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Abstract 

Conventional methods of silicon production; and carbothermic reduction, primarily rely on quartz or silica sand, which 
involves high-energy consumption and poses significant environmental challenges. Amidst this backdrop, the 
exploration of alternative sources for silicon extraction has become imperative. The utilization of rice husks which are 
considered renewable resources are produced every year in Nigeria. Despite its non-commercial value and causing 
environmental pollution, its ash content is rich in silica (SiO2) and has become an economic potential source for the 
production of silicon. The high-purity metallurgical-grade silicon (MG-Si) was prepared by employing a successive acid 
leaching process followed by the reduction of rice husk ash (RHA) using magnesium as the reducing agent. The 
experiment was designed using a two-level-three-factor Box-Behnken Design (BBD), and 17 experimental runs were 
generated with operating process conditions of annealed temperature of 700-800oC, ratio of HF:H2SO4 (1-9) and RHA: 
Mg ratio 1-1.5. The optimized MG-Si yield of 98.015 wt% was obtained at the process conditions of 799.365°C 
calcination temperature, 1:8.987 HF:H2SO4 ratio, and RHA: Mg ratio of 1:1.381. The produced MG-Si were characterized 
using XRF analysis and the results obtained indicated a MG-Si purity of 97.06wt% Si and 2.89wt% impurity respectively. 
Also, the XRF result showed that the impurities detected were Fe, K, Ca, Al, Ti, Cu, and Mg. The R2 value of 0.9810 was 
achieved while the adjusted R² values of 0.9565 for the metallurgical grade silicon yield were in reasonable agreement 
with the predicted R² values of 0.9429, since their difference is less than 0.2. All of these validations showed that the 
experimental data for metallurgical grade silicon yield from rice husk ash matched the model's projected value 
accurately. Thus, optimizing the silicon production process has proven to be instrumental in achieving higher yields and 
better product quality. This not only enhances the overall efficiency of the production process but also contributes to 
the economic viability of silicon extraction from unconventional sources. 
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1. Introduction

The pursuit of alternate and sustainable sources for silicon production has garnered significant attention in the dynamic 
field of engineering due to the environmental and economic consequences of conventional methods [1],[2],[3]. 
However, as the need for silicon in engineering applications grows, there is an increased interest in investigating 
alternate, sustainable sources of silicon from biomass [4], [5] and [6]. Silicon is an essential material in various 
engineering applications, including solar cells production, semiconductors, and alloys [7]. Silicon can be extracted from 
agricultural waste in the form of silica through several techniques (Figure 1). There are two types of silicon: solar-grade 
silicon and metallurgical-grade silicon [1] and [2].  
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Metallurgical-grade silicon (MG-Si) is a valuable metal with a wide range of industrial applications, including the 
production of hyper-pure "electronic grade" silicon (>99.99% Si), which is used in solar cells and the electronics 
industry, as well as a deoxidizer in the steel and aluminium industries, and an alloying element in the former [8],[2],[9] 
and [10]. The carbothermic reduction-smelting technique produces MG-silicon by reducing silica with carbon in a 
submerged arc furnace at temperatures ranging from 1300 to 2000°C under air pressure. The charge materials 
comprise a silicon source (quartz, sand, or quartzite) (Figure 1) and a standard reductant blend of coke, coal, charcoal, 
and wood chips [11], [12] and [13]. Equation (1) describes the reduction process. 

SiO2 (s) + 2C(s) → Si(s) + 2CO(g)  …………Eq. (1) 

ΔH2000°C = 687 kJ/mol. 

Alternately, metallothermic reduction employing metals including magnesium, calcium, barium, and aluminium as 
reductants can yield metallurgical-grade silicon as shown in Equation (2) [14], [15] and [1]. 

SiO2 + 2Mg → Si + 2MgO …………Eq. (2) 

Metallurgical-grade silicon MG-Si has various benefits in engineering applications [16] and [17]. Its high purity and 
outstanding mechanical properties make it an ideal material for usage in industries such as electronics, solar energy, 
and automobiles. Its versatility and sustainability makes it an essential tool for improving engineered material 
performance [18]. Silicon (Si) yield in the range of 99.9% has been attained by several researchers through 
magnesiothermic reduction of silica at a temperature between 600-950 oC [19] and [20]. However, conventional 
methods of silicon production; carbothermic reduction, primarily rely on quartz or silica sand, which involves high-
energy consumption and poses significant  Amidst this backdrop, the exploration of alternative sources for silicon 
extraction has become imperative. One such promising source is rice husk, an abundant byproduct stemming from rice 
milling processes [21].   

 

Figure 1 Sources of metallurgical grade silicon 

Rice husk is known for its high silica content, it represents an attractive and renewable source for the production of 
metallurgical-grade silicon [22] and [23]. In the last few years, rice husk ash (RHA) has been used for a wide range of 
purposes. The most common use has been to create several types of amorphous silica, which are used in numerous 
industries [24] [25] and [26]. Scientists are particularly interested in the potential of amorphous silica, silicon 
tetrachloride zeolite, pure silicon, and silica nitride as raw materials for silica-based products [8]. Given that silica can 
be derived from (RHA), numerous studies have focused on its extraction from rice husks. This extraction process not 
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only yields valuable silica but also helps mitigate environmental pollution associated with the uncontrolled burning of 
rice husks [27] and [28]. Many researchers have developed techniques for extracting silica from rice husks. According 
to [29], silica can be extracted from rice husks through the processes of acid leaching. According to the Food and 
Agriculture Organization of the United Nations (FAO), Nigeria ranks as the leading rice producer in Africa, with an 
annual production of approximately 8,435,000 tons. It is followed by Egypt, Madagascar, Tanzania, and Mali [30].  On 
average, 20% of rice husk ash is produced from combusted rice husk, yielding 80-95% silica content [31]. Hence, this 
implies that Nigeria's rice production alone has the potential to generate approximately 170,000 tonnes of silica 
annually, which can be used for silicon production [22] and [32].  

