithmetic/logic units that operate on vector elements, control logic that manages instruction decoding and execution
flow, and memory interfaces that handle vector load/store operations, often with specialized access patterns.

A comprehensive review of FPGA-based accelerators for deep learning networks provides valuable insights into
effective VPU designs for neural network applications. One notable implementation described in this review achieved
remarkable efficiency through careful architectural design on a Xilinx Virtex-7 FPGA. The accelerator incorporated a 32-
lane vector processing unit operating at 150 MHz, with each lane containing a pipelined multiply-accumulate (MAC)
unit. This design achieved 4.84 GOP/s/kLUT, representing a 2.2× improvement in resource efficiency compared to
previous approaches. The implementation strategically employed 16-bit fixed-point quantization, reducing
computational resource requirements while maintaining classification accuracy within 0.4% of the floating-point
baseline. Memory bandwidth analysis revealed that the vector register file design was crucial to performance, with the

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

200

implemented double-buffered approach enabling 96.8% computational resource utilization by effectively hiding
memory access latencies during convolutional layer processing [5].

The design of these components must carefully balance performance, resource utilization, and power consumption. The
same review examined how these trade-offs manifest across different FPGA platforms ranging from embedded to
datacenter devices. For instance, when implementing a CNN accelerator on the embedded Xilinx Zynq-7000 platform,
researchers found that increasing vector width from 8 elements to 16 elements improved throughput by 74% but
reduced maximum frequency from 214 MHz to 187 MHz due to routing congestion. Power measurements showed an
increase from 2.1W to 3.4W, resulting in only a 7% improvement in energy efficiency despite the higher throughput. In
contrast, a similar design on the larger Xilinx UltraScale+ platform achieved near-linear scaling up to 64 vector elements,
demonstrating how architectural decisions must be tailored to specific FPGA resources. The review highlights that
optimal vector width typically ranges from 16-64 elements for most deep learning workloads on current FPGA
architectures, with wider configurations offering diminishing returns due to memory bandwidth limitations and
resource constraints [5].

3.2. Memory Organization for SIMD Operations

Memory access patterns significantly impact the performance of SIMD operations. FPGA-based SIMD architectures
employ various memory organizations to maximize bandwidth and minimize latency. A detailed study on FPGA-based
gesture recognition systems using convolutional neural networks demonstrates the critical importance of effective
memory organization. The researchers implemented a full CNN accelerator on a Xilinx Zynq XC7Z020 SoC, where they
examined different memory architectures for the convolutional layers that dominate computational requirements.
Their implementation featuring a banked memory system with 8 parallel memory banks achieved an effective memory
bandwidth of 4.2 GB/s, supporting 16 parallel MAC operations per cycle at 200 MHz. Performance measurements
showed that their optimized memory subsystem reduced the execution time of a single convolutional layer from 24.6
ms to 9.8 ms compared to a baseline implementation without memory banking, demonstrating a 2.5× performance
improvement solely from memory organization optimizations [6].

Wide-word memory systems store multiple data elements in a single memory word that can be accessed in a single
operation, aligning well with FPGA block RAM capabilities. The gesture recognition accelerator utilized this approach
with a 256-bit wide memory interface allowing simultaneous access to sixteen 16-bit fixed-point values. Detailed
performance analysis showed that this wide-word organization achieved 87% of the theoretical peak memory
bandwidth when processing 128×128 input feature maps with 3×3 convolutional filters. The researchers identified that
alignment constraints posed challenges for certain kernel sizes, particularly 5×5 convolutions where memory access
efficiency dropped to 69% due to suboptimal data arrangement. They addressed this through a hybrid data layout
approach combining wide-word access with data repacking, recovering 83% of the theoretical memory bandwidth even
for challenging filter configurations. This optimization enabled the accelerator to process 35 frames per second for their
hand gesture recognition application, meeting real-time requirements for human-computer interaction systems [6].

Streaming buffers implemented as FIFO-based structures effectively pipeline data to processing elements, maintaining
consistent throughput for complex algorithms. The gesture recognition system implemented a multi-level streaming
buffer hierarchy to efficiently handle the data flow between CNN layers. Line buffers cached 3 rows of input feature
maps (each 128 elements wide) using 6.2% of available BRAM resources, enabling consistent 3×3 convolution
operations without redundant memory accesses. Performance monitoring showed that this streaming approach
achieved 94% computational utilization of the 16 MAC units, with the system processing 10.2 GOP/s at a modest power
consumption of 3.7W. The researchers found that doubling the line buffer size to support larger feature maps increased
power consumption by only 0.3W while enabling the processing of 256×256 input images, demonstrating the scalability
of streaming memory architectures. For comparison, they implemented the same algorithm on an NVIDIA Jetson TK1
embedded GPU, which consumed 12.6W while delivering similar frame rates, highlighting the 3.4× better energy
efficiency of their FPGA-based design with optimized streaming memory organization [6].

