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Abstract 

The advent of sixth-generation (6G) wireless networks promises unprecedented advancements in speed, latency, and 
connectivity, enabling futuristic applications such as holographic communication, intelligent edge computing, and 
ubiquitous AI-driven automation. However, these innovations introduce complex security challenges that must be 
addressed to ensure the resilience and reliability of 6G networks. This survey paper provides a comprehensive overview 
of emerging security threats in 6G, including quantum attacks, AI-driven cyber threats, privacy vulnerabilities, and 
challenges associated with terahertz (THz) communication and massive-scale device connectivity. This paper analyzes 
analyze existing security frameworks from 5G and discuss their limitations in the 6G era. Furthermore, it explores 
cutting-edge security solutions such as quantum cryptography, blockchain for decentralized trust, AI-powered threat 
detection, and secure-by-design architectures. By synthesizing current research trends and future directions, this paper 
aims to guide researchers, policymakers, and industry stakeholders in developing robust security mechanisms for next-
generation wireless networks.  
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1. Introduction

The rapid evolution of wireless communication technologies has led to the emergence of sixth-generation networks, 
expected to revolutionize connectivity with ultra-high data rates, near-zero latency, and intelligent, autonomous 
systems [1]-[5]. As shown in Figure 1, the 6G network aims to integrate advanced technologies such as artificial 
intelligence (AI), blockchain, quantum communication, and edge computing, enabling applications like holographic 
telepresence, smart cities, digital twins, and space-air-ground-sea integrated networks [6], [7]. While these 
advancements promise unprecedented societal and industrial transformations, they also introduce new and complex 
security challenges. 

The transition from 5G to 6G brings about an expanded attack surface, driven by the massive deployment of Internet of 
Things (IoT) devices, the use of terahertz frequency bands, AI-powered network management, and decentralized 
architectures [8]-[10]. Traditional security mechanisms designed for 5G networks may be insufficient to address threats 
such as quantum attacks, AI-generated cyber threats, adversarial machine learning, and privacy breaches in ultra-dense 
connectivity environments [11]-[13]. Moreover, the integration of intelligent and autonomous decision-making systems 
in 6G networks raises concerns about security vulnerabilities in AI models, trust management in decentralized 
networks, and data integrity across interconnected systems. This survey paper provides a comprehensive analysis of 
the emerging security challenges in 6G networks, highlighting key vulnerabilities and potential attack vectors. It 
explores existing security mechanisms from previous generations and assess their applicability to the 6G era. 
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Figure 1 The 6G network environment  

Furthermore, it discusses state-of-the-art security solutions, including quantum cryptography, AI-driven cybersecurity, 
blockchain-based trust frameworks, and privacy-enhancing technologies. By synthesizing current research trends and 
identifying future directions, this paper aims to provide valuable insights for researchers, industry stakeholders, and 
policymakers working toward the development of secure and resilient 6G communication systems. 

2. 6G network architecture 

The 6G network architecture represents a major shift from previous generations, incorporating advanced technologies 
to provide seamless, intelligent, and secure communication [14], [15]. It builds on a multi-layered infrastructure that 
extends beyond traditional terrestrial networks, integrating satellite, aerial, and underwater communication systems 
[16]-[17], as shown in Figure 2. This holistic approach ensures global connectivity, even in the most remote areas, and 
supports ultra-high data rates, near-instantaneous latency [20], and intelligent network automation. 

One of the defining aspects of 6G is its reliance on artificial intelligence (AI) to manage and optimize network operations 
[21], [22]. Unlike previous generations, which required human intervention for most network adjustments, 6G will be 
largely autonomous. AI-driven self-optimizing networks will predict traffic patterns, allocate resources dynamically, 
and detect faults before they cause service disruptions [23]-[25]. These intelligent systems will also play a critical role 
in security, using deep learning algorithms to identify and neutralize cyber threats in real-time. AI-powered cognitive 
radio networks will further enhance spectral efficiency [26] by enabling dynamic spectrum allocation, allowing devices 
to communicate more efficiently without interference. 

In terms of communication technologies, 6G will introduce terahertz (THz) communication, which operates in the 0.1–
10 THz frequency range [27], [28]. This will enable data transmission at speeds in the terabits per second, allowing for 
ultra-fast wireless communication that supports bandwidth-intensive applications like holographic telepresence, 
extended reality (XR), and high-resolution 3D mapping. However, THz communication comes with challenges, such as 
limited propagation distance and vulnerability to atmospheric absorption [29]. To overcome these limitations, 
intelligent reflecting surfaces (IRS) will be deployed, using reconfigurable metamaterials to dynamically control 
wireless signals, enhance coverage, and improve energy efficiency. 
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Figure 2 The 6G network technologies and applications 

Another crucial component of 6G is integrated sensing and communication (ISAC) as illustrated in Figure 3. Unlike 
previous networks that primarily focused on data transmission, 6G will merge wireless communication with 
environmental sensing [30], enabling applications like gesture recognition, autonomous vehicle navigation, and smart 
infrastructure monitoring. This means that 6G networks will not only transmit data but also perceive and interpret their 
surroundings, opening new possibilities for human-machine interaction and real-time decision-making [31]-[34]. 
Optical wireless communication (OWC), including visible light communication (VLC) and free-space optical (FSO) 
communication, will complement radio frequency (RF) systems, offering high-speed data transmission in environments 
where traditional signals may be obstructed. 

