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Abstract 

This work explores the integration of generative artificial intelligence (GenAI), specifically Variational Autoencoders 
(VAEs), into statistical and structural financial models, with a focus on the Leland-Toft and Box-Cox frameworks. We 
conduct a comprehensive review of these models, highlighting their use in financial risk analysis, bankruptcy prediction, 
and time-series forecasting. Through the integration of VAEs, we demonstrate their capability to enhance data 
generation, improve predictive accuracy, and enable robust validation of financial models, particularly in scenarios with 
scarce data. The application of VAEs to the Leland-Toft model facilitated the calculation of key financial metrics, 
including default spreads, credit spreads, and leverage ratios. Additionally, VAEs integrated with Box-Cox models 
generated latent features that correlated effectively with traditional financial factors, underscoring their utility in 
predictive modeling and survival analysis. This work provides a detailed overview of implementation pipelines, 
architecture diagrams, and model validation methods, offering a foundation for future research. Expanding on the use 
of VAEs, we propose incorporating advanced machine learning techniques and real-time data to further enhance model 
performance and revolutionize financial modeling. 

We have discussed how implementation of synthetic data to enhance inputs for Leland-Toft and Box-Cox can aid is 
robust validation of the models. 
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1. Introduction

The integration of statistical and structural models into financial analysis has undergone significant advancements, 
particularly with the application of models like Box-Cox transformations and the Leland-Toft framework. These models 
have shown immense potential in areas such as bankruptcy prediction, credit-risk assessment, and financial forecasting. 
From 2010 to 2020, key studies explored the efficiency of these models in various markets, highlighting their predictive 
power and ability to manage complex financial data. Box-Cox transformations, for instance, have been crucial in 
improving model accuracy, while Leland-Toft models have advanced our understanding of corporate debt and optimal 
capital structures. Despite their successes, challenges remain in integrating these models with modern Gen AI 
techniques, use of artificial data, and real-time data. Recent literature also points to the growing potential of synthetic 
data, generated through Generative AI models, to further enhance financial modeling. Future research should continue 
to bridge these gaps by incorporating cutting-edge technologies, enhancing model adaptability, and extending 
applications across diverse economic contexts. This review compiles research on structural and statistical models, 
focusing on advancements in financial modeling. The works are arranged chronologically to trace developments over 
time.  The references are organized chronologically, and thematic categories such as statistical transformations, 
structural models, and financial forecasting are highlighted. We have expanded on current literature to include synthetic 
data generated from GANs and VAEs and their applicability in Structure Finance.  
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2. Literature Review  

The literature review traces the evolution of statistical and structural models in financial analysis, highlighting 
significant contributions to Box-Cox transformations, survival analysis, and the Leland-Toft model. Early works (2010–
2015) laid foundational insights, while recent studies (2016–2020) advanced applications in bankruptcy prediction, 
credit-risk modeling, and macroeconomic forecasting. Key gaps include the limited integration of these models with 
machine learning techniques and real-time data frameworks. The findings emphasize the potential of combining these 
methodologies with Gen AI for enhanced predictive analytics and broader applicability across diverse financial 
instruments. 

2.1. Chronological Literature Review 

2010-2015 

• 2010: Li [1] compared the performance of structural models using evidence from China, laying foundational 
insights into their applicability. 

• 2011: Zhu and Fan [2] proposed ensemble-based variable selection techniques for the Cox model, contributing 
to survival analysis methodologies. 

• 2012: Liu [3] introduced survival analysis models and applications, offering an extensive overview of statistical 
approaches. 

• 2013: Proietti and Lütkepohl [4] investigated the efficacy of Box-Cox transformations in macroeconomic time 
series forecasting. 

• 2013: Suo et al. [5] used an endogenous bankruptcy model to explain debt recovery, advancing theoretical 
insights. 

• 2014: Zheng and Song [6] developed a stochastic volatility model enhanced with the Box-Cox transformation. 

2016-2020 

• 2016: Taoushianis et al. [7] assessed bankruptcy probability using structural models combined with empirical 
enhancements. 