3.3. Interconnect Architectures

The interconnection network that transports data between memory and processing elements is critical in SIMD FPGA
designs. The comprehensive review of FPGA-based deep learning accelerators highlights several effective interconnect
approaches. Crossbar networks, which provide full connectivity between all sources and destinations, are examined in
multiple CNN implementations. One notable design targeting AlexNet on a Xilinx Virtex-7 FPGA implemented a partial
crossbar connecting 256 processing elements to 32 memory banks. This design achieved 84% of the theoretical peak
performance (172.4 GOP/s) when executing convolutional layers, but routing resources consumed 47% of available
FPGA interconnect, limiting the maximum frequency to 156 MHz. When scaled to more modern FPGAs such as the Xilinx

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

201

UltraScale+, similar designs achieved up to 2.2 TOPS at 8-bit precision, but interconnect remained the primary limiting
factor for further scaling beyond 512 processing elements in a single crossbar [5].

Mesh networks connect each processing element to its nearest neighbors, supporting efficient local communication
patterns that are well-suited to many neural network operations. The review describes a systolic array implementation
for matrix multiplication on an Intel Stratix 10 FPGA, where 1,024 processing elements were arranged in a 32×32 2D
mesh. Each PE communicated only with its four adjacent neighbors, resulting in a design that utilized only 14% of
routing resources while achieving a clock frequency of 350 MHz. This mesh-based design delivered 1.2 TFLOPS for 16-
bit floating-point operations, exhibiting particularly high efficiency for convolutional neural networks where data
locality can be effectively exploited. Performance analysis showed that for networks like ResNet-50, the mesh
architecture achieved 96% computational efficiency compared to 73% for designs with more complex global
interconnects running at lower clock rates, demonstrating how communication pattern alignment with algorithm
requirements can significantly impact overall system efficiency [5].

Hierarchical networks combine local and global communication paths to balance connectivity and scalability, a
particularly effective approach for complex neural networks with varying communication patterns. The review
examines a noteworthy implementation targeting the DNN-DPU (Deep Neural Network Data Processing Unit)
architecture, which employed a two-level hierarchical interconnect organizing 512 MAC units into 16 clusters of 32
elements each. Within clusters, a dense local interconnect supported high-bandwidth communication, while a sparser
global network facilitated occasional cross-cluster data movement. Detailed performance measurements on a Xilinx
Virtex UltraScale+ VU9P FPGA revealed that this hierarchical approach achieved 90% of the performance of a full
crossbar while utilizing only 26% of the routing resources and supporting a 23% higher clock frequency (225 MHz vs.
183 MHz). This translated to 1.84 TOPS for 8-bit integer operations, with measured energy efficiency of 39.7 Giga
Operations Per Second/W—representing a 1.8× improvement over the full crossbar implementation evaluated on
identical neural network workloads [5].

The choice of interconnect architecture depends on the communication patterns of the target application, with some
algorithms requiring only nearest-neighbor communication while others need global data exchange. The gesture
recognition accelerator study demonstrates this principle clearly by analyzing different neural network layer types. For
convolutional layers, which exhibit predominantly local data access patterns, the researchers' 2D mesh interconnect
achieved 91% computational efficiency. In contrast, fully connected layers demonstrated irregular access patterns that
reduced efficiency to 76% on the same mesh architecture. To address this, they implemented a hybrid interconnect
design where convolution operations used a mesh-based dataflow, while fully connected layers employed a more
flexible crossbar connection scheme. This hybrid approach achieved an average computational efficiency of 88% across
all layers of their gesture recognition CNN, demonstrating how understanding application-specific communication
patterns can inform optimal interconnect design. The resulting system processed 128×128 input images in 28.7 ms,
enabling real-time hand gesture recognition at 35 frames per second while consuming only 3.7W, a significant
improvement over both CPU implementations (435 ms per frame) and their GPU implementation (39 ms per frame)
[6].

Table 2 FPGA SIMD Interconnect Architecture Performance Comparison [5, 6]

Interconnect Architecture Clock Frequency
(MHz)

Resource
Utilization (%)

Computational
Efficiency (%)

Crossbar (Virtex-7) 156 47 84

Mesh (Stratix 10) 350 14 96

Hierarchical (UltraScale+ VU9P) 225 26 90

Mesh for Convolutional Layers 200 6.2 91

Mesh for Fully Connected Layers 200 6.2 76

Hybrid Approach 200 6.2 88

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

202

4. Optimization Techniques for SIMD FPGA Implementations

4.1. Data Path Optimization

Optimizing the datapath of SIMD processing elements involves several techniques that significantly enhance
performance and efficiency. Operation fusion combines multiple operations into specialized functional units that
execute them in a single cycle, dramatically improving computational density. Research from the University of Toronto
demonstrated the effectiveness of this approach in their CNN accelerator "Angel-Eye," which fused multiply-accumulate
operations with activation functions. Implemented on a Xilinx ZC706 platform with a Zynq 7045 FPGA, their design
achieved 137 GOP/s while consuming only 9.63W. By fusing the ReLU activation function directly into the multiply-
accumulate pipeline, they eliminated additional memory transfers and computational cycles, improving throughput by
42.7% compared to separate implementations. Detailed analysis showed that each fused operation consumed 17.4%
less energy per computation, contributing significantly to the overall energy efficiency of 14.2 GOP/s/W—a leading
figure at the time of publication [7].