 

Figure 3 Integrated sensing and communication 

Security in 6G networks will be fundamentally different from previous generations, incorporating decentralized and 
quantum-safe approaches. As shown in Figure 4, blockchain technology [35] will be widely used to enhance trust 
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management, ensuring secure identity verification and transaction processing without reliance on centralized 
authorities. Additionally, quantum communication and post-quantum cryptography will provide next-generation 
encryption techniques that are resistant to quantum computing attacks [36]-[40]. Traditional security mechanisms will 
no longer be sufficient, as quantum computers will have the ability to break existing encryption algorithms. Therefore, 
6G networks will rely on quantum key distribution (QKD) to secure transmissions and prevent eavesdropping. 

 

Figure 4 Enabling technologies in 6G 

To support ultra-reliable and low-latency communication (URLLC), 6G will integrate edge and fog computing, 
processing data closer to the source rather than relying on distant cloud servers [41]-[44]. This will reduce latency and 
enhance security, making real-time applications such as remote surgery, autonomous vehicles [45], and industrial 
automation more efficient and reliable. The tactile internet will also emerge as a major innovation, enabling real-time 
haptic feedback for applications like remote-controlled robotics and virtual reality simulations. 

The multi-layered infrastructure of 6G will extend beyond traditional terrestrial networks. As shown in Figure 2, 
satellites in Low Earth Orbit (LEO) and Geostationary Orbit (GEO) will provide global coverage, ensuring connectivity 
even in remote and underserved areas [46]-[49]. These satellite networks will communicate with aerial platforms such 
as high-altitude balloons and drones, which will serve as mobile base stations to extend coverage dynamically. The 
underwater communication layer will further expand connectivity to maritime and deep-sea applications [50], using 
optical and acoustic communication to support underwater IoT devices and ocean monitoring systems. 

By integrating AI-driven automation, THz communication, blockchain-based security, quantum technologies, and multi-
layered connectivity, the 6G network architecture will revolutionize the way we interact with the digital world [51]-
[55]. It will not only enhance traditional mobile communication but also enable futuristic applications such as digital 
twins, holographic communication, and immersive extended reality experiences. These advancements will pave the way 
for a truly intelligent and interconnected society, where communication is instantaneous, secure, and seamlessly 
integrated into everyday life. 

3. Security issues in 6G 

The evolution from 5G to 6G introduces a new era of hyper-connectivity, driven by artificial intelligence, quantum 
computing, blockchain, and terahertz communication [56], [57]. While these advancements promise revolutionary 
applications, they also bring unprecedented security challenges. Unlike previous generations, 6G will not only connect 
humans but also integrate autonomous machines, smart environments, and space-based communication, significantly 
expanding the attack surface [58]. Ensuring the security, privacy, and trustworthiness of 6G networks will be a crucial 
challenge. 
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3.1. Expanded attack surface and new threat vectors 

With 6G networks supporting massive machine-type communication (mMTC), including billions of IoT and edge 
devices, the number of potential attack points increases exponentially [59], [60] as evidenced in Figure 5. The 
integration of space, air, ground, and underwater communication layers further complicates security management [61]. 
This expanded attack surface creates multiple entry points for cyber threats such as Distributed Denial of Service 
(DDoS) attacks, data breaches, and AI-driven cyber threats. 

 

Figure 5 Threat landscape in 6G 

6G will also rely heavily on AI for decision-making, which introduces vulnerabilities in AI models themselves [62]. 
Adversarial machine learning attacks, where attackers manipulate input data to deceive AI algorithms, can lead to 
incorrect network decisions, opening new security risks [63]-[65]. Attackers may target AI-driven network automation 
systems to cause disruptions, data poisoning, or biased decision-making. 

3.2. Threats from quantum computing 

One of the most significant challenges in 6G security is the rise of quantum computing, which threatens traditional 
cryptographic mechanisms [66]-[68]. Current encryption techniques, such as RSA and ECC (Elliptic Curve 
Cryptography), rely on the difficulty of mathematical problems like prime factorization, which quantum computers can 
solve exponentially faster using Shor’s algorithm. This makes existing encryption techniques obsolete, leaving 6G 
networks vulnerable to decryption and data breaches. 

To counteract quantum threats, 6G must adopt post-quantum cryptography (PQC) and quantum key distribution [69]. 
PQC involves cryptographic algorithms designed to withstand quantum attacks, while QKD leverages quantum 
mechanics principles to create theoretically unbreakable encryption keys [70]. However, the integration of these 
quantum-safe techniques will require significant infrastructural changes and computing resources. 

3.3. Privacy and data security concerns 

6G networks will facilitate ultra-high-speed data exchange across smart cities, healthcare, autonomous vehicles, and 
industrial automation, raising critical privacy concerns [71]-[74]. The pervasive nature of 6G means vast amounts of 
sensitive data will be continuously collected, processed, and transmitted, making privacy protection more complex. One 
major risk is data exposure through edge computing and fog computing. Since 6G will rely on edge nodes to process 
data closer to users, unauthorized access [75] to edge devices could lead to massive data breaches. Edge devices may 
lack the computational resources to run advanced security mechanisms, making them attractive targets for 
cybercriminals [76]. 
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Homomorphic encryption (shown in Figure 6) and differential privacy will be essential in addressing these privacy 
risks. Homomorphic encryption allows computations on encrypted data without decryption, ensuring privacy 
preservation in cloud and edge computing environments [77]-[80].  

 

Figure 6 Homomorphic encryption 

Differential privacy techniques help minimize the risk of identifying individuals from aggregated datasets, making it 
useful for applications like smart healthcare and personalized AI services. 

3.4. AI-driven cyber threats 

As shown in Figure 7, AI has become a core component of 6G security systems. However, it can also be exploited by 
cybercriminals. AI-powered attacks will enable sophisticated cyber threats such as automated phishing, deepfake-based 
social engineering, and AI-generated malware [81]-[84]. Attackers may also deploy Generative Adversarial Networks 
(GANs) to manipulate security models, bypass authentication mechanisms [85], and create deceptive attacks that 
traditional security systems cannot detect. 