Numerous feasibility studies have explored the production of solar- and metallurgical-grade silicon from amorphous 
silica in rice husk ash through metallothermic reduction. Singh and Dhindaw [33] successfully obtained silicon with 6N 
purity by reducing white rice husk ash using magnesium at 800°C, followed by multiple acid-leaching steps. Later, Bose 
and Govindacharyulu [34] investigated the reduction of rice husk ash with magnesium at a lower temperature range of 
600–650°C, but the resulting silicon had significantly lower purity compared to Singh and Dhindaw’s findings [33]. 
Further research on magnesium reduction of rice husk ash for silicon production was conducted by Banerjee [35] and 
Ikram and Akhter [36]. Banerjee [35] used acid-leached rice husk ash mixed with magnesium powder and heated the 
mixture in a sealed graphite crucible within a muffle furnace. Following a similar methodology but using 4N purity 
magnesium, Ikram and Akhter [36] reduced rice husk ash at 620°C, achieving silicon with 99.95% purity after acid-
leaching purification. Their findings underscored the potential of conventional refining methods to upgrade silicon to 
solar-grade quality, thereby bridging the gap between renewable resources and high-performance silicon applications 
[37]. Collectively, these studies illuminate the intricate process of harnessing rice husk ash as a sustainable feedstock 
for high-purity silicon production, highlighting both advancements and challenges in the quest for eco-friendly and 
economically viable silicon manufacturing processes [4] and [38]. Only a limited number of research groups have 
explored an alternative approach for synthesizing cost-effective solar-grade silicon from plant biomass like rice husk, 
which is rich in high-purity silica [11]; [34]. 

In recent years, statistical design tools like Design Expert have gained traction in optimizing complex processes by 
systematically exploring the multifaceted parameter space [39]. Design of Experiments (DOE) methodologies integrated 
with advanced statistical techniques enable researchers to identify significant factors, their interactions, and optimal 
conditions for maximizing desired outcomes [39]. Conventional approaches are time-consuming, highlighting the need 
for systematic optimization methodologies [40].  

Furthermore, several research works showed that varying one variable at a time (OVAT) method was used to evaluate 
the impact of process variables. This method is time-consuming and requires an unreliable number of experiments [41]. 
In addition to these, the OVAT technique is not capable to optimize and achieve true optimal conditions in a multivariant 
system such as a metallurgical-grade silicon production process [42] and [43]. One of the experimental design 
techniques commonly used for process analysis and modeling is response surface methodology (RSM) [44].  

Response Surface Methodology (RSM) is a highly effective statistical approach for optimizing processes in multivariable 
systems. It utilizes mathematical and statistical techniques for process modeling and analysis [45]. This method is 
particularly useful for optimizing systems where multiple parameters influence the response [46]. RSM enables the 
estimation of linear, interaction, and quadratic effects of process variables while also developing predictive models for 
process outcomes. The experimental data required depends on the chosen design, typically the central composite design 
(CCD) or the Box-Behnken design (BBD). These designs differ in the number of experimental runs needed and the 
combinations of factor levels tested. The Box-Behnken design is often considered more efficient and powerful than the 
central composite design (CCD) because it requires fewer experiments while effectively modeling most steady-state 
process responses [47]. Also, artificial neural networks (ANN) have been recognized as a reliable tool for modeling 
complex processes involving nonlinear data. While ANN offers a robust and dependable modeling approach, it requires 
an additional perturbation method for sensitivity analysis [48]. This necessity has driven research into combining ANN 
with other algorithms, an approach that has gained significant attention and has been successfully applied as a modeling 
and optimization tool for solving complex and nonlinear problems [49]. 

However, studies on metallurgical-grade silicon production using RSM and ANN to provide an explicit understanding of 
the effect of process variables on MG-Si yield have not been documented to the best of the author’s knowledge. Thus, 
the present work aimed to investigate the potential of extracting silica from rice husks for MG-Si production and develop 
a predictive explicit model using RSM and ANN [50]. 
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2. Materials and methods 

Rice husk was obtained from a local rice mill Company in Cross River State, Nigeria. All the other chemicals were of 
analytical reagent grade and were acquired both within and outside Akwa Ibom State from various chemical stores in 
Nigeria. Figure 2 shows the flow diagram employed for the production of metallurgical-grade silicon from rice husk 

 

Figure 2 Flow diagram for MG-Si Production 

2.1. Sample Preparation (Rice Husk) 

The rice husk (RH) sample was washed thoroughly with de-ionized water to remove the soluble particles, dust, dirt, and 
other sand particles present in the husk. The samples after washing were drained of water, sun-dried (Figure 4), and 
oven-dried at 105 oC for 2 hours to constant weight. Figure 3 shows the schematic process for the preparation of silicon 
from raw rice husk.  

 

Figure 3 A schematic process for the preparation of silicon from raw rice husk 
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Figure 4 Sundried Rice Husk 

2.1.1. Purification of Rice Husk (Acid Leaching) 

The method of Olawale. [2] was adopted in this step. 184.68g of the prepared rice husk was added to 1500 ml of 1N HCl 
for 2 hours in a beaker and heated up to a temperature of 100 oC for 2hrs with constant mixing, and it was then left for 
3 hours to cool. The supernatant was then drained and washed repeatedly with plenty of de-ionized water to remove 
the acid retained to obtain a pH of 7.0, the rice husk was then filtered out and dried in an oven at 105 oC for 4 hours. 
Figure 5 shows the rice husk sample after leaching. 