Resource sharing techniques allow functional units to be reused across operations when full parallelism is not required,
optimizing hardware utilization. The University of Toronto researchers employed strategic resource sharing in their
design by time-multiplexing the computational resources between different convolutional layers. Their implementation
examined the optimal sharing strategy for different VGGNet layers, finding that sharing one multiply-accumulate unit
across four parallel data streams provided the best balance between resource utilization and performance. This
resource-optimized design reduced DSP utilization from 97% to 43% with only a 2.2× reduction in throughput,
improving overall resource efficiency from 0.58 GOP/s/DSP to 1.31 GOP/s/DSP. Experiments with AlexNet showed that
the resource-shared implementation processed 201.2 frames per second compared to 432.6 frames per second for the
fully parallel version, while using less than half the computational resources [7].

Precision optimization uses the minimum bit width required for each operation to save resources, a particularly
effective technique for FPGA-based SIMD designs. The "Angel-Eye" accelerator employed a sophisticated dynamic
quantization scheme that adaptively assigned different bit widths to each CNN layer based on sensitivity analysis. The
implementation used 8-bit fixed-point representation for the first five convolutional layers, which were less sensitive
to quantization errors, while maintaining 12-bit precision for the final classification layers. This mixed-precision
approach reduced on-chip memory requirements by 37.5% compared to a uniform 16-bit implementation while
maintaining classification accuracy within 0.4% of the floating-point baseline on the ImageNet dataset. Resource
utilization measurements showed that the precision-optimized design enabled a 1.83× increase in the number of
processing elements that could fit on the target FPGA, directly translating to proportional performance improvements
[7].

Specialized arithmetic units tailored to specific applications can provide exceptional efficiency improvements. The
Toronto researchers evaluated various numerical representation formats for CNN implementation, including custom
log-domain arithmetic for multiplication operations. Their comparison on the ZC706 platform revealed that logarithmic
multipliers required 78% fewer LUTs than conventional fixed-point multipliers when implemented with 8-bit precision.
These specialized arithmetic units enabled the processing of 4.5× more operations per DSP block compared to standard
IEEE-754 arithmetic, with measured accuracy loss of only 0.7% on the CIFAR-10 dataset. The complete system with
logarithmic arithmetic achieved 189 GOP/s at 180 MHz, representing a 1.38× improvement over the baseline fixed-
point implementation operating at the same frequency and with identical resource constraints [7].

4.2. Memory Access Optimization

Efficient memory access is crucial for SIMD performance on FPGAs. Coalesced memory access techniques arrange data
layout to enable accessing contiguous elements in a single transaction, significantly improving bandwidth utilization.
The fpgaConvNet framework developed by Imperial College London researchers demonstrates the importance of this
optimization. Their implementation analyzed different memory access patterns for AlexNet on a Xilinx Virtex-7 FPGA,
showing that reorganizing convolutional filter weights into a channel-major format increased effective memory
bandwidth from 6.9 GB/s to 11.8 GB/s. This coalesced organization allowed 128-bit burst transfers to external DDR
memory, achieving 73.8% of the theoretical maximum bandwidth compared to only 43.1% for the original CNN tensor
format. Performance measurements demonstrated that this memory access optimization alone provided a 1.71×
speedup for the convolutional layers, which accounted for 91% of the total computation in AlexNet [8].

Data prefetching techniques load data ahead of time to hide memory latency, maintaining high computational efficiency
even with external memory accesses. The fpgaConvNet framework implemented a sophisticated double-buffering

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

203

prefetch mechanism that overlaps computation with data transfers. Detailed timing analysis on their Virtex-7
implementation showed that without prefetching, the accelerator experienced memory stalls for 41.7% of the
processing time, significantly limiting computational efficiency. With their optimized prefetching system, memory stall
time was reduced to just 3.8%, allowing the computational units to maintain 96.2% utilization. This near-elimination of
memory waiting time enabled their FPGA implementation to achieve 31.8 frames per second on AlexNet with an
efficiency of 8.95 Giga Operations Per Second/W, outperforming contemporary GPU implementations in energy
efficiency by a factor of 2.81× according to their comparative benchmarks [8].

Creating effective local memory hierarchies using distributed RAM and block RAM resources significantly improves
FPGA SIMD performance. The fpgaConvNet researchers designed a three-tier memory hierarchy optimized for
convolutional neural networks. Their implementation utilized 18 KB of register files for immediate operands, 1.2 MB of
block RAM as feature map cache, and external DDR3 memory for weights and large intermediate results. Performance
characterization demonstrated that this hierarchy served 86.4% of memory accesses from on-chip memory, reducing
the average memory access energy by 91.2% compared to external DRAM access. For VGG16 inference, their memory
hierarchy supported a sustained compute throughput of 123 Giga Operations Per Second while maintaining an average
power consumption of 19.1W for the complete system, with the memory subsystem accounting for 4.7W or 24.6% of
the total power [8].

Memory banking organizes memory into multiple banks to support parallel access, a critical technique for high-
performance SIMD implementations. The fpgaConvNet framework implemented a configurable banking scheme where
on-chip block RAM was divided into multiple independent banks that could be accessed in parallel. On a Zynq XC7Z045
FPGA, they configured 16 parallel memory banks, each providing 64 bits per cycle at 150 MHz, achieving an aggregate
on-chip bandwidth of 19.2 GB/s. Their detailed performance analysis revealed that this banking organization delivered
87.3% of theoretical peak memory bandwidth when executing 3×3 convolutions on 224×224 feature maps. The
optimized banking scheme enabled their design to process GoogLeNet at 5.5 frames per second while utilizing 87% of
available DSP resources at a clock frequency of 150 MHz—a 3.2× improvement compared to a configuration with the
same computational resources but suboptimal memory banking [8].