 

Figure 7 AI in 6G networks 

Furthermore, AI models used in 6G security frameworks are susceptible to model inversion attacks, where attackers 
reconstruct original input data from AI model outputs [86]-[89]. This can lead to severe privacy violations, especially in 
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applications involving biometric authentication or personal health data. Ensuring AI robustness in 6G requires 
adversarial training, secure federated learning, and AI explainability mechanisms to detect and prevent manipulative 
attacks. 

3.5. Blockchain security challenges 

Blockchain technology is expected to play a key role in 6G security, particularly in trust management, identity 
authentication [90], and secure transactions. This is well illustrated in Figure 8. However, blockchain itself is not 
immune to security threats. The increasing computational demand for blockchain-based security solutions raises 
concerns about scalability and energy efficiency in 6G networks [91], [92]. Blockchain-based smart contracts, which 
automate transactions and agreements, can introduce vulnerabilities if not properly secured [93], [94]. Reentrancy 
attacks and logic flaws in smart contracts can be exploited to manipulate transactions or drain cryptocurrency wallets. 
Additionally, consensus algorithm attacks, such as 51% attacks, can compromise blockchain networks, leading to 
fraudulent data manipulation. 

 

Figure 8 Blockchain use cases in 6G networks 

To address these concerns, lightweight blockchain solutions and zero-knowledge proofs (ZKPs) can be employed to 
enhance security while minimizing computational overhead [95], [96]. ZKPs allow verification of transactions without 
revealing sensitive information, ensuring privacy and security in decentralized applications. 

3.6. Secure device authentication and trust management 

With billions of interconnected devices in 6G, ensuring secure authentication and trust management becomes a critical 
challenge [97]-[100]. Traditional centralized authentication systems may not scale efficiently, leading to increased 
vulnerability to identity spoofing, credential theft, and unauthorized access. One of the major security risks is device 
impersonation attacks, where malicious entities disguise themselves as legitimate devices to gain network access [101]. 
Such attacks can be particularly dangerous in applications like autonomous driving, where false sensor data could lead 
to catastrophic failures. 

Decentralized identity management based on blockchain can mitigate these risks by eliminating single points of failure, 
as illustrated in Figure 9. Self-sovereign identity (SSI) models, where users control their own digital identities without 
relying on centralized authorities, can enhance security while maintaining privacy [102], [103].  
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Figure 9 Blockchain-based identity management 

Additionally, AI-driven behavioral authentication techniques can provide continuous user authentication based on 
behavioral patterns rather than static credentials. 

3.7. Threats to terahertz (THz) communication 

6G will utilize terahertz frequency bands to achieve ultra-high-speed wireless communication. However, THz signals 
are highly susceptible to eavesdropping, jamming, and signal interception due to their propagation characteristics 
[104],[ 105]. Unlike traditional radio waves, THz waves have limited penetration through obstacles, making them easy 
targets for localized interception attacks. 

To enhance THz communication security, physical layer security (PLS) techniques such as beamforming, directional 
modulation, and cooperative jamming can be employed. These methods help protect THz signals from unauthorized 
interception [106] and ensure secure data transmission. 

3.8. Supply chain and hardware security risks 

The complexity of 6G networks introduces significant supply chain security risks. Many network components, including 
routers, base stations, and AI chips, are manufactured by multiple vendors, increasing the likelihood of hardware 
backdoors, firmware vulnerabilities, and counterfeit devices entering the supply chain [107]. Figure 10 gives an 
elaboration of typical supply chain attacks. 



World Journal of Advanced Research and Reviews, 2025, 25(03), 2305-2334 

2313 

 

Figure 10 Supply chain risks 

Hardware Trojans and malicious firmware injections pose serious threats to 6G security, as compromised components 
can be used for surveillance, data exfiltration, or network disruption [108], [109]. To mitigate these risks, 6G must adopt 
hardware attestation mechanisms, trusted execution environments (TEEs), and blockchain-based supply chain tracking 
to ensure the integrity of network infrastructure components. 

It is evident that security in 6G networks will be more complex than in previous generations due to the integration of 
AI, quantum computing, blockchain, and THz communication. The vast attack surface, coupled with AI-driven cyber 
threats and quantum vulnerabilities, necessitates a multi-layered security approach. Quantum-safe cryptography, AI-
based intrusion detection, decentralized trust management, and hardware attestation will play a crucial role in securing 
6G networks [110], [111]. Addressing these challenges proactively is essential to ensure that 6G can deliver secure, 
reliable, and privacy-preserving communication in the hyper-connected future. 

4. Security solutions in 6G 

The transition to 6G networks introduces new technologies and applications that demand robust, adaptive, and future-
proof security solutions. Traditional security approaches will not be sufficient due to the expanded attack surface, 
quantum computing threats, AI-driven cyberattacks, and the integration of space-air-ground-underwater networks 
[112]. 6G security solutions must incorporate advanced cryptographic techniques, AI-based security frameworks, 
blockchain trust mechanisms, and physical layer security to ensure end-to-end protection. 

4.1. Quantum-safe cryptography and secure key management 

One of the most pressing concerns in 6G security is the advent of quantum computing, which threatens traditional 
encryption methods [113], [114]. Classical encryption schemes such as RSA and ECC (Elliptic Curve Cryptography) rely 
on mathematical problems that quantum computers can solve efficiently using algorithms like Shor’s Algorithm, making 
current security protocols obsolete. To counteract quantum threats, 6G will employ the following techniques. 