• 2020: Charalambous et al. [8] applied the Leland-Toft framework to predict corporate bankruptcy using US 
evidence. 

• 2020: Palmowski et al. [9] extended the Leland-Toft model to incorporate Poisson observations for optimal 
capital structures. 

• 2020: Ibañez [10] proposed a simple measure for default risk within endogenous credit-risk frameworks 
fsb2024ai?. 

2021-Present 

• 2021: Atkinson et al. [11] reviewed and extended the Box-Cox transformation, providing a contemporary 
understanding of its applications. 

• 2022: Shi et al. [12] developed a Black-Cox model-based approach to define stock price default boundaries. 

2.2. Categorization of Contributions 

The Box Cox model is used for transformation of inputs while Leland Toft is used for modeling structured financial 
products that are based on Corporate debt.  

2.2.1. Statistical Transformations 

Box-Cox transformations were explored extensively in [4], [6], [11], [13]. 

Survival analysis models and variable selection techniques were covered in [2], [3]. 

2.2.2. Structural Models and Bankruptcy Prediction 

Leland-Toft and related models were advanced in [8], [9], [10]. 

Applications of structural models in different markets were highlighted in [1], [5], [7]. 
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2.2.3. Applications in Financial Forecasting 

Forecasting applications using stochastic volatility and default-risk models were discussed in [6], [12]. 

Findings, Gaps, Material, and Future Work 

We find that major hurdles for Box-Cox transformation has been the unavailability of Gen AI models and real time 
frameworks. 

Findings, Gaps, Material, and Future Work is shown in table 1, whereas table 2 categories the literature cited in this 
work. Table 3 described the focus areas for Box-Cox transformation as mentioned in the literature whereas table 4 
discuses the application of Box-Cox.  

Table 1 Findings, Gaps, Materials and Future Work 

Findings Gaps Material Future Work 

Box-Cox transformations improve 
model accuracy [4], [6] 

Limited integration with 
ML techniques 

Statistical and 
structural models 

Combine with ML for 
predictive analytics 

Leland-Toft models predict 
bankruptcy effectively [8] 

Lack of real-time data 
integration 

Empirical data from 
US markets 

Develop real-time risk 
assessment tools 

Stochastic volatility models enhance 
financial forecasting [6] 

Limited application in 
emerging markets 

Historical volatility 
data 

Expand to diverse 
economic contexts 

2.2.4. Categorization of References by Key Themes 

In this work we have categorized the models into Box-Cox and Leland-Toft. 

Table 2 Category of cited work 

Category References 

Box-Cox [4], [6], [11], [13] 

Leland-
Toft 

[8], [9], [10] 

Others [1], [2], [3], [5], [7], [12] 

Below are the recent papers (in figure 3) along with the focus Areas where synthetic data can be used to enhance the 
models. 

Table 3 Focus Areas of Box-Cox  

Title Author(s) Focus/Area 

Assessing Bankruptcy Probability with 
Alternative Structural Models and an 
Enhanced Empirical Model 

Zenon Taoushianis, Chris 
Charalambous, Spiros H. 
Martzoukos 

Bankruptcy prediction using 
structural and empirical models. 

The Box–Cox Transformation: Review and 
Extensions 

Anthony C. Atkinson, Marco Riani, 
Aldo Corbellini 

Review of the Box–Cox 
transformation and its 
extensions. 

Box–Cox Transformation in Big Data Tonglin Zhang, Baijian Yang Application of the Box–Cox 
transformation in big data 
analysis. 

Does the Box–Cox Transformation Help in 
Forecasting Macroeconomic Time Series? 

Tommaso Proietti, Helmut 
Lütkepohl 

Evaluation of the Box–Cox 
transformation in 
macroeconomic forecasting. 
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Survival Analysis: Models and Applications Xian Liu Introduction to survival analysis 
and its applications. 

A Realized Stochastic Volatility Model with 
Box–Cox Transformation 

Tingguo Zheng, Tao Song Use of Box–Cox transformation in 
stochastic volatility modeling. 