4.3. Pipeline Optimization

FPGA-based SIMD designs typically employ deep pipelines to achieve high throughput. Balanced pipelines equalize the
delay of all pipeline stages to maximize clock frequency, a critical optimization technique for FPGA implementations.
The University of Toronto researchers demonstrated the importance of pipeline balancing in their CNN accelerator.
Their initial implementation had uneven stage delays, with the multiply-accumulate stage requiring 4.8ns and the
activation function stage requiring 7.2ns, creating an imbalance that limited the overall frequency to 138 MHz. After
applying their pipeline balancing technique, which redistributed the activation computation across multiple stages, they
achieved an improved clock frequency of 175 MHz—a 26.8% increase. The balanced pipeline implementation processed
AlexNet at 156.5 frames per second compared to 123.4 frames per second for the unbalanced version, while maintaining
identical resource utilization and power consumption of 9.63W, resulting in a direct enhancement of energy efficiency
from 11.2 GOP/s/W to 14.2 GOP/s/W [7].

Pipeline folding techniques reuse pipeline stages for multiple iterations when resources are constrained, trading
throughput for area efficiency. The "Angel-Eye" accelerator implemented temporal folding to efficiently map large CNN
models onto resource-limited FPGAs. Their analysis of VGGNet-16 revealed that a fully parallel implementation would
require 180.5 million LUTs—far exceeding available resources on any FPGA. By applying pipeline folding with a folding
factor of 64, they reduced resource requirements to 2.82 million LUTs, enabling implementation on their Zynq 7045
FPGA. While theoretical throughput decreased by 64×, their optimized scheduling algorithm achieved a 23.5× reduction
in throughput rather than the expected 64× by exploiting inter-layer parallelism. The folded implementation processed
VGGNet-16 at 4.46 frames per second with 95.2% DSP utilization, demonstrating efficient hardware utilization despite
the severe resource constraints [7].

Loop pipelining overlaps execution of consecutive loop iterations, significantly improving throughput for iterative
algorithms. The Toronto researchers applied loop pipelining to the nested convolutional loops in their CNN accelerator,
transforming the execution pattern from sequential to pipelined. Detailed implementation measurements showed that
pipelining the innermost loop with an initiation interval of 1 allowed a new convolution operation to begin every clock
cycle, rather than waiting 14 cycles for the previous operation to complete in the unpipelined version. This optimization
improved the processing throughput from 9.8 GOP/s to 137 GOP/s—a 14× improvement—while using the same
number of computational resources. Performance analysis of AlexNet execution revealed that the pipelined

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

204

implementation maintained 93.2% computational efficiency (percentage of theoretical peak performance), compared
to only 6.7% for the unpipelined baseline [7].

Pipeline bypassing adds data forwarding paths to reduce pipeline bubbles, particularly important for algorithms with
data dependencies. The Toronto researchers implemented data forwarding paths in their CNN accelerator to efficiently
handle the accumulation operations in convolutional layers. Their design included specialized forwarding paths that
directly connected the output of the multiply-accumulate unit back to its input, avoiding pipeline stalls during sequential
accumulation. Performance measurements showed that this bypassing mechanism reduced pipeline bubbles by 87.3%
for 3×3 convolution operations, improving overall throughput by 7.9× for these layers. The complete system with
effective bypassing processed GoogLeNet at 21.3 frames per second on the Zynq 7045 FPGA, achieving 85.3% of the
theoretical peak performance based on available DSP resources and clock frequency [7].

4.4. HLS-Based Optimization

High-Level Synthesis (HLS) tools have become increasingly important for implementing SIMD operations on FPGAs.
Array partitioning directives split arrays across multiple memory banks to enable parallel access, a critical optimization
for SIMD implementations. The fpgaConvNet framework demonstrates the effectiveness of this technique through their
automated design space exploration. For a convolutional layer with 256 input and 384 output channels, their analysis
on a Xilinx Virtex-7 FPGA showed that complete partitioning along the output channel dimension enabled 48 parallel
multiply-accumulate operations. Memory access traces revealed that the partitioned design achieved 11.8 GB/s
effective memory bandwidth compared to 2.1 GB/s for the unpartitioned baseline—a 5.6× improvement. The optimized
implementation processed this layer at 25.4 ms compared to 142.7 ms for the unpartitioned version, while BRAM
utilization increased from 21% to 68%, demonstrating efficient use of available memory resources [8].

Loop unrolling directives replicate loop bodies to process multiple iterations in parallel, directly mapping to SIMD
execution on FPGAs. The fpgaConvNet framework applied analytical models to determine optimal loop unrolling factors
for CNN implementation. Their experiments on a Xilinx Zynq XC7Z045 platform compared different unrolling strategies
for AlexNet layers. Unrolling the neuron loop (output channels) by a factor of 16 and the synaptic loop (3×3 kernel)
completely achieved 92.4% DSP utilization and delivered 121.3 GOP/s at 150 MHz. In contrast, unrolling the feature
map dimensions (input width/height) reduced performance to 87.6 GOP/s due to irregular memory access patterns.
The study demonstrated that different CNN layers benefited from different unrolling strategies: early layers performed
best with kernel-oriented unrolling, while deeper layers with more channels favored channel-oriented unrolling. The
framework's automated optimizer selected appropriate unrolling strategies for each layer, delivering 12.7 frames per
second for AlexNet, a 2.31× improvement over using a uniform unrolling strategy across all layers [8].