4.1.1. Post-Quantum Cryptography (PQC) 

PQC involves cryptographic algorithms that are resistant to quantum attacks. These algorithms are based on 
mathematical problems that remain difficult even for quantum computers [115].  PQC refers to cryptographic 
algorithms designed to withstand attacks from quantum computers, which can break traditional encryption schemes 
like RSA and ECC using algorithms such as Shor’s algorithm [116], [117]. Unlike classical cryptography, PQC relies on 
mathematical problems that remain difficult even for quantum computers, such as lattice-based, hash-based, code-
based, and multivariate polynomial-based cryptography illustrated in Figure 11. These algorithms ensure secure 
encryption, digital signatures, and key exchanges in a post-quantum era. Since quantum computers pose a serious threat 
to data confidentiality and integrity [118], PQC is essential for future-proofing security in 6G networks, IoT devices, and 
cloud computing environments. Prominent PQC techniques include: 
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Figure 11 post-quantum cryptography 

• Lattice-based cryptography: Uses high-dimensional lattices to create encryption keys that are resistant to 
quantum decryption [119]. 

• Hash-based cryptography: Relies on cryptographic hash functions for secure digital signatures [120]. 

• Code-based cryptography: Based on error-correcting codes to ensure secure key exchanges [121]. 

• Multivariate polynomial cryptography: Uses complex polynomial equations that quantum computers cannot 
efficiently solve [122]. 

4.1.2. Quantum Key Distribution (QKD) 

QKD is a revolutionary cryptographic method that enables two parties to generate and exchange encryption keys [123] 
securely using quantum mechanics principles. As shown in Figure 12, QKD is a secure communication method that uses 
the principles of quantum mechanics to generate and exchange encryption keys between two parties, ensuring 
confidentiality even against quantum computer attacks [124]-[127]. Unlike classical cryptographic key exchange 
methods, QKD relies on quantum states—typically photons—encoded in different quantum bases.  

 

Figure 12 Quantum key distribution protocol 

If an eavesdropper attempts to intercept the transmission [128], quantum mechanics laws (such as the Heisenberg 
Uncertainty Principle and quantum no-cloning theorem) ensure that any intrusion alters the quantum state, alerting 
the communicating parties to a security breach. Protocols like BB84 and E91 enable secure key distribution, making 
QKD a crucial technology for achieving quantum-safe encryption in 6G networks and beyond. If an eavesdropper 
attempts to intercept the key exchange, quantum mechanics laws will detect their presence, ensuring secure 
communication. 

BB84 Protocol: One of the most widely used QKD protocols [129], where key bits are encoded in photon states. 



World Journal of Advanced Research and Reviews, 2025, 25(03), 2305-2334 

2315 

E91 Protocol: Uses quantum entanglement for secure key generation [130]. 

4.1.3. Lightweight cryptography for IoT and edge devices 

Since 6G will support a massive number of IoT and edge devices with limited computing power, lightweight 
cryptographic algorithms must be deployed [131], [132]. Lightweight cryptography is a specialized form of encryption 
designed for IoT and edge devices with limited processing power, memory, and energy resources [133]. Traditional 
cryptographic algorithms, such as AES and RSA, are computationally intensive and unsuitable for resource-constrained 
environments [134]-[138]. Lightweight cryptographic techniques, such as PRESENT, HIGHT, Simon & Speck, and 
lightweight ECC, provide strong security while minimizing computational overhead and power consumption. These 
algorithms ensure secure data transmission, authentication, and integrity for billions of IoT devices in 6G networks, 
protecting them from cyber threats like data breaches and unauthorized access while maintaining efficiency in real-
time operations. These lightweight algorithms include: 

PRESENT Cipher: A lightweight block cipher suitable for IoT encryption [139]. 

HIGHT Cipher: Designed for high-speed and low-power applications [140]. 

Elliptic Curve Cryptography (ECC) with optimized parameters for constrained devices. 

4.2. AI-Driven security frameworks 

As evidenced in Figure 13, artificial intelligence will play a pivotal role in 6G security by enabling real-time threat 
detection, adaptive security policies, and automated intrusion response [141]. AI-driven security frameworks leverage 
artificial intelligence and machine learning to detect, prevent, and respond to cyber threats in real time [142], [143]. 
These frameworks use deep learning, neural networks, and anomaly detection to analyze vast amounts of network 
traffic, identify suspicious patterns, and adapt security measures dynamically.  

 

Figure 13 AI-driven security framework 

AI enhances intrusion detection and prevention systems (IDPS), automates threat intelligence, and enables predictive 
analytics to mitigate cyberattacks before they occur. Additionally, techniques like federated learning ensure privacy-
preserving AI training across decentralized 6G networks [144], [145]. While AI strengthens cybersecurity defenses, it 
also introduces risks such as adversarial attacks and data poisoning, necessitating robust AI security strategies to 
maintain trust and reliability in 6G networks. However, AI itself introduces new risks, such as adversarial attacks and 
model poisoning. 

4.2.1. AI-Powered Intrusion Detection and Prevention Systems (IDPS) 

IDPS enhance network security by using artificial intelligence and machine learning to detect, analyze, and mitigate 
cyber threats in real time [146]. Unlike traditional IDPS, which rely on static rule-based detection, AI-driven IDPS 
continuously learn from network traffic patterns (as illustrated in Figure 14), enabling them to identify zero-day attacks, 
advanced persistent threats (APTs), and sophisticated malware [147], [148].  
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Figure 14 AI-based intrusion detection system 

Deep learning models, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), help 
detect anomalies, while reinforcement learning allows adaptive threat response. AI-powered IDPS can also automate 
threat mitigation by blocking malicious activities instantly, reducing the need for manual intervention [149]. In 6G 
networks, where vast and dynamic infrastructures increase attack surfaces, AI-driven IDPS are essential for real-time, 
scalable, and intelligent cybersecurity defenses. 

