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Abstract 

In this paper, we review techniques for solving inequality-constrained optimization problems with non-linear functions, 
emphasizing the Kuhn-Tucker (KT) method. The paper reviews their solvability ability as employed in solving 
inequality-constrained optimization problems. The necessary optimality conditions for obtaining optimal solutions for 
inequality-constrained problems are stated and discussed in this paper. The method of Kuhn-Tucker (KT) was used in 
solving for optimal solution of the inequality-constraints problem.  

Keywords:  Inequality Problem; Kuhn-Tucker; Effective Constraints; Complimentary Slackness; Necessary Conditions; 
Cardinality 

1. Introduction

In general Optimization is a mathematical procedure for determining optimal allocation of scarce resources. In practice, 
most of the optimization problems encountered can be formulated as equality or inequality. It can either be a 
minimization problem or a maximization problem that may involve linear or nonlinear functions, and their approach to 
solving for optimal solutions are quite different. Many authors have applied varied methods to solve optimization 
problems of several types of optimization problems. 

The paper in [1] used the method of Lagrange by converting inequality constraints into a new optimization problem 
with equality constraints and called the method a Valentine method for finite-dimensional optimization problems. 

The authors in [2] developed a new wind energy project that requires studying many parameters to achieve maximum 
benefits at the cost of minimum environmental impacts. Using a Geographic Information System (GIS), they developed 
an analytical framework with fuzzy logic to evaluate the suitable site for turbines for optimum energy output. 

Researchers in [3] considered a nonlinear constrained optimization model for selecting a pipe route with a minimum 
length that considers seabed topography, obstacles, and pipe curvature requirements. 

In [4] and [5], the authors applied Newton Raphson's Iterative Algorithms to solve some constrained optimization 
problems. However, these methods are so cumbersome when there are multiple constraints with inequality constraint 
functions. 

In [6], the authors developed a modified version of the Classical Lagrange Multiplier method and, applied it to solve 
convex quadratic optimization problems which they adapted from the first-order derivative test for optimality of the 
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Lagrange function. In their method, they decompose the solution process into two independent ones, in which the 
primary and the secondary variables are solved independently before using the Lagrange multipliers method. 

In our paper published recently, we discussed and reviewed the solvability analysis of equality-constrained problems 
with nonlinear functions using the Lagrange theorem to discuss the necessary optimality conditions [7]. 

This paper aims at using the theorem of Kuhn-Tucker (KT) to characterize the behavior of the objective function, 𝐴 and 
the constraint function, ℎ𝑖  at local optima of inequality constrained optimization problems. The conditions which 
described the first –order necessary conditions for local optima in these problems. The KT approach to nonlinear 
programming generalizes the method of Lagrange multipliers.  

1.1.   Aim and Objectives  

This paper aims to review the solvability of inequality-constrained optimization problems involving nonlinear functions 
and understand the conditions under which optimal solutions exist.  

1.1.1. Objectives of the paper are 

• Investigate the Necessary Conditions for Optimality – Establishing the fundamental conditions that must be 
satisfied for a solution to be optimal in inequality-constrained optimization problems involving nonlinear 
functions. 

• Apply the Kuhn Tucker (KT) conditions – Demonstrating how the Kuhn Tucker conditions are used to identify 
extreme points of inequality constraints with nonlinear functions. 

2. Methodology  

The Method used in this paper is the Kuhn-Tucker method. The approach generalizes the method of Lagrange 
multipliers. 

2.1. The Model for Inequality Constraints Optimization Problem 

The model for Inequality constraints optimization problem is given by 

Optimize 𝐴(𝑥) 

Subject to 𝑥 ∈  𝐷 ≠  ∅ 

Where 𝐷 =  𝑃 ∩  {𝑥 ∈  ℝ𝑛 ∶  ℎ𝑖 (𝑥) ≥  0, 𝑖 = 1, … , 𝑙}, 

 𝑃 ⊂ ℝ𝑛 is open, and, ℎ𝑖 ∶  ℝ𝑛 →  ℝ𝑙 ,  𝐴: ℝ𝑛  → ℝ 

2.2. Necessary Optimality Conditions for the Inequality Constraints Problem 

The conditions described by KT theorem is viewed as first –order necessary conditions for local optima of nonlinear 
inequality constraints Problem. 

Let 𝐷 =  {𝑥 ∈  ℝ𝑛 ∶ ℎ(𝑥) ≥  0}  be the inequality constraint set of an optimization problem and ℎ ∶  ℝ𝑛 →  ℝ𝑙  be the 
constraint function, then ℎ is called binding or effective constraint at a point 𝑥∗ ∈ 𝐷 if  ℎ(𝑥∗) = 0 

Complementary slackness condition is the requirement that λi ≥ 0  and λihi(𝑥) = 0. The cardinality is the number of 
elements in the effective constraints, 𝑇 and is denoted by |𝑇|. 

We say that a pair (x∗, λ∗) meets the first order necessary conditions for optimum point of the inequality constrained 
optimization problem if it satisfies ℎ(𝑥∗) = 0 as well as conditions [𝐾𝑇 − 1]and [𝐾𝑇 − 2] . The constraint qualification 
under inequality constraints is the condition in the theorem of Kuhn Tucker that the rank of the gradient of the effective 
constraints be equal to the cardinality of the effective constraints, 𝜌∇ℎ(𝑥∗) = |𝑇| 

The theorem of Kuhn and Tucker for inequality constrained optimization problems. 

Theorem 1.  Let 𝐴 ∶  ℝ𝑛 →  ℝ and ℎ𝑖 ∶  ℝ𝑛  →  ℝ𝑙  be 𝑐1 functions, 𝑖 = 1, … , 𝑙. 
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Suppose 𝑥∗ is a local optimum of 𝐴 on the set  

𝐷 =  𝑃 ∩ {𝑥 ∈  ℝ𝑛 ∶  ℎ𝑖 (𝑥) ≥  0, 𝑖 = 1, … , 𝑙}, 𝑃 ⊂ ℝ𝑛  𝑖𝑠 𝑜𝑝𝑒𝑛. 

Let 𝑇 ⊂ {1,2, … , 𝑙}   denote the set of effective/binding constraints at   𝑥∗ and let ℎ𝑇 = ℎ𝑖(𝑖∈𝑇) 

Suppose also that 𝜌ℎ(𝑥∗) = |𝑇|, then there exists vector,λ∗ = (λ1
∗, λ2

∗, … , λ𝑙
∗) ∈ ℝ𝑙