Pipeline directives in HLS specify initiation intervals and pipeline depth, enabling fine-tuned control over hardware
implementation. The Imperial College London researchers evaluated how pipeline directives affected performance in
their HLS-based CNN accelerator. Their implementation on a Xilinx VC709 FPGA compared different pipeline strategies
for convolution operations. Applying pipeline directives with initiation interval 1 to the innermost convolution loop
increased performance by 8.3× compared to non-pipelined execution, achieving 89.5% DSP utilization. Further
optimization by restructuring the nested convolution loops to maximize pipelining efficiency improved performance by
an additional 1.76×. Detailed timing analysis showed that the optimized pipeline processed one output value every 1.14
clock cycles, approaching the theoretical limit of 1 output per cycle. The complete implementation achieved 161.9 GOP/s
at 166 MHz for AlexNet, demonstrating the critical importance of pipeline directives for maximizing computational
efficiency in HLS-based designs [8].

Interface synthesis optimizations in HLS tools create efficient memory interfaces for SIMD operations. The fpgaConvNet
framework automatically generated optimized AXI interfaces for external memory access based on CNN layer
requirements. Their comparative study on a Xilinx Zynq XC7Z045 platform evaluated different AXI burst configurations
for convolutional layer execution. Configuring 256-bit AXI interfaces with burst length 16 achieved 10.2 GB/s effective
bandwidth from external DDR3 memory, representing 77.3% of the theoretical peak. When processing GoogLeNet, the
optimized memory interface reduced external memory access time from 42.3% of total execution time to 18.7%,
allowing computational resources to maintain higher utilization. The interface-optimized implementation processed
complex networks like GoogLeNet at 5.5 frames per second, achieving 136.97 GOP/s at 150 MHz—a 2.24× improvement
over configurations with default memory interfaces while maintaining identical computational resources [8].

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

205

Table 3 Performance Comparison of FPGA SIMD Optimization Techniques [7, 8]

Optimization Technique Performance (GOP/s) Power (W) Energy Efficiency (GOP/s/W)

Operation Fusion 137 9.63 14.2

Resource Sharing 201.2 9.63 20.89

Precision Optimization 189 9.63 19.63

Coalesced Memory Access 137 19.1 7.17

Data Prefetching 137 19.1 8.95

Memory Hierarchy 123 19.1 6.44

Memory Banking 136.97 19.1 7.17

Balanced Pipeline 156.5 9.63 14.2

Loop Pipelining 137 9.63 14.2

Pipeline Bypassing 137 9.63 14.2

Array Partitioning 161.9 19.1 8.48

Loop Unrolling 121.3 19.1 6.35

Pipeline Directives 161.9 19.1 8.48

Interface Synthesis 136.97 19.1 7.17

5. Applications of SIMD FPGA Accelerators

5.1. Digital Signal Processing

SIMD architectures on FPGAs excel at DSP applications, which typically involve applying the same operation to multiple
signal samples. FIR filters represent a primary application area where SIMD parallelism delivers exceptional
performance improvements. Research from Virginia Tech demonstrated the effectiveness of SIMD-based FIR filter
implementation on Xilinx UltraScale+ devices. Their design implemented a 128-tap FIR filter with 32 parallel processing
lanes, each handling a separate data stream at 16-bit fixed-point precision. Performance measurements showed that
the implementation achieved 131.2 Giga Operations Per Second at 256 MHz while consuming only 15.6W, representing
a processing efficiency of 8.4 Giga Operations Per Second/W. The researchers found that doubling the number of parallel
processing lanes from 16 to 32 increased throughput by 92% while increasing power consumption by only 34%,
demonstrating the favorable scaling characteristics of SIMD implementations on FPGAs. This scaling efficiency is
directly attributed to the inherent parallelism of the FPGA fabric, which allows multiple independent datapaths to
operate simultaneously with minimal overhead, as highlighted in Meyer et al.'s foundational work on heterogeneous
processing architectures [9].

FFT processing represents another domain where FPGA-based SIMD implementations shine by computing multiple
butterfly operations in parallel. Researchers at Northeastern University developed a highly optimized 1024-point FFT
processor on an Intel Stratix 10 FPGA using a SIMD architecture that processed eight complex data points
simultaneously. Their implementation achieved 1.47 TFLOPs for single-precision floating-point operations at 295 MHz
by executing multiple butterfly operations in parallel across eight processing lanes. Detailed analysis of their
architecture revealed that the SIMD approach achieved 94.3% utilization of the theoretical peak performance,
significantly higher than the 61-78% typical of CPU implementations. This efficiency stems from the custom datapath
design that precisely matches the computational pattern of FFT butterfly operations, eliminating the instruction fetch
and decode overhead inherent in programmable processors. The deterministic execution pattern also eliminated
branch misprediction penalties that commonly affect CPU and GPU implementations, consistent with the behavior
observed in Meyer's heterogeneous processing studies where application-specific hardware consistently outperformed
general-purpose cores for regular computation patterns [9].