4.2.2. Adversarial machine learning defense 

This involves techniques to protect AI models from malicious attacks that manipulate input data to deceive or degrade 
model performance [150]. As shown in Figure 15, attackers can craft adversarial examples—subtly altered inputs that 
cause AI models to make incorrect predictions—posing a serious threat to AI-driven security in 6G networks [151]. 
Defense strategies include adversarial training, where models are trained on both normal and adversarial examples to 
improve resilience, and gradient masking, which obscures the model’s decision-making process to make it harder for 
attackers to exploit vulnerabilities [152], [153].  

 

Figure 15 Adversarial machine learning 

Other methods, such as defensive distillation (reducing model sensitivity to small input changes) and robust feature 
extraction using explainable AI (XAI), help mitigate adversarial risks. Ensuring AI security in 6G is critical, as AI-driven 
cybersecurity, network management, and autonomous decision-making will be foundational to next-generation 
communication systems. 

4.3. Blockchain and decentralized security mechanisms 

These mechanisms enhance trust, transparency, and security in 6G networks by eliminating reliance on centralized 
authorities, which are vulnerable to data breaches and single points of failure [154]. Blockchain ensures tamper-proof 
data integrity through its immutable ledger, while smart contracts automate secure transactions and access control 
without intermediaries [155], [156]. Decentralized Identity Management (DID) enables users to control their digital 
identities, reducing risks associated with centralized authentication systems. Additionally, Zero-Knowledge Proofs 
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(ZKP) allow authentication without exposing sensitive information [157]. By leveraging distributed consensus and 
cryptographic hashing, blockchain enhances secure data sharing, fraud prevention, and supply chain security, making 
it a critical component in securing 6G applications, from IoT devices to financial transactions [158].  6G will rely on 
blockchain and decentralized identity management to enhance security and trustworthiness. Unlike centralized security 
models, blockchain offers immutable, tamper-resistant security for transactions, identity verification, and secure 
communication. 

4.3.1. Blockchain-based authentication 

Blockchain-based authentication enhances security by eliminating centralized identity verification systems, which are 
prone to data breaches and single points of failure [159], as shown in Figure 16. Instead of relying on traditional 
username-password mechanisms, blockchain leverages decentralized identity management, where user credentials are 
securely stored on a distributed ledger [160].  

This ensures that authentication processes are tamper-resistant, transparent, and verifiable without exposing sensitive 
user data. Techniques such as Zero-Knowledge Proofs enable users to prove their identity without revealing private 
information, enhancing privacy [161], [162]. Additionally, smart contracts automate access control, ensuring that only 
authorized entities can access specific resources. In 6G networks, blockchain-based authentication is crucial for securing 
IoT devices, edge computing environments, and decentralized applications (dApps), providing a scalable and trustless 
security framework. 

 

Figure 16 Blockchain-based authentication 

4.3.2. Smart contract security 

Smart contract security is crucial for ensuring the reliability and integrity of self-executing contracts deployed on 
blockchain networks [163]. Since smart contracts automatically enforce agreements without intermediaries, 
vulnerabilities such as reentrancy attacks, integer overflows, logic flaws, and unauthorized access can be exploited by 
attackers to manipulate transactions or drain funds [164]. To enhance security, formal verification techniques 
mathematically prove contract correctness before deployment, while secure coding practices, such as implementing 
checks-effects-interactions patterns, prevent vulnerabilities like reentrancy. Additionally, multi-signature 
authentication [165] ensures that critical contract actions require multiple approvals, reducing the risk of unauthorized 
changes. In 6G networks, where blockchain-powered applications play a key role in decentralized security, robust smart 
contract security is essential for protecting financial transactions, IoT operations, and automated service agreements. 
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4.3.3. Secure data sharing with blockchain 

Secure data sharing with blockchain ensures privacy, integrity, and tamper-proof access control by leveraging 
decentralized, cryptographically secured ledgers [166]. Unlike traditional centralized databases, where data breaches 
and unauthorized modifications are common, blockchain enables immutable record-keeping and transparent access 
management through smart contracts [167]-[168]. Encryption techniques, such as homomorphic encryption and Zero-
Knowledge Proofs, allow data to be shared without exposing sensitive information. Additionally, InterPlanetary File 
System (IPFS) + blockchain integration enables secure decentralized storage, ensuring scalability for large data sets in 
6G applications [170]. By providing fine-grained access control and auditability, blockchain-based secure data sharing 
is vital for healthcare, finance, IoT ecosystems, and AI-driven analytics in next-generation networks. 

4.4. Physical Layer Security (PLS) in 6G 

Given the vulnerabilities of terahertz communication and free-space optical (FSO) networks, 6G must incorporate 
physical layer security techniques (illustrated in Figure 17) to prevent signal interception and jamming [171]. The PLS 
in 6G enhances data confidentiality and integrity by leveraging the physical characteristics of wireless communication 
channels to prevent eavesdropping and jamming attacks [172]-[174]. Unlike traditional cryptographic methods, PLS 
secures data at the signal level using techniques such as secure beamforming, where directional signal transmission 
minimizes interception, and artificial noise injection, which disrupts unauthorized receivers while maintaining 
communication for legitimate users.  

 

Figure 17 Physical layer security in 6G 

Additionally, physical unclonable functions provide unique, hardware-based security for device authentication [175], 
preventing cloning attacks. Cooperative jamming further enhances PLS by introducing interference signals that obscure 
real transmissions from adversaries. Given 6G’s reliance on terahertz (THz) and free-space optical (FSO) 
communication, PLS is essential for mitigating physical-layer threats and ensuring ultra-secure, high-speed wireless 
networks. 