The Leland-Toft Optimal Capital Structure 
Model under Poisson Observations 

Zbigniew Palmowski, José Luis 
Pérez, Budhi Arta Surya, 
Kazutoshi Yamazaki 

Optimal capital structure models 
with stochastic observations. 

Predicting Corporate Bankruptcy Using the 
Framework of Leland-Toft: Evidence from 
US 

Chris Charalambous, Spiros H. 
Martzoukos, Zenon Taoushianis 

Predicting bankruptcy using 
advanced financial models. 

 

Table 4 Application of Box-Cox 

Title Year Topic/Application 

Assessing Bankruptcy Probability with Alternative Structural 
Models and an Enhanced Empirical Model 

2016 Bankruptcy Probability and 
Structural Models [7] 

The box–cox transformation: Review and extensions 2021 Box-Cox Transformation [11] 

Box–cox transformation in big data 2017 Box-Cox Transformation and Big Data 
[13] 

Does the Box–Cox transformation help in forecasting 
macroeconomic time series? 

2013 Macroeconomic Forecasting, Box-Cox 
Transformation [4] 

Survival analysis: models and applications 2012 Survival Analysis Models [3] 

A realized stochastic volatility model with Box–Cox 
transformation 

2014 Stochastic Volatility, Box-Cox 
Transformation [6] 

The Leland–Toft optimal capital structure model under Poisson 
observations 

2020 Optimal Capital Structure [9] 

Predicting corporate bankruptcy using the framework of Leland-
Toft: evidence from US 

2020 Corporate Bankruptcy Prediction [8] 

Comparison of performance of structural models: evidence from 
China 

2010 Structural Models Comparison [1] 

Explaining debt recovery using an endogenous bankruptcy model 2013 Debt Recovery, Endogenous 
Bankruptcy [5] 

A Simple Measure of Default-Risk Based on Endogenous Credit-
Risk Models 

2020 Credit-Risk Models [10] 

Stock price default boundary: A Black-Cox model approach 2022 Stock Price Default Boundary [12] 

Variable selection by ensembles for the Cox model 2011 Variable Selection, Cox Model [2] 

3. Mathematical Representations of Key Models 

3.1. Box-Cox Transformation 

The Box-Cox transformation, widely used for normalizing data and stabilizing variance, is given by: 

𝑦(𝜆) = {
𝑦𝜆 − 1

𝜆
, 𝜆 ≠ 0,

𝑙𝑛(𝑦), 𝜆 = 0

) 
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where 𝑦 is the variable being transformed, and 𝜆 is the transformation parameter. Source: [4], [11] 

3.2. Leland-Toft Structural Model 

The Leland-Toft model for optimal capital structure and bankruptcy prediction is characterized by: 

𝑉𝐷 =
(1 − 𝜏𝑐)𝐸

𝑟 + 𝛿
−

𝐾

𝑟 + 𝛿
𝑒𝑥𝑝(−𝑟𝑇), 

where: 
𝑉𝐷: Firm value with debt. 
𝜏𝑐: Corporate tax rate. 
𝐸: Earnings before interest and taxes. 
𝑟: Risk-free interest rate. 
𝛿: Dividend yield. 
𝐾: Bankruptcy costs. 
𝑇: Maturity of debt. 

Source: [8], [9] 

3.3. Black-Cox Default Boundary Model 

The Black-Cox model sets a default boundary for stock prices, given as: 

𝐵(𝑡) = 𝐵0𝑒𝑥𝑝(−𝜇𝑡), 

where: 
𝐵(𝑡): Default boundary at time 𝑡. 
𝐵0: Initial default boundary. 
𝜇: Drift rate of the underlying asset. 

Source: [12] 

Cox Proportional Hazards Model 

The Cox model for survival analysis is represented as: 

ℎ(𝑡 ∨ 𝑥) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽
⊤𝑥), 

where: 

ℎ(𝑡 ∨ 𝑥): Hazard rate at time 𝑡 given covariates 𝑥. 

ℎ0(𝑡): Baseline hazard rate. 

𝛽: Coefficient vector for covariates. 

𝑥: Covariates (predictor variables). 

Source: [2], [3] 

3.4. Data Used in Models 

We plan to create synthetic data and hence it becomes important to understand the inputs for different models in 
structured finance models. Although, in this work we have use the data for Apple Stock which is publicly traded.  Table 
5 gives a mapping of Data with the appropriate models. Whereas table 6 discusses the input and output of various 
studies underscoring that most of the study had limited data. In this work we have proposed using GANs and VAEs for 
creating artificial data for the models where data was sparse.  
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Table 5 Data Characteristics in Reviewed Papers 

Pape
r 

Data Description Model Used 

[1] Chinese corporate financial data Structural models 

[2] Survival analysis datasets with variable selection Cox Proportional Hazards 

[3] Financial survival datasets (various regions) Survival models 

[4] Macroeconomic time series data Box-Cox transformations 

[5] US corporate debt recovery datasets Endogenous bankruptcy models 

[6] Stochastic volatility data (stock markets) Box-Cox transformations 

[7] Empirical bankruptcy probability data Leland-Toft models 

[8] US corporate bankruptcy data Leland-Toft framework 

[12] Stock price datasets (default boundaries) Black-Cox model 

 

Table 6 Data Characteristics in Reviewed Papers 

Paper Model Input Output 

Assessing Bankruptcy Probability with 
Alternative Structural Models and an 
Enhanced Empirical Model [7] 

Structural Model Bankruptcy data, financial 
ratios, market data 

Bankruptcy 
probability 

The box–cox transformation: Review 
and extensions [11] 

Box-Cox 
Transformation 

Data that requires 
stabilization of variance or 
normality 

Transformed data 

Box–cox transformation in big data [13] Box-Cox 
Transformation 

Big data, economic data Transformed data 
for analysis 

Does the Box–Cox transformation help in 
forecasting macroeconomic time series? 
[4] 

Box-Cox 
Transformation 

Macroeconomic time 
series data 

Improved 
forecasting 
accuracy 

Survival analysis: models and 
applications [3] 

Survival Analysis 
Model 

Time-to-event data (e.g., 
bankruptcy, default) 

Survival 
probabilities 

A realized stochastic volatility model 
with Box–Cox transformation [6] 

Stochastic Volatility 
Model with Box-Cox 

Financial market data Volatility 
forecasts 

The Leland–Toft optimal capital 
structure model under Poisson 
observations [9] 

Leland-Toft Model Firm’s asset value, debt 
level, market conditions 

Optimal capital 
structure 

Predicting corporate bankruptcy using 
the framework of Leland-Toft: evidence 
from US [8] 

Leland-Toft Model Firm’s financial ratios, 
market data 

Bankruptcy 
probability 

Comparison of performance of structural 
models: evidence from China [1] 

Structural Model Financial data from firms 
in China 

Model 
performance 
comparison 

Explaining debt recovery using an 
endogenous bankruptcy model [5] 

Endogenous 
Bankruptcy Model 

Debt recovery data, firm’s 
financials 

Debt recovery 
rate 

A Simple Measure of Default-Risk Based 
on Endogenous Credit-Risk Models [10] 

Endogenous Credit-
Risk Model 

Credit data, firm 
performance metrics 

Default risk 
measure 
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Stock price default boundary: A Black-
Cox model approach [12] 

Black-Cox Model Stock price data, firm’s 
default boundary 

Default boundary 
predictions 

Variable selection by ensembles for the 
Cox model [2] 

Cox Model High-dimensional data, 
survival data 

Variable selection 
results 

In table 7 validation methods have been discussed. 

Table 7 Data Characteristics in Reviewed Papers 

Paper Model Validation Method 

Assessing Bankruptcy Probability with 
Alternative Structural Models and an 
Enhanced Empirical Model [7] 

Structural Model Cross-validation with different financial 
ratios and market data 

The box–cox transformation: Review and 
extensions [11] 

Box-Cox 
Transformation 

Comparison of transformed vs. 
untransformed data in various statistical 
tests (e.g., normality tests) 

Box–cox transformation in big data [13] Box-Cox 
Transformation 

Evaluation using out-of-sample prediction 
accuracy and model fit metrics 

Does the Box–Cox transformation help in 
forecasting macroeconomic time series? [4] 

Box-Cox 
Transformation 

Forecasting accuracy comparison with 
and without Box-Cox transformation 
using MAPE and RMSE 

Survival analysis: models and applications 
[3] 

Survival Analysis Model Cross-validation using time-to-event data 
and C-index for model evaluation 

A realized stochastic volatility model with 
Box–Cox transformation [6] 

Stochastic Volatility 
Model with Box-Cox 

Model comparison using out-of-sample 
forecasting performance (RMSE) 

The Leland–Toft optimal capital structure 
model under Poisson observations [9] 

Leland-Toft Model Likelihood ratio tests and sensitivity 
analysis for model robustness 

Predicting corporate bankruptcy using the 
framework of Leland-Toft: evidence from US 
[8] 

Leland-Toft Model ROC curve analysis for bankruptcy 
prediction accuracy and model validation 

Comparison of performance of structural 
models: evidence from China [1] 

Structural Model Model comparison using out-of-sample 
prediction and goodness-of-fit measures 

Explaining debt recovery using an 
endogenous bankruptcy model [5] 

Endogenous 
Bankruptcy Model 

Empirical testing using recovery rate data 
and comparison with alternative models 

A Simple Measure of Default-Risk Based on 
Endogenous Credit-Risk Models [10] 

Endogenous Credit-
Risk Model 

Out-of-sample validation and comparison 
with traditional credit-risk models 

Stock price default boundary: A Black-Cox 
model approach [12] 

Black-Cox Model In-sample and out-of-sample prediction of 
default boundary using backtesting 

Variable selection by ensembles for the Cox 
model [2] 

Cox Model Cross-validation and accuracy assessment 
using variable selection performance 
metrics 

Validation of the models can be enhanced using synthetic data, in the result section we have proposed using VAEs to 
generate synthetic data to enhance modeling which can be coupled with validation discussed in table 7.  

4. Results and discussion 

In our prior research, we proposed and implemented Variational Autoencoders (VAEs) and Generative Adversarial 
Networks (GANs) for interest rate models [15,16,17,18 and 19]. The integration of VAEs with the Leland-Toft Model 
demonstrated considerable diversity and proved useful in generating data, especially in situations where data is scarce. 
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Figure 1 presents the architecture diagram for the implementation, while Figure 2 illustrates the output generated from 
the model run. 

4.1. Integrating VAEs in Leland-Toft Model  

Below is the code snippet to integrate  VAE Data for Leland-Toft Model 

# Step : Apply Leland-Toft Model (Leland Model for credit spread) 

def leland_toft_model(features): 

    # Constants for the Leland-Toft model (Example, these should be adjusted based on your real data and assumptions) 

    risk_free_rate = 0.03  # Example risk-free rate (3%) 

    asset_price = features['returns'].mean() * 100  # Assume a random asset price, can be real asset value 

        # Calculate some parameters using features 

    volatility = features['volatility'].mean()  # Average volatility 

    sigma = volatility  # In this case, assume sigma is the volatility 

        # Default spread based on Leland-Toft model assumptions 

    leverage = asset_price / (asset_price + sigma)  # Simple leverage assumption (could be more complex) 

    default_spread = sigma * leverage  # Leland-Toft default spread formula 

    # Calculate credit spread 

    credit_spread = default_spread * (1 - risk_free_rate)  # This is an example calculation 

    # Package results into a dictionary for easy access 

    lt_results = {         "default_spread": default_spread, 

        "credit_spread": credit_spread, 

        "leverage": leverage    } 

    return lt_results 

# Step : Build and Compile the VAE model 

def build_vae(latent_dim, input_shape): 

    """Build a Variational Autoencoder model.""" 

    inputs = layers.Input(shape=input_shape) 

        # Encoder 

    x = layers.Dense(64, activation='relu')(inputs) 

    x = layers.Dense(32, activation='relu')(x) 

    z_mean = layers.Dense(latent_dim)(x) 
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    z_log_var = layers.Dense(latent_dim)(x) 

    # Decoder 

    decoder_hid = layers.Dense(32, activation='relu') 

    decoder_out = layers.Dense(input_shape[0], activation='sigmoid') 

    h_decoded = decoder_hid(z) 

    x_decoded_mean = decoder_out(h_decoded) 

    # VAE model 

    vae = models.Model(inputs, x_decoded_mean) 

    # VAE loss function 

    xent_loss = input_shape[0] * tf.keras.losses.binary_crossentropy(inputs, x_decoded_mean) 

    kl_loss = -0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) 

    vae_loss = K.mean(xent_loss + kl_loss) 

  # Build VAE model 

latent_dim = 2 

vae, _, _ = build_vae(latent_dim=latent_dim, input_shape=features_values.shape[1:]) 

vae.fit(features_values, epochs=50, batch_size=32) 

 

Figure 1 Architecture Diagram  

4.2. Integrating VAEs with Box-Cox Models. 

In the below code we have shown how to integrate VAEs with Box-Cox Models. 

# Step 3: Define Custom VAE with Loss as Layer 

class VAELossLayer(layers.Layer): 

    def __init__(self): 
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        super(VAELossLayer, self).__init__() 

# Step 4: Define VAE with Encoder and Decoder 

def build_vae(input_dim, latent_dim): 

    # Encoder 

    inputs = tf.keras.Input(shape=(input_dim,)) 

    x = layers.Dense(128, activation='relu')(inputs) 

# Build the VAE model 

vae, encoder, decoder = build_vae(input_dim, latent_dim) 

# Train the model 

vae.fit(scaled_features, scaled_features, epochs=50, batch_size=16, verbose=1) 

# Extract latent features 

latent_features = encoder.predict(scaled_features) 

# Fit the Cox model 

cph = CoxPHFitter() 

cph.fit(features, duration_col="duration", event_col="event") 

cph.print_summary() 

 

Figure 2 Out of the full model run 
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Figure 3 Correlation between factors including latent1 and latend2 factors  

 

 

Figure 4 Architecture Diagram 

Figure 3 illustrates the correlation between factors used in the Box-Cox transformation and the new factors generated 
by the VAE model. Figure 4 provides an overview of the architecture, highlighting the use of synthetic data generated 
by VAEs for Cox models. Figure 5 showcases the data flow pipeline. The notebooks and the code to reproduce the results 
are available in the GitHub repository [14]. In the context of Box-Cox models, VAEs were instrumental in generating 
latent features (such as latent1 and latent2), which demonstrated strong correlations with traditional financial factors, 
as shown in Figure 3. Additionally, Figure 4 emphasizes the architecture's capacity to generate synthetic data and 
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integrate it with Cox proportional hazards models for survival analysis, showcasing the practical application of VAEs in 
financial risk modeling. 

 

Figure 5 Pipeline diagram  

5. Conclusion 

This work demonstrates the successful integration of Variational Autoencoders (VAEs) with financial models, 
specifically the Leland-Toft and Box-Cox frameworks, to enhance data generation, predictive modeling, and analysis. 
The integration of VAEs with the Leland-Toft model enabled the calculation of critical financial metrics such as default 
spreads, credit spreads, and leverage ratios, even under conditions of data scarcity. This review on Box-Cox and Leland-
Toft highlights the evolution of statistical and structural models in financial analysis. Through analysis of recent work 
in Leland-Toft and Box-Cox with integration of VAE has been shown. Snipped code for implementation, overview of 
pipeline and architecture has been shown. Future research should integrate these methodologies with modern machine 
learning approaches to enhance predictive power. Future research should extend these methodologies by incorporating 
advanced machine learning techniques, such as transformers and attention mechanisms, to further improve predictive 
power. Additionally, expanding the application of VAEs in generating synthetic datasets across diverse financial 
instruments and integrating these datasets with real-time market data could revolutionize data-driven financial 
modeling. 
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