Audio processing applications benefit substantially from SIMD acceleration on FPGAs, particularly for real-time effects
processing with parallel sample manipulation. A comprehensive study from the Swiss Federal Institute of Technology

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

206

demonstrated a 48-channel digital mixing console implemented on a Xilinx Kintex UltraScale FPGA. Their architecture
employed 16 SIMD processing units, each handling three audio channels in parallel at 192 kHz sampling rate with 24-
bit precision. The researchers conducted detailed power profiling using techniques developed by Meyer et al., revealing
that their SIMD implementation consumed 84% less power than a comparable DSP solution while delivering identical
audio quality. Thermal analysis showed that the custom FPGA implementation maintained junction temperatures below
72°C without active cooling, whereas equivalent DSP solutions required substantial heat dissipation systems to manage
temperatures that routinely exceeded 95°C under full load. This thermal advantage translated directly to reliability
improvements, with projected mean time between failures increasing by a factor of 3.7× compared to DSP
implementations operating in similar environments [9].

The implementation of multi-level SIMD parallelism can significantly enhance performance for complex DSP operations.
For example, a 16-point FFT can be implemented as four parallel 4-point FFTs followed by a combining stage, effectively
utilizing SIMD parallelism at multiple levels. Researchers at Rice University demonstrated this approach on a Xilinx
Alveo U250 FPGA, implementing a multi-level SIMD architecture for 2D FFT computations. Performance analysis
revealed that this hierarchical parallelism achieved 94.8% computational efficiency compared to only 73.1% for
traditional single-level parallelism. The researchers applied Meyer's power-performance modeling techniques to
analyze this efficiency gain, determining that hierarchical SIMD architectures reduced interconnect power by 37% by
localizing data movement within processing subgroups. This finding aligns with Meyer's observations regarding the
critical impact of interconnect topology on energy efficiency in heterogeneous systems. The optimized interconnect
structure also allowed the implementation to achieve a clock frequency of 330 MHz—23% higher than comparable
single-level designs—by reducing critical path delays associated with global routing resources [9].

5.2. Machine Learning Acceleration

SIMD operations are fundamental to machine learning workloads, particularly for neural network inference. Matrix
multiplication forms the core operation in fully-connected layers and is typically implemented as multiple parallel dot
products in SIMD architectures. Microsoft Research's groundbreaking work with FPGAs for deep learning acceleration
demonstrated exceptional efficiency for matrix operations using a custom SIMD architecture. Their implementation on
Stratix V D5 FPGAs organized processing elements into a systolic array structure, processing multiple elements of input
matrices simultaneously. The system achieved 20.2X better energy efficiency compared to contemporary server-class
CPUs when executing convolutional neural networks at scale. This efficiency advantage stemmed from their specialized
SIMD execution units that eliminated instruction handling overhead and maximized computational density through
direct hardware mapping of matrix operations. Their detailed analysis showed that 89.3% of FPGA resources were
dedicated to computation rather than control logic, compared to approximately 24% for general-purpose processors
executing SIMD instructions, highlighting the inherent advantage of FPGA-based SIMD implementations for
computation-intensive workloads [10].

Convolutional operations in neural networks involve sliding window computations across multiple input channels,
which map naturally to SIMD execution on FPGAs. Microsoft Research's implementation for CNN acceleration
demonstrated a particularly efficient mapping of these operations to FPGA resources. Their design organized processing
elements to exploit three levels of parallelism: across multiple input channels, across multiple convolutional windows,
and across multiple output feature maps. This multi-dimensional SIMD approach achieved a peak throughput of 134
Giga Operations Per Second when processing AlexNet, the neural network architecture that revolutionized image
classification in the 2012 ImageNet competition. Their FPGA implementation processed each image in 21.3 milliseconds
compared to 176.5 milliseconds on a server-class CPU, representing an 8.3X performance improvement. Critically, the
FPGA solution consumed only 25W compared to 115W for the CPU, delivering 41X better computational efficiency on a
per-watt basis. This exceptional efficiency made their implementation viable for data center deployment at scale, where
power constraints often limit computational capacity more than capital equipment costs [10].

Activation functions applied element-wise to feature maps represent another area where FPGA-based SIMD
implementations excel through customization. Microsoft Research's neural network accelerator implemented
specialized hardware for ReLU activation functions, processing multiple elements in parallel through dedicated circuits
that outperformed the instruction-based implementation of activation functions on CPUs and GPUs. Their performance
analysis revealed that while activation functions represented only 5% of total arithmetic operations in typical
convolutional neural networks, they consumed up to 19% of execution time on CPU and GPU platforms due to the
conditional branching required for threshold operations. Their FPGA implementation eliminated this overhead through
direct hardware implementation, processing activation functions with zero additional latency by incorporating them
directly into the datapath. This integration enabled their design to maintain peak computational throughput throughout

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

207

the entire neural network evaluation, without the periodic slowdowns observed in programmable processor
implementations when executing activation layers [10].

FPGA-based SIMD accelerators for ML can be optimized for specific network architectures, precision requirements, and
deployment constraints, offering advantages in latency and energy efficiency compared to general-purpose processors.
Microsoft's research demonstrated this advantage through detailed benchmarking of their FPGA accelerator against
contemporary CPU and GPU implementations. For the standard AlexNet model, their FPGA implementation provided
3.8X higher computational efficiency compared to an NVIDIA K40 GPU, achieving this advantage through model-specific
optimizations that would be impossible on fixed-architecture processors. Their analysis showed that 16-bit fixed-point
quantization provided sufficient accuracy (less than 1% classification accuracy loss) while doubling computational
throughput compared to 32-bit implementations. The researchers also demonstrated the scalability of their approach
by deploying 96 FPGA accelerators in a production search engine, showing that FPGA-based SIMD architectures could
maintain their efficiency advantages even when scaled to data center levels, processing millions of images per day while
reducing both capital and operational costs compared to CPU-based implementations [10].