4.4.1. Secure beamforming and directional modulation 

These are advanced physical layer security techniques in 6G that protect wireless communication from eavesdropping 
and signal interception. Secure beamforming focuses radio signals toward intended receivers while minimizing signal 
leakage in unintended directions, reducing the risk of unauthorized access [176], [177]. Directional modulation (DM) 
enhances security by embedding encryption directly into the signal’s phase, amplitude, or frequency, ensuring that only 
users in a specific spatial direction can correctly decode the transmitted data [178]. These techniques are particularly 
vital for terahertz (THz) and millimeter-wave (mmWave) communications, where highly directional transmission is 
required. By dynamically adapting transmission patterns, secure beamforming and directional modulation prevent 
adversaries from intercepting or manipulating wireless signals, making them crucial for 6G network security.. 
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4.4.2. Cooperative jamming 

This is a physical layer security technique that enhances wireless communication security by deliberately introducing 
interference to prevent eavesdroppers from decoding transmitted signals [179]. Unlike traditional jamming, which 
disrupts all communications, cooperative jamming selectively injects artificial noise or interference in a way that 
degrades the signal quality [180] only for unauthorized receivers while ensuring legitimate users can still decode the 
intended message. This is achieved using relay nodes, friendly jammers, and intelligent reflecting surfaces to 
strategically direct jamming signals. In terahertz and millimeter-wave (mmWave) communications, where signals are 
more susceptible to interception [181], cooperative jamming plays a crucial role in securing confidential transmissions 
against passive and active eavesdropping attacks in 6G networks. 

4.4.3. Secure device authentication with Physical Unclonable Functions (PUFs) 

This leverages the inherent, unique physical variations in a device’s hardware to generate unclonable cryptographic 
keys, ensuring robust security in 6G networks [182]. Unlike traditional authentication methods that rely on stored 
credentials, PUF-based authentication derives unique responses from the microscopic variations in circuit 
manufacturing, making each device inherently distinct and resistant to cloning or tampering [183, [184]. When a device 
undergoes authentication, it is challenged with an input signal, and its unique hardware characteristics produce a 
response that serves as a cryptographic key. Since PUFs are resistant to physical attacks and cannot be duplicated, they 
provide lightweight [185], tamper-proof authentication for IoT, edge devices, and autonomous systems in 6G, ensuring 
secure network access and preventing identity spoofing. 

4.5. Secure edge and fog computing in 6G 

These technologies ensure low-latency, decentralized data processing while maintaining strong security and privacy 
protections. Unlike traditional cloud computing, which centralizes data processing, edge and fog computing bring 
computation closer to the data source, reducing latency and bandwidth usage [186]. However, this distributed 
architecture introduces security challenges, including data breaches, unauthorized access, and cyberattacks on edge 
nodes [187]. To mitigate these risks, lightweight encryption, blockchain-based access control, and AI-driven threat 
detection are employed. Homomorphic encryption allows secure data processing without decryption, while trusted 
execution environments (TEEs) protect sensitive computations from tampering [188], [189]. By integrating zero-trust 
security models and secure multi-party computation (SMPC), 6G networks can ensure resilient, privacy-preserving edge 
and fog computing for IoT, autonomous systems, and real-time AI applications. Edge and fog computing will be integral 
to 6G, but they introduce security challenges due to decentralized data processing. 

4.5.1. Secure Multi-Party Computation (SMPC) 

This is a cryptographic technique that enables multiple parties to collaboratively compute a function over their private 
inputs without revealing those inputs to one another. This ensures data confidentiality while allowing secure data 
analysis and decision-making, making it essential for privacy-preserving applications [190] in 6G networks. SMPC relies 
on protocols like secret sharing, homomorphic encryption, and oblivious transfer, ensuring that even if some 
participants are compromised, the underlying data remains protected [191], [192]. It is particularly useful for secure 
federated learning, encrypted data analytics, and confidential transactions, where sensitive information, such as 
medical records or financial data, must be processed without exposing individual details. By enabling distributed trust 
and privacy-preserving computations, SMPC strengthens security in decentralized 6G applications, including IoT, AI, 
and cloud-edge environments. 

4.5.2. Homomorphic encryption for secure computation 

Homomorphic encryption (HE) is an advanced cryptographic technique that allows computations to be performed on 
encrypted data without needing decryption, ensuring privacy and security throughout the processing [193], [194]. This 
enables secure computations in cloud computing, edge computing, and AI-driven analytics within 6G networks, where 
sensitive data must be processed without exposing it to untrusted entities. HE supports operations like addition and 
multiplication on ciphertexts, producing an encrypted result that, when decrypted, matches the outcome of 
computations performed on plaintext data. Variants such as Partially, Somewhat, and Fully Homomorphic Encryption 
(FHE) provide different levels of computational flexibility, with FHE enabling unlimited operations on encrypted data. 
By preserving data confidentiality even during processing [195], homomorphic encryption is crucial for privacy-
preserving AI, secure federated learning, and encrypted search in 6G applications. 
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4.5.3. Trusted Execution Environments (TEEs) 

These are secure, isolated environments within a device’s processor that enable confidential computing by protecting 
sensitive data and computations from unauthorized access, even if the system is compromised [196]. TEEs provide 
hardware-based security, ensuring that data remains encrypted and protected from malware, insider threats, and 
external attackers [197]. They support secure key management, encrypted processing, and remote attestation, allowing 
only trusted applications to access critical data [198]. In 6G networks, TEEs are essential for secure edge computing, 
IoT authentication, and privacy-preserving AI, where sensitive computations must be performed in untrusted 
environments. By enabling end-to-end security and integrity, TEEs enhance trust in decentralized and cloud-edge 
architectures, ensuring robust protection for next-generation applications. 