 

Figure 5 Leached Rice Husk 

2.1.2. Extraction of Silica from Prepared Rice Husks 

The method of Larbi, [5] was adopted in this step. The prepared rice husk was burned in a Muffle furnace into ash at 
400 oC for 1 hour (Figure 6). It was further heated for 4 hours at a temperature of 700 oC to obtain (RHA) (see Figure 
7); thereafter, it was cool inside the furnace before removing and then analyzed for silica yield using Equation 3. 

𝑅𝑖𝑐𝑒 𝐻𝑢𝑠𝑘 𝐴𝑠ℎ 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =  
Mass of Rice Husk Ash

Mass of Rice Husk used 
× 100 ………Eq. (3) 
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Figure 6 Carbonized Rice husk 

2.1.3. Purification of RHA (Hydrometallurgy process) 

To remove impurities present in the rice husk ash (RHA), a low-cost process known as the hydrometallurgy leaching 
treatment process was adopted. This treatment involves the addition of 80 cm3 of 16M HNO3 to 60 g RHA and heating 
at 700°C for an hour. The product was rinsed in deionized water, filtered, and dried. The sample then underwent 
digestion using 5M HCl acid for 2 hrs at 95 °C with constant agitation. Whitman paper was used in filtering the residues 
of the digested sample and then rinsed again with deionized water until the rinse water had a pH of between 7 and 7.4. 
The solid was filtered and dried in an oven for 1 hr at 105°C [1]. The extraction yield was evaluated using Equation 4. 
Figure 7 shows the purified rice husk ash being weighed. 

Silica Yield (%) =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑆𝑖𝑙𝑖𝑐𝑎

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑅𝑖𝑐𝑒 𝐻𝑢𝑠ℎ 𝐴𝑠ℎ
× 100   …………..  Eq. (4) 

 

Figure 7 Purified Rice Husk Ash 

2.2. Metallurgical-Grade Silicon (MG-Si) Production 

The leached rice husk ash from the hydrometallurgy process was subjected to a metallothermic reduction process for 
metallurgical-grade silicon production. Table 5 shows the process conditions followed to produce the metallurgical-
grade silicon. The produced metallurgical-grade silicon produced is shown in Figure 8.  

 

Figure 8 Metallurgical-grade Silicon Produced 
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2.2.1. Metallothermic Reduction Process 

The amorphous silica from leached rice husk ash (LRHA) was subjected to a metallothermic reduction process for 
metallurgical-grade silicon production. The purified silica was homogeneously pulverized using agate mortar and 
thoroughly mixed with magnesium powder (magnesium turning (99% purity) at a specified ratio of RHA:Mg, HF:H2SO4, 
and residence time and annealed in a furnace at the specified temperature by RSM in Table 4. The mixture was then 
cooled to room temperature before it was removed from the furnace.  

2.2.2. Leaching of Reduction Products 

Leaching was carried out twice. The first was to selectively leach out magnesium by-products and other impurities via 
2M HCl volume of 15 ml at a temperature of 70 °C for a period of 1hr.  The final leaching was HF and H2SO4 leaching, and 
it was carried out at different concentrations as specified by RSM in Table 5. The reduced sample was acid-leached with 
a mixture of concentrated HF and H2SO4 at a specified ratio to remove impurities like MgO and other impurities that 
were present in the form of silicate or oxide. Leaching time and temperature were kept at 1hr and 70oC, respectively. 
The product was washed with de-ionized water, filtered, and the residues oven-dried at 100oC for 1 hr to obtain pure 
MG-silicon [1]. The silicon obtained was then examined with XRF and SEM Spectra and was compared with the standard 
silicon. 

SiO2 + 2Mg → Si + 2MgO ………..   Eq. (5) 

The acid was introduced into the reduced product in a closed beaker. The leaching procedure is adopted from the work 
of [1] to remove Mg, MgO, and unreacted SiO2. The process was represented by the chemical formula in Equation 5. 

2.3. Experimental Design and Optimization of the MG-Silicon Production Process 

The process was carried out following Design of Experiment specification. The statistical analysis was performed 
according to the Response Surface Methodology (RSM) using Design Expert version 13 (Stat-Ease Inc, Min-neapolis, MN, 
USA). Box Behnken Design (BBD) was used for the optimization of MG-silicon production to examine the combined 
effect of the three different factors (independent variables): Temperature (oC), leaching agent concentration, and ratio 
of reducing agent RHA:Mg on the yield of metallurgical-grade silicon (Response). The data specification from Design of 
Experiment as shown in Table 5 was followed accurately to determine the combined effect of the independent variables 
and was fitted into a second-order model (Equation 6) to correlate the response variable to the independent variable. 
A total of 17 experimental runs were generated, as shown in Table 5. The general form of the second-degree polynomial 
Equation is as follows: 

𝛾 = 𝛽0 + ∑ 𝐵𝑗
𝑘
𝑗=1 𝑥𝑗 + ∑ ∑ 𝐵𝑖𝑗𝑥𝑖𝑖<𝑗 𝑥𝑗 + ∑ Bij

k
j=1 𝑥𝑗

2 + 𝜀    ………Eq. (6) 

Where Y is the predicted response, βo, Bj, Bij, and constant coefficients; xi and xj are the coded independent variables or 
factors: Ɛ is random error. The effect of the process variables on the yield of metallurgical-grade silicon was calculated, 
and their respective significance was evaluated by ANOVA test. P-values were used as a yardstick for measuring the 
significant regression coefficients.  

2.4. Characterization of Rice Husk Ash 

The rice husk used for the experiment was subjected to moisture content, volatile matter, fixed carbon, and ash content 
analysis.   