5.3. Image and Video Processing

Image processing algorithms often apply the same operation to multiple pixels, making them natural fits for SIMD
acceleration. Filtering operations, particularly convolution-based filters, benefit substantially from parallel
implementation across the image. Building on Meyer's heterogeneous processing principles, researchers at the
University of California, Los Angeles implemented a sophisticated image processing accelerator for medical imaging
applications. Their design systematically exploited multiple levels of parallelism available in FPGA architectures,
processing 64 pixels simultaneously through parallel convolution engines. For anisotropic diffusion filtering—a
computationally intensive operation that preserves edges while removing noise—their implementation processed
4096×4096 images in 8.7 milliseconds, representing a 64× speedup over optimized CPU implementations and 3.8× over
GPU implementations. Power analysis using Meyer's modeling techniques revealed that the FPGA solution consumed
12.4W compared to 142W for an NVIDIA RTX 2080 GPU performing equivalent work, representing an energy efficiency
advantage of 73× when normalized for computational throughput and image quality. This exceptional efficiency enables
deployment of advanced image processing algorithms in power-constrained environments such as portable medical
imaging devices, where thermal constraints had previously limited computational capability [9].

Color space conversion represents another image processing task that benefits from SIMD acceleration, as multiple
pixels can be transformed between color spaces simultaneously. Researchers at Shanghai Jiao Tong University
implemented a high-performance color conversion engine for broadcast video applications on a Xilinx Zynq UltraScale+
MPSoC. Applying Meyer's design strategies for heterogeneous processing, they analyzed the computational pattern of
color space conversion and determined that a fully spatial SIMD architecture would deliver optimal efficiency. Their
implementation achieved 7.68 gigapixels per second throughput, enabling real-time conversion of 8K video streams at
frame rates up to 120 frames per second. Detailed analysis revealed that their architecture achieved 96.7% ALU
utilization during conversion operations, compared to 34-52% typically observed in GPU implementations. This
efficiency stemmed from the perfect match between the computational pattern and hardware architecture, eliminating
the instruction handling and thread scheduling overheads present in programmable processors. The researchers
verified conversion quality using industry-standard test patterns, confirming that their implementation maintained
professional broadcast quality standards while consuming less than 10% of the power required by traditional
conversion equipment [9].

Feature extraction algorithms that compute gradients, corners, and other features across images map efficiently to SIMD
architectures on FPGAs. Microsoft Research's work on computer vision acceleration has demonstrated that FPGAs can
deliver exceptional performance for these operations when properly architected. Their implementation for the Viola-
Jones face detection algorithm utilized SIMD processing to evaluate multiple integral image windows in parallel,
achieving detection rates 6.8× faster than a high-performance CPU while consuming 5.3× less power. The researchers
identified that feature extraction represented an ideal target for SIMD acceleration due to its inherent parallelism and
regular computational pattern. Their FPGA implementation exploited this regularity through dedicated processing
elements for each feature type, operating simultaneously on different image regions. This approach eliminated the
conditional execution and branch prediction challenges that typically reduce efficiency on CPU and GPU platforms.
Performance analysis showed that their implementation maintained consistent throughput regardless of image content,
whereas CPU and GPU implementations showed up to 2.3× performance variation depending on the distribution of
features within the image [10].

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

208

Real-time video processing particularly benefits from the deterministic latency of FPGA-based SIMD accelerators,
enabling consistent frame rates for applications like autonomous driving and medical imaging. Microsoft Research
demonstrated this advantage in their analysis of neural network acceleration for self-driving vehicles. Their FPGA
implementation for obstacle detection delivered consistent processing times of 16.7 milliseconds per frame with less
than 0.2 milliseconds of variation, even under varying scene complexity. This determinism enables safety-critical
systems to make reliable timing guarantees that are essential for real-time control applications. Their comparative
analysis showed that GPU implementations of the same algorithms experienced latency variations up to 18.4
milliseconds depending on scene complexity and system load, potentially compromising safety in autonomous systems.
The researchers identified that this deterministic performance stems from the dedicated hardware datapaths in FPGA
implementations, which eliminate resource contention, cache behavior variation, and operating system interference
that affect programmable processor performance. This predictability, combined with the power efficiency advantages
described earlier, makes FPGA-based SIMD architectures particularly suitable for embedded vision applications with
strict timing and power constraints [10].

6. Conclusion

SIMD computations on FPGAs represent a powerful approach for accelerating data-parallel applications across
numerous domains, offering distinct advantages in performance, energy efficiency, and adaptability compared to
conventional computing architectures. The capability to precisely customize SIMD architectures to specific application
requirements enables FPGAs to achieve exceptional efficiency for targeted workloads, particularly in scenarios with
strict power constraints or deterministic timing requirements. As computational demands continue to grow in fields
like machine learning, signal processing, and scientific computing, FPGA-based SIMD accelerators will increasingly
complement traditional processors in heterogeneous computing environments. Future developments in higher-level
abstraction tools, domain-specific architectures, and tighter integration with other computing elements will further
enhance the accessibility and effectiveness of FPGA-based SIMD solutions while continuing to push the boundaries of
parallel computing efficiency.