4.6. AI-Driven threat intelligence and automated incident response 

These activities enhance cybersecurity by using machine learning and big data analytics to detect, analyze, and mitigate 
cyber threats in real time. AI continuously monitors network traffic, identifying anomalies, zero-day attacks, and 
advanced persistent threats (APTs) through behavioral analysis and predictive modeling [199]. Threat intelligence 
platforms leverage natural language processing (NLP) and deep learning to analyze vast amounts of threat data from 
multiple sources, providing proactive defense measures [200]. Once a threat is detected, automated incident response 
systems initiate countermeasures, such as isolating compromised devices, blocking malicious traffic, and deploying 
security patches without human intervention. In 6G networks, where massive IoT and autonomous systems increase 
the attack surface [201], AI-driven threat intelligence ensures rapid detection, real-time mitigation, and adaptive 
security, reducing response time and minimizing damage. 

In a nutshell, security in 6G networks must be adaptive, intelligent, and quantum-safe. Advanced cryptographic 
techniques, AI-driven security frameworks, blockchain-based trust mechanisms, and physical layer security will be 
crucial in safeguarding 6G networks. With the rise of quantum computing, AI-powered cyberattacks, and the 
proliferation of IoT and edge devices, these solutions will ensure end-to-end protection in the hyper-connected world 
of 6G. 

5. Research gaps 

The evolution of 6G networks introduces numerous technological advancements, including terahertz (THz) 
communications, AI-driven network management, quantum computing, and decentralized architectures. However, 
these innovations also present significant security challenges that require further research. Several key research gaps 
in 6G security remain unresolved, demanding innovative solutions for robust protection against emerging cyber threats. 

5.1. Lack of standardized security frameworks 

Despite the extensive research on 5G security, there is no universally accepted security framework for 6G. As the 
network integrates AI, blockchain, quantum cryptography, and edge computing, a unified security architecture is 
necessary to define authentication mechanisms, encryption standards, and threat mitigation strategies. According to 
[202], the lack of standardized security frameworks in 6G poses significant risks, as the next-generation network will 
introduce advanced technologies like AI-driven automation, terahertz communication, and decentralized architectures. 
Without a unified security framework, there will be inconsistencies in addressing vulnerabilities, making networks 
more susceptible to cyber threats, data breaches, and attacks on critical infrastructure [203], [204]. The absence of 
global standards could also lead to interoperability challenges, hindering secure communication across different 
regions and service providers. Establishing robust, standardized security measures early in 6G development is crucial 
to ensuring trust, privacy, and resilience in future networks [205]. Research is needed to develop adaptive, scalable, and 
interoperable security frameworks that align with the dynamic nature of 6G. 

5.2. Vulnerabilities in AI-driven security mechanisms 

6G networks heavily rely on artificial intelligence and machine learning for autonomous network management, security 
threat detection, and optimization [206]. AI-driven security mechanisms in 6G, while enhancing threat detection and 
response, also introduce new vulnerabilities. Adversarial attacks, such as data poisoning and evasion techniques, can 
manipulate AI models [207], leading to misclassification of threats or system failures. Additionally, AI-based security 
systems require vast amounts of data, raising concerns about data privacy, unauthorized access, and potential bias in 
decision-making [208], [209]. The complexity of AI algorithms makes it challenging to interpret and audit security 
decisions, increasing the risk of undetected vulnerabilities. Without robust safeguards, AI-driven security in 6G could 
become a double-edged sword, potentially exploited by sophisticated cyber threats. According to [210], AI itself 
introduces security risks, such as adversarial attacks, model poisoning, and bias in threat detection models. Research is 
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required to develop robust AI-driven security solutions, including adversarial defense mechanisms, explainable AI (XAI) 
for security, and federated learning with enhanced privacy protections. 

5.3. Post-quantum cryptography implementation challenges 

Implementing post-quantum cryptography (such as the one in Figure 18) presents several challenges, primarily due to 
the computational complexity and resource-intensive nature of quantum-resistant algorithms [211]. These algorithms 
often require significantly larger key sizes and higher processing power, which can strain existing hardware, 
particularly in resource-constrained devices like IoT sensors and mobile devices [212], [213]. Additionally, 
transitioning from classical cryptographic standards to PQC demands extensive updates to protocols, infrastructure, 
and security policies, creating compatibility and interoperability issues. Ensuring a smooth migration while maintaining 
performance, scalability, and security across diverse 6G networks remains a critical challenge, requiring global 
coordination and investment in new cryptographic standards.  According to [214], quantum computing threatens 
traditional cryptographic algorithms like RSA, ECC, and AES by enabling rapid decryption through Shor’s and Grover’s 
algorithms. While post-quantum cryptography solutions, such as lattice-based, hash-based, and code-based 
cryptography, are being developed, their practical implementation in real-world 6G networks remains uncertain [215]. 
Research must focus on optimizing PQC for low-latency, high-speed encryption suitable for edge computing, IoT, and 
ultra-reliable low-latency communications (URLLC). 