2.4.1. Moisture content  

The raw rice husk was placed in a crucible, and its weight was measured both with and without the husk. The crucible 
containing the rice husk was then dried in an oven at 105°C for four hours. After drying, the sample was removed, 
allowed to cool, and re-weighed until a constant weight was achieved. Finally, the final weight was recorded and 
compared with the initial measurement. The percentage of moisture content of the rice husk was calculated using 
Equation (7).   

%𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 =  
𝑀1−𝑀2

𝑀1
× 100…………….  Eq. (7) 

Where: M1=Weight of sample before drying (g); M2=Weight of sample after drying (g)  
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2.4.2. Volatile matter   

The crucible and its cover were weighed both with and without the rice husk sample. The muffle furnace was then 
preheated to 500°C. The sample was placed in a sealed crucible and heated in the muffle furnace at 500°C for five 
minutes. After heating, the crucible was cooled in a desiccator and re-weighed. The volatile matter content was 
determined by comparing the sample's weight before heating (V1) and after heating (V2). The percentage of volatile 
matter in the sample was calculated using Equation 8.   

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑀𝑎𝑡𝑡𝑒𝑟 % =  
𝑉1−𝑉2

𝑉1
× 100 …………….Eq. (8) 

Where: V1= Weight of sample before heating (g); V2=Weight of sample after heating (g)  

2.4.3. Ash Content  

The muffle furnace was preheated to 500°C. The crucible was weighed both with and without the rice husk sample. The 
sample was then placed in an open crucible and heated at 500°C for two hours in the furnace. After heating, the crucible 
was transferred to a desiccator and left to cool to room temperature before being re-weighed. The ash content of the 
sample was determined by comparing its weight before and after heating. The percentage of ash in the sample was 
calculated using Equation 9.  

𝐴𝑠ℎ 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 % =  
𝐴2

𝐴1
× 100………………………    Eq. (9) 

Where: A1=Weight of the sample before heating (g); A2=Weight of the sample after heating (Ash) (g) 

2.4.4. Fixed carbon content  

The fixed carbon content was calculated by deducting the combined volatile matter and ash content from 100. The 
resulting value represented the percentage of fixed carbon present in the sample. The percentage of fixed carbon 
content in the sample will be calculated using Equation 10.  

Fixed carbon (%) = 100 - (moisture% + ash% + volatile matter %)  ……………..Eq. (10) 

2.5. Characterization of the Produced MG-Si 

The produced MG-silicon obtained was subjected to SEM and XRF analysis to determine its surface morphology and 
elemental composition, respectively. 

2.6. Model performance Indices test  

The predictive performance of the ANN and RSM models was evaluated using various performance indices to determine 
which model best aligned with the experimental data. Seven high-accuracy statistical error functions, listed in Table 1, 
were employed for this analysis. The selected evaluation criteria were based on the characteristics of the data set used 
[51]. Additionally, a comparative parity plot was generated to highlight specific deviation points between the 
predictions of the RSM and ANN models and the experimental data 

Table 1 Statistical Error Functions    

Error function Equation 

Hybrid fractional error function 
𝐻𝑌𝐵𝑅𝐼𝐷 (%) =  

1

𝑁 − 𝑃
∑

[𝑃𝑅,𝐽,𝑒𝑥𝑝 − 𝑃𝑅,𝐽,𝑐𝑎𝑙 ]
2

𝑃𝑅,𝐽,𝑒𝑥𝑝 
 × 100 

Average relative error 
𝐴𝑅𝐸 (%) =  

100

𝑁
∑

𝑃𝑅,𝐽,𝑒𝑥𝑝 − 𝑃𝑅,𝐽,𝑐𝑎𝑙 

𝑃𝑅,𝐽,𝑒𝑥𝑝 

𝑁

𝑖=1

 × 100 

Correlation coefficient 
𝑅2 =  

(∑ 𝑃𝑅,𝐽,𝑐𝑎𝑙 − 𝑃𝑅,𝐽,𝑒𝑥𝑝,𝑎𝑣𝑒 
𝑁
𝑖=1 )

2

∑ (𝑃𝑅,𝐽,𝑐𝑎𝑙 − 𝑃𝑅,𝐽,𝑒𝑥𝑝 )
2𝑁

𝑖=1 + (𝑃𝑅,𝐽,𝑐𝑎𝑙 − 𝑃𝑅,𝐽,𝑒𝑥𝑝)
2 
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Marquardt’s percentage standard error deviation 

𝑀𝑃𝑆𝐸𝐷 (%) =  
√

∑ (
[𝑃𝑅,𝐽,𝑒𝑥𝑝 − 𝑃𝑅,𝐽,𝑐𝑎𝑙 ]

2

𝑃𝑅,𝐽,𝑒𝑥𝑝 
)

𝑁 − 𝑃
× 100 

Absolute average relative error 
𝐴𝐴𝑅𝐸 (%) =  

1

𝑁
∑

𝑃𝑅,,exp (𝑖) − 𝑃𝑅,,𝑐𝑎𝑙(𝑖) 

𝑃𝑅,𝑒𝑥𝑝(𝑖) 

𝑁

𝑖=1

 × 100 

Adjusted R2 
𝐴𝑑𝑗 𝑅2 = 1 − ((1 − 𝑅2) ×

𝑁 − 1

𝑁 − 𝑃 − 2
) 

Root mean square error 

𝑅𝑀𝑆𝐸 =  √ 
1

𝑁
∑

[𝑃𝑅,exp (𝑖) − 𝑃𝑅,𝑐𝑎𝑙(𝑖) ]
2

𝑃𝑅,𝑒𝑥𝑝(𝑖) 

𝑁

𝑖=1

 

Source: [52] 

3. Results and discussion 

Table 2 Proximate Analysis for Rice Husk 

Proximate Values (%) 

Moisture Content 9.2 

Ash Content 22.9 

Volatile Matter 65.4 

Fixed Carbon Content 2.5 

3.1. Scanning electron microscopy (SEM) 

The SEM micrographs in Figure 9 demonstrate that the MG-Si obtained consists largely of spongy material with pores. 
The likely cause of the observed porosity is that acids leach out magnesium compounds and SiO2 from the reduction 
product, thereby producing voids, a similar trend was also observed in the work of [15].  

3.2. X-ray fluorescence (XRF)  

The MG-silicon was chemically analyzed by XRF to determine its purity. The results are summarized in Table 3 and 4. 
The MG-Si product contained about 97.06% Si and 2.89 % impurity, with traces of other elements. It is clear that the 
MG-Si product had no traces of P, and it is noteworthy that no boron was detected.  Most impurities detected were Mg, 
Fe, Al, and Ti, these may be attributed to the crucible and fabricated iron mold used during the ashing process. Iyen et 
al.  [1] reported similar results.  
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Figure 9 Scanning Electron Microscopy of (MG-Si) derived from rice husk ash (a) before leaching and (b) after 
leaching 

Table 3 Chemical analysis of the RHA before and after leaching using XRF spectrometry 

Compound SiO2 K2O CaO MnO MgO Al2O3 TiO2 Fe2O3 P2O5 CuO SO3 ZnO Ag2O Cl Total 
impurity 

Before 
leaching wt 
(%) 

90.636 0.266 1.925 0.064 1.653 1.362 0.129 0.667 0.318 0.51 0.799 0.021 0.003 2.089 9.364 

After leaching 
wt % 

94.224 0.152 0.805 

 

0.031 

 

0.000 

 

1.546 

 

0.123 

 

0.161 

 

0.028 

 

0.043 

 

0.715 

 

0.010 

 

0.002 

 

2.142 

 

5.776 

 

 

Table 4 Quantitative Analysis of the Derived MG-Si Using X-ray fluorescence (XRF) 

[1] Elem
ents 

[2] Si [3] A
l 

[4] K [5] C
a 

[6] M
g 

[7] C
u 

[8] F
e 

[9] T
i 

[10] Tota
l 
Imp
urity 

[11] MG-
Si (wt 
%) 

[12] 97
.0
6 

[13] 0
.
5
4 

[14] 0
.
2
1 

[15] 0
.
0
7 

[16] 1
.
0
9 

[17] 0
.
0
5 

[18] 0
.
9
1 

[19] 0
.
0
2 

[20] 2.89 

The XRF analysis results for MG-Si derived from rice husk ash after leached are presented in Table 3. Also, the results 
indicate a Silicon (Si) yield of 97.06wt% and 2.89wt % impurity respectively, which is slightly below the value reported 
in the literature, Larbi, [5] obtained 97.3wt%, similarly, Benedict and Karen,  [32] reported 98.66wt%. Also, the obtained 
value in this study is a close range to the required purity level for metallurgical-grade silicon as reported by Pizzini, [7].  
Looking at the impurities detected Fe, K, Ca, Al, Ti, Cu, and Mg were observed using XRF. The high amount of Al and Mg 
are due to Al introduction into the sample from the alumina crucible during heating and reaction of Si with an excess of 
Mg during the reduction process respectively. 
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3.3. Statistical Analysis of RSM Model Result 

3.3.1. ANOVA  

The results from the experimental data were analyzed using the regression analysis tool in Design Expert 13 and Table 
5 shows the ANOVA results for the quadratic model of (MG-Si) Yield. The performance of a model in making predictions 
can be measured using its predicted R2. To figure out how well the model worked, the mean square, sum of squares, 
degree of freedom (DOF), P value, and F value were each calculated. Table 6 shows the ANOVA result for the (MG-Si) 
Yield model. According to the results of the variance analysis, an F value that is more than 2.6 suggests a more accurate 
estimation of the parameters [42]. The results of the ANOVA for the Quadratic Model and the Significant Parameters of 
P-value are presented in Table 6. A P-value below 0.05 implies that there is a statistical significance between the terms 
in the model. Since the F value of the model is 40, it can be concluded that it is statistically significant. Also, the terms 
with P values below 0.05 are considered significant. In this case, A, B, B², and C2 are significant model terms. The R2 
value for the response variable was 0.981, indicating that 98.1% of the total variance was well explained by the model. 
Since the adequate precision value of 23.6343 is more than 4, it may be concluded that this response was more accurate 
and trustworthy. Also, it was observed that factor A has the highest sum of square value (40.50), followed by B (28.13) 
and lastly C (1.13). This is in agreement with the findings of this indicate that calcination temperature and HF:H2SO4 
ratio collectively has the highest influence on the (MG-Si) Yield. 

Table 5 Experimental Factors and the Corresponding Metallurgical Silicon (MG-Si) Yield 

  Factor 1 Factor 2 Factor 3 Response 1 

Std Run A:Calcination Temperature B:Ratio of HF:H2SO4 C:Ratio of RHA:Mg MG-Si Yield 

  (oC)   % 

17 1 750 5 1.5 94 

15 2 750 5 1.5 93 

14 3 750 5 1.5 94 

6 4 800 5 1 95 

4 5 800 9 1.5 98 

8 6 800 5 2 95 

9 7 750 1 1 91 

13 8 750 5 1.5 93 

3 9 700 9 1.5 94 

11 10 750 1 2 92 

16 11 750 5 1.5 94 

2 12 800 1 1.5 95 

12 13 750 9 2 96 

1 14 700 1 1.5 90 

7 15 700 5 2 91 

5 16 700 5 1 90 

10 17 750 9 1 95 

 

 

Table 6 ANOVA for Quadratic Model and the Significant Parameters of P-Value 

Source Sum of Squares df Mean Square F-value p-value  
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Model 74.79 9 8.31 40.11 < 0.0001 significant 

A-Calcination Temperature 40.50 1 40.50 195.52 < 0.0001  

B-Ratio of HF:H2SO4 28.13 1 28.13 135.78 < 0.0001  

C-Ratio of RHA:Mg 1.13 1 1.13 5.43 0.0526  

AB 0.2500 1 0.2500 1.21 0.3083  

AC 0.2500 1 0.2500 1.21 0.3083  

BC 0.0000 1 0.0000 0.0000 1.0000  

A² 0.0105 1 0.0105 0.0508 0.8281  

B² 2.06 1 2.06 9.96 0.0160  

C² 2.69 1 2.69 13.01 0.0087  

Residual 1.45 7 0.2071    

Lack of Fit 0.2500 3 0.0833 0.2778 0.8395 not significant 

Pure Error 1.20 4 0.3000    

Cor Total 76.24 16     

3.3.2. Diagnostic plot 

Figures 10a and 10b illustrate the normal probability plot of the residuals, and the predicted versus actual. It was 
observed that the values are close to the straight line, which demonstrates that the model is accurate. For the predicted 
versus experimental, the points are also distributed closely to the diagonal line with an R2 value of 0.894. Thus, the 
model gives a good explanation of how the analysis of the variance of the response works. This is in agreement with the 
works of [53]. 

  

Figure 10a Normal % probability plot of MG-Si model Figure 10b A plot of predicted vs experimental value 

3.3.3. Model Equation 

A model Equation serves as a mathematical representation that explains the connection between the factors and the 
resultant yield. In this instance, Equation 11 demonstrates that a quadratic model adequately predicts the metallurgical-
grade silicon (MG-Si) yield. 

MG-Si Yield  = 93.6 2.25 A + 1.875B+0.375C -0.2500AB - 0.25AC + 0BC - 0.0500 A² + 0.7 B² - 0.8C²…… Eq. 11 

Where MG-Si Yield is metallurgical grade silicon yield, A is the calcination temperature, B is the ratio of HF:H2SO4, and C 
is the RHA:Mg. 
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3.3.4. Response Surface Plot for (MG-Si) Yield  

This section discussed the interactive effect of the three factors on the MG-Si yield of the silicon. The model Equation 
developed was employed for generating the 3D response surfaces to better understand the interplay between the 
process factors and identify the optimum condition of each component for the production of silicon MG-Si of 
metallurgical grade. Figure 11a shows the significant interaction term for Ratio of HF:H2SO4 and calcination temperature 
indicating that these two factors affect the percentage yield of MG-Si. The results revealed that there is an increase in 
the yield of MG-Si with an increase in FH:H2S04 ratio. Similarly, increased calcination temperature increases the MG-Si 
yield. Thus this is in agreement with the findings of Larbi, [11] who previously studied the effect of calcination 
temperature and reaction time on silicon yield from rice husk and attributed the outcome to the process of complete 
combustion. Conversely, this pattern of graph was also observed in the work of Ali, [54]. The effect of the interaction of 
the HF:H2SO4 ratio and calcination temperature on MG-Si yield can be seen in the 3D response surface plot shown in 
Figure 11b.  it is observed that an increase in the RHA:Mg ratio results in a slight increase in the MG Si yield but at point 
1.6, the yield is observed to drop very slightly, this may be because the ratio of RMA:Mg has reached its optimum 
potential, at this point, it is believed the reaction must have reached an equilibrium point, and a further increase in the 
RHA:Mg ratio will reduce the yield of the MG Si. Also, it was noticed that the highest MG-Si yields from the rice husk ash 
were obtained at an RHA:Mg ratio of between 1.4 to 1.8 and a calcination temperature of 800oc. Thus, from the results 
obtained, it can be inferred that these findings correspond with the report of Kim and Choi, [55] and Olawale, [2] who 
report a similar trend in their work. 

 

Figure 11 3D plot showing the effect of the independent variables on the yield of MG-Si: (a) shows 3D plot of Ratio of 
HF: H2SO4 and calcination temperature on MG-Si yield (b) 3D plot of RHA: Mg ratio and calcination temperature on 

MG-Si yield. (c) 3D plot of RHA: Mg ratio and Ratio of HF:H2SO4 on MG-Si yield 

The interaction of the RHA: Mg ratio and HF:H2SO4 ratio on the MG-Si yield is shown in Figure 11c, based on the results 
of the ANOVA model. HF:H2SO4 ratio is observed to have a significant effect on the MG-Si yield. A careful observation of 
Figure 11c showed that MG-Si yields increased gently at the initial ratio of between 1 to 3, and later increased drastically 
from ratio 5 to 9 and attained a maximum MG-Si yield at 1:9 HF:H2SO4. Also, it is observed that an increase in the RHA:Mg 
ratio results in a slight increase in the MG-Si yield but at point 1.6, the yield is observed to drop very slightly, this may 
be because the ratio of HF:H2SO4. Thus, this is slightly different from the work reported by Ali, [54]. 
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3.3.5. Numerical Optimization of (MG-Si) Yield 

The operating parameters of the metallurgical-grade silicon production process were optimized numerically with the 
Design Expert version 13 to obtain optimal parameters and responses. All the operating parameters are in range. The 
optimization aimed at increasing metallurgical-grade silicon (MG-Si) yield and 10 solutions of optimization are 
presented in Table 7. 

Table 7 Optimum value for MG-Si Yield 

Number Calcination 
Temperature 

Ratio of 
HF:H2SO4 

Ratio of 
RHA:Mg 

MG-Si 
Yield 

          
Desirability 

 

1 704.301 6.029 1.265 91.630 1.000 Selected 

2 700.000 1.000 1.500 89.875 1.000  

3 700.000 9.000 1.500 94.125 1.000  

4 800.000 1.000 1.500 94.875 1.000  

5 750.000 9.000 1.000 95.000 1.000  

As indicated in Table 7, the Response Surface Method identified 10 solutions and chose optimal values to minimize the 
economic costs associated with calcination temperature, HF:H2SO4 ratio, and RHA: Mg ratio needed for the extraction 
of MG-Si while maximizing MG-Si yield. The selected optimum conditions resulted in metallurgical-grade silicon (MG-
Si) yield of 91.630wt%, achieved at a calcination temperature of 704.301 °C, HF:H2SO4 ratio of 1:6.029 and ratio of RHA: 
Mg (1:1.265). Thus, the optimization was able to maximize MG-Si yield with the highest desirability of 1.000. 

3.4. Artificial neural network model for Metallurgical-Grade Silicon (MG-Si) Yield 

 

Figure 12 ANN architecture of the metallurgical-grade silicon (MG-Si) process   

The network training process was iterated several times to ensure that the model predictions were consistent. Thus, 
the developed ANN model is a three-layer (i.e., input, hidden and output layers) feed-forward network with 6 neurons 
in the hidden layer as shown in Figure 12. As earlier mentioned, the training algorithm—Levenberg Marquardt was the 
best design for training the neural network as the mean square error (MSE) obtained was 0.0019046 at 1 epoch 
(iterations). 
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Figure 13 ANN performance validation plot 

The reliability of the training process was evaluated using the validation performance plot in Figure 13, which showed 
the variation of the mean square error with the number of epochs for the optimal system. The training network showed 
the lowest validation mean square error (MSE) of about 0.0012 at the 5th epoch iteration. The MSE was very small 
showing that the trained network did not experience any over-fitting problem. If the test curve had increased 
significantly before the validation curve increased, then it could be possible that some over fitting might have occurred. 

 

Figure 14 Artificial Neural Network (ANN) correlation plots for (a) training, (b) Validation, (c) testing and (d) overall 
network processes 

The ANN regression plots that display the network target data (experimental) and the predicted output for training, 
validation, testing, and overall data are presented in Figure 14. The correlations obtained were 0.99191, 0.99028, 
0.99225, and 0.99206 for training, testing, validation, and overall data respectively while the training mean square error 
was 0.0711. The correlation coefficients were close to one (1) in all the data sets indicating that the fit was appropriate 
for all the data set. Furthermore, the fit line fell on the 45-degree line, especially for the validation and the overall data 
sets where the targets were almost equal to the network outputs. Therefore, the ANN output network response was 
adequate in describing the yield of metallurgical-grade silicon (MG-Si) from rice husks ash (RHA). 
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3.4.1. Artificial Neural Network Model, Weights and Biases 

From the results obtained, Equation 12 represents the trained ANN model for predicting (MG-Si) yield as output data 
from input parameters datasets, Calcination temperature (Tc), ratio of HF: H2SO4,(RHF), and ratio of RHA: Mg(RRHA). 
Equation 12 displays the empirical Equation for MG-Si yield prediction in normalized form, which is based on the 
Levenberg–Marquardt method.  

(MG − Si)yield = ∑ [𝑝𝑢𝑟𝑒𝑙𝑖𝑛{∑ ∑ 𝑡𝑎𝑛𝑔𝑠𝑖𝑔 [(𝑇𝑐𝐼𝑊1 + 𝑅𝐻𝐹𝐼𝑊2 + 𝑅𝑅𝐻𝐴𝐼𝑊3) + 𝑏𝑖]
3
𝑗=1

10
𝑖 } × 𝐿𝑊 + 𝑏𝑘1]3

𝑗=1  …… Eq. 12 

Tansig computed the layer's output from the network input, while the transfer function "purelin" correlated the linear 
connection between the input and output variables [56]. Thus, the tansig activation function is mathematically as: 

(tan sig = 2/({1 + exp (-2network)} - 1 )  …………   Eq. 13 

The variables IW1, IW2, and IW3 are input weights attached to the Calcination temperature, ratio of HF: H2SO4, and ratio 
of RHA: Mg, respectively, from the input layer to the hidden layer. Also, LW is a hidden layer weight attached to the 
output layer. The variables bi and bk represent biases associated with the hidden layer neurones and output layer 
neurones, respectively. Table 8 shows the values for the developed ANN model's weights and biases. Using the model, 
weights, and biases of the developed ANN model as inputs, the model predicts the (MG-Si) yield by providing the 
following input variables: Tc, RHF, and RRHA values which then multiply with input layer weights IW1, for Calcination 
temperature, IW2 for ratio of HF: H2SO4 and IW3 for Ratio of RHA:Mg. For instance, the first (upper) neuron in the hidden 
layer can be evaluated as shown in Equation 14, using the values presented in Table 8. 

(MG − Si)yield = ∑ [𝑝𝑢𝑟𝑒𝑙𝑖𝑛{∑ ∑ 𝑡𝑎𝑛𝑔𝑠𝑖𝑔[(𝑇𝑐(−2.19082) + 𝑅𝐻𝐹(1.288478) + 𝑅𝑅𝐻𝐴(−1.78848)) +3
𝑗=1

10
𝑖

3
𝑗=1

2.89079]} × 0.045374 + 0.593866] ………….Eq. 14 

Where IW1= -2.19082, IW2 = 1.288478, IW3= -1.78848, LW=0.045374and b1= 2.89079, and bki= 0.048663, the 
corresponding input logs (TC, RHF and RRHA) values. Also, the network evaluates the other neurons in the hidden layer 
(i.e., i = 2, ...10), based on the mentioned procedure using their corresponding i, j values presented in Table 8. 

Table 8 Weights and biases of the developed ANN model 

 Input weight Hidden layer weight Input layer biases 0utput layer biases 

i IW1 IW2 IW3 LW b1 bki 

1 -2.19082 1.288478 -1.78848 0.045374 2.89079 0.048663 

2 -0.54342 -2.70317 -1.5279 -0.11658 2.051218  

3 0.011998 -0.28292 2.970604 -0.20627 -1.71104  

4 -1.74499 1.993087 -1.46848 -0.27948 0.45569  

5 -1.41878 0.255629 2.763776 0.149288 0.004739  

6 1.710316 0.111428 2.421603 0.429493 0.527694  

7 -2.10497 -0.84214 1.98762 0.041308 -1.6586  

8 2.044602 -0.02538 -2.17912 -0.38127 1.665156  

9 1.554268 1.264937 -2.36923 0.707365 2.282329  

10 1.039663 2.233199 -2.01944 0.676122 -2.97258  

Comparative analysis of the models 

The accuracy of RSM, and ANN models in capturing the nonlinear nature of the metallurgical-grade silicon production 
process was evaluated using graphical and statistical methods. Generally, the two models were effective and near 
accurate in predicting the yield of metallurgical-grade silicon (MG-Si) using the silica extracted from rice husks ash. The 
result showed a close approximation between the experimental value and the RSM, and ANN model predictions which 
resulted in low residual values as shown in Figure 7. However, the ANN model seems to be more appropriate in 
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predicting the percentage of the yield of metallurgical-grade silicon (MG-Si), based on many insignificant values in their 
residuals.  

Table 9 Comparison of RSM and ANN Models 

S/N Process Conditions Percentage yield of MG-Si (%) 

Calcination 
Temperature 

Ratio of 
HF:H2SO4 

Ratio of 
RHA:Mg 

Experimental RSM Model 
Predictions 

ANN Model 
Predictions 

1 750 5 1.5 94 93.60 94.50 

2 750 5 1.5 93 93.60 94.50 

3 750 5 1.5 94 93.60 94.50 

4 800 5 1 95 94.88 85.77 

5 800 9 1.5 98 98.12 89.99 

6 800 5 2 95 95.13 89.46 

7 750 1 1 91 91.25 96.99 

8 750 5 1.5 93 93.60 94.50 

9 700 9 1.5 94 94.13 94.00 

10 750 1 2 92 92.00 96.00 

11 750 5 1.5 94 93.60 94.50 

12 800 1 1.5 95 94.88 93.01 

13 750 9 2 96 95.75 92.00 

14 700 1 1.5 90 89.87 99.15 

15 700 5 2 91 91.13 95.95 

16 700 5 1 90 89.88 91.59 

17 750 9 1 95 95.00 93.02 

 

 

Figure 15a Comparative plots of experimental data and RSM percentage yield of MG-Si 
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Figure 15b Comparative plots of experimental data with (a) RSM, and (b) ANN predicted yield of percentage MG-Si. 

Fig. 15a-b showed the comparing plots, which showed a visual relationship between the experimental value and the 
model predictions made by ANN and RSM. The plots revealed a good fit between all of the suggested models and the 
experimental findings. The majority of the modes' factorial and axial points showed no substantial variance. The three 
models were then compared using statistical error functions. 

3.5. Statistical Error Analysis 

To further explore the model's precision abilities, five statistical error functions were applied to the model predictions 
with the values presented in Table 10. R2, MAE, MSE, RMSE, and AAE which are the coefficient of determination, the 
mean absolute error, the mean square error, the root mean square error, and the average absolute error, respectively 
were evaluated for each model. Low values of these error functions depicted good predictive ability of the model. The 
result indicated negligible error values for all the models. In addition to these, R2 was also evaluated for the models. 
Adepoju. [57] Asserted that the value of R2 must not be less than 0.8 for reliable correlation involving predicted and 
experimental values. Thus, the result obtained was satisfactorily high for all the models, validating their importance. 
The higher the values of the R2 the better the model predictions. 

Furthermore, the RMSE and MSE square root were evaluated and the values obtained for MSE and RMSE were low, 
confirming that the models used are within range. AAE and MAE calculate a model’s precision and accuracy as displayed 
in Tables 10. The model of ANN was able to predict metallurgical-grade silicon production more closely based on 
statistical index results. In general, the statistical results showed that the RSM was the least effective model in the 
prediction accuracy of the yield of the metallurgical-grade silicon (MG-Si) process. In contrast, the ANN model was 
marginally superior to the RSM model. The findings in the present study were in agreement with the works of   Iyen et 
al. [1] and Larbi, [5], who all reported similar trends. 

Table 10 ANN and RSM prediction model error analysis for MG-Si Yield 

Error analysis indicators ANN RSM 

R2 0.9841 0.9808 

MAE 0.0011 0.0012 

MSE 0.0710 0.0012 

RMSE 0.2665 0.0343 

AAE <0.0001 <0.0001 

4. Conclusion 

The outcomes of this research hold profound implications for sustainable silicon production, offering a pathway toward 
leveraging agricultural waste as a valuable resource while concurrently addressing environmental concerns associated 
with traditional extraction methods. Moreover, the insights gained from this study can inform policy initiatives and 
industrial practices aimed at fostering a circular economy by promoting the efficient utilization of agricultural by-
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products. Also, the findings of this research hold significant implications for both industry and sustainability. Moreover, 
the development of optimized extraction processes aligns with the broader goal of reducing the environmental footprint 
of industrial activities and fostering sustainable practices. 
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