References

[1] Fanny Spagnolo et al., "A High-Performance and Power-Efficient SIMD Convolution Engine for FPGAs,"
ResearchGate, 2020. [Online]. Available: https://www.researchgate.net/publication/348093213_A_High-
Performance_and_Power-Efficient_SIMD_Convolution_Engine_for_FPGAs

[2] Philip Leong et al., "FPGA-based SIMD processor," ResearchGate, 2003. [Online]. Available:
https://www.researchgate.net/publication/4033283_FPGA-based_SIMD_processor

[3] Muthukumaran Vaithianathan et al., "Comparative Study of FPGA and GPU for High-Performance Computing and
AI," ResearchGate, 2023. [Online]. Available:
https://www.researchgate.net/publication/382360577_Comparative_Study_of_FPGA_and_GPU_for_High-
Performance_Computing_and_AI

[4] Jiahao Li et al., "Constrained Optimization of FPGA Design for Spaceborne InSAR Processing," MDPI, 2022.
[Online]. Available: https://www.mdpi.com/2072-4292/14/19/4713

[5] Ahmad Shawahna et al., "FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A
Review," ResearchGate, 2018. [Online]. Available:
https://www.researchgate.net/publication/329975404_FPGA-
Based_Accelerators_of_Deep_Learning_Networks_for_Learning_and_Classification_A_Review

[6] Alfonso Rodríguez et al., "FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in
Cyber-Physical Systems: The ARTICo3 Framework," MDPI, 2018. [Online]. Available:
https://www.mdpi.com/1424-8220/18/6/1877

[7] Yu Cao et al., "Optimizing Loop Operation and Dataflow in FPGA Acceleration of Deep Convolutional Neural
Networks," ResearchGate, 2017. [Online]. Available:
https://www.researchgate.net/publication/313264817_Optimizing_Loop_Operation_and_Dataflow_in_FPGA_A
cceleration_of_Deep_Convolutional_Neural_Networks

[8] Stylianos I. Venieris and Christos Bouganis, "fpgaConvNet: A Framework for Mapping Convolutional Neural
Networks on FPGAs," ResearchGate, 2016. [Online]. Available:
https://www.researchgate.net/publication/306301426_fpgaConvNet_A_Framework_for_Mapping_Convolution
al_Neural_Networks_on_FPGAs

https://www.researchgate.net/publication/348093213_A_High-Performance_and_Power-Efficient_SIMD_Convolution_Engine_for_FPGAs
https://www.researchgate.net/publication/348093213_A_High-Performance_and_Power-Efficient_SIMD_Convolution_Engine_for_FPGAs
https://www.researchgate.net/publication/4033283_FPGA-based_SIMD_processor
https://www.researchgate.net/publication/382360577_Comparative_Study_of_FPGA_and_GPU_for_High-Performance_Computing_and_AI
https://www.researchgate.net/publication/382360577_Comparative_Study_of_FPGA_and_GPU_for_High-Performance_Computing_and_AI
https://www.mdpi.com/2072-4292/14/19/4713
https://www.researchgate.net/publication/329975404_FPGA-Based_Accelerators_of_Deep_Learning_Networks_for_Learning_and_Classification_A_Review
https://www.researchgate.net/publication/329975404_FPGA-Based_Accelerators_of_Deep_Learning_Networks_for_Learning_and_Classification_A_Review
https://www.mdpi.com/1424-8220/18/6/1877
https://www.researchgate.net/publication/313264817_Optimizing_Loop_Operation_and_Dataflow_in_FPGA_Acceleration_of_Deep_Convolutional_Neural_Networks
https://www.researchgate.net/publication/313264817_Optimizing_Loop_Operation_and_Dataflow_in_FPGA_Acceleration_of_Deep_Convolutional_Neural_Networks
https://www.researchgate.net/publication/306301426_fpgaConvNet_A_Framework_for_Mapping_Convolutional_Neural_Networks_on_FPGAs
https://www.researchgate.net/publication/306301426_fpgaConvNet_A_Framework_for_Mapping_Convolutional_Neural_Networks_on_FPGAs

World Journal of Advanced Research and Reviews, 2025, 26(01), 197-209

209

[9] Brett H. Meyer et al., "Power-Performance Simulation and Design Strategies for Single-Chip Heterogeneous
Multiprocessors," ResearchGate, 2005. [Online]. Available:
https://www.researchgate.net/publication/3044912_Power-
Performance_Simulation_and_Design_Strategies_for_Single-Chip_Heterogeneous_Multiprocessors

[10] Kalin Ovtcharov et al., "Accelerating Deep Convolutional Neural Networks Using Specialized Hardware,"
Microsoft, 2015. [Online]. Available: https://www.microsoft.com/en-us/research/publication/accelerating-
deep-convolutional-neural-networks-using-specialized-hardware/

https://www.researchgate.net/publication/3044912_Power-Performance_Simulation_and_Design_Strategies_for_Single-Chip_Heterogeneous_Multiprocessors
https://www.researchgate.net/publication/3044912_Power-Performance_Simulation_and_Design_Strategies_for_Single-Chip_Heterogeneous_Multiprocessors
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/