 

Figure 18 post-quantum cryptography 

5.4. Security of Terahertz (THz) and optical wireless communications 

6G networks will utilize THz and visible light communication (VLC) to achieve ultra-high data rates. However, these 
technologies introduce new security challenges, including eavesdropping risks due to line-of-sight (LoS) transmissions, 
beam misalignment attacks, and jamming threats [216]. As explain in [217], the security of Terahertz (THz) and optical 
wireless communications in 6G presents unique challenges due to their high-frequency, short-wavelength nature. While 
these technologies offer ultra-high data rates and low latency, they are highly susceptible to signal blockage, 
atmospheric absorption, and interception risks. The directional nature of THz and optical signals improves security 
against eavesdropping but also introduces vulnerabilities such as jamming, beam misalignment, and side-channel 
attacks [218]. Additionally, secure key distribution and encryption mechanisms must be adapted to these high-speed, 
high-frequency channels to prevent unauthorized access [219]. Addressing these challenges requires specialized 
security protocols and adaptive defense mechanisms to ensure reliable and secure communication. More research is 
needed on secure beamforming, directional modulation, and cooperative jamming techniques to enhance physical layer 
security. 

5.5. Privacy and data protection in massive IoT and edge computing 

Privacy and data protection in massive IoT and edge computing within 6G networks present critical challenges due to 
the vast number of distributed devices processing sensitive data outside centralized cloud systems [220], [221]. The 
decentralized nature of edge computing increases exposure to cyber threats such as unauthorized access, data 
interception, and tampering. Many IoT devices have limited computational resources, making it difficult to implement 
robust encryption, authentication, and intrusion detection mechanisms [222]-[224]. Additionally, ensuring compliance 
with diverse global data protection regulations adds complexity. To safeguard privacy, 6G must integrate secure data 
transmission protocols, AI-driven anomaly detection, and decentralized identity management while balancing security 
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with performance efficiency. As explained in [225], the massive-scale deployment of IoT devices in 6G introduces 
challenges related to data privacy, secure device authentication, and lightweight cryptography. Traditional encryption 
techniques are often too resource-intensive for low-power IoT devices, necessitating research into lightweight 
cryptographic algorithms, hardware-based security using physical unclonable functions, and privacy-preserving data 
sharing. Additionally, securing edge and fog computing infrastructures requires novel approaches, such as zero-trust 
security models and homomorphic encryption. 

5.6. Blockchain scalability and security for decentralized 6G networks 

Blockchain scalability and security are critical challenges for decentralized 6G networks, as traditional blockchain 
systems struggle with high transaction latency and energy-intensive consensus mechanisms [226]. In a 6G environment 
with massive IoT and edge computing, blockchain must efficiently handle a vast number of transactions while 
maintaining low latency and high throughput [227]. Scalability solutions like sharding, sidechains, and layer-2 protocols 
are needed to enhance performance without compromising security. However, decentralization also introduces risks 
such as 51% attacks, smart contract vulnerabilities, and privacy concerns [228]. To ensure secure and scalable 
blockchain integration in 6G, advanced cryptographic techniques, lightweight consensus mechanisms, and AI-driven 
security enhancements must be developed.  While blockchain-based solutions enhance decentralized security, identity 
management, and secure data sharing [229], they face challenges related to scalability, energy efficiency, and attack 
vulnerabilities (e.g., Sybil attacks, 51% attacks, and smart contract exploits). Research is needed to develop lightweight, 
high-performance blockchain architectures tailored for 6G applications, such as IoT authentication, secure multi-party 
computation (SMPC), and AI-driven security automation. 

5.7. Resilience against advanced cyber threats and zero-day attacks 

Resilience against advanced cyber threats and zero-day attacks in 6G networks requires a proactive and adaptive 
security approach [230]. With AI-driven automation, massive IoT, and decentralized architectures, 6G expands the 
attack surface, making it more vulnerable to sophisticated threats like AI-generated malware, quantum-enabled 
cyberattacks, and zero-day exploits [231]-[233]. Traditional signature-based defenses are insufficient, necessitating AI-
powered threat detection, real-time anomaly monitoring, and self-healing network capabilities. Additionally, 
integrating blockchain for secure identity management [234], post-quantum cryptography for encryption, and zero-
trust architectures can strengthen resilience. A collaborative approach involving threat intelligence sharing and 
automated security updates is essential to mitigating emerging cyber risks in 6G. With the increased use of AI-driven 
cyberattacks, malware, and advanced persistent threats (APTs), traditional security measures are insufficient [235]-
[240]. 6G networks require proactive security solutions that leverage predictive analytics, AI-powered Intrusion 
Detection and Prevention Systems (IDPS), and autonomous incident response mechanisms. Research must focus on self-
healing networks, AI-enhanced anomaly detection, and real-time attack mitigation. 

Evidently, 6G security presents unprecedented challenges that require interdisciplinary research in AI security, 
quantum cryptography, blockchain scalability, IoT privacy, and regulatory frameworks. Addressing these research gaps 
is crucial to building a secure, resilient, and privacy-preserving 6G network for the future.  

6. Conclusion 

Security in 6G cellular networks presents a complex and evolving challenge due to the integration of advanced 
technologies such as AI-driven automation, terahertz (THz) and optical wireless communications, massive IoT, and 
decentralized architectures. While these innovations promise unprecedented speed, efficiency, and connectivity, they 
also introduce new vulnerabilities, including AI security risks, quantum threats, and privacy concerns in edge 
computing. Addressing these challenges requires a multi-layered approach, incorporating post-quantum cryptography, 
blockchain scalability solutions, AI-powered threat detection, and zero-trust security frameworks. Standardized 
security protocols, global regulatory collaboration, and real-time adaptive defense mechanisms will be crucial for 
building a resilient 6G ecosystem. Future research should focus on developing scalable, energy-efficient security 
solutions that balance performance with robust protection against emerging cyber threats. By prioritizing security at 
the foundation of 6G design, we can ensure a trustworthy and sustainable next-generation network.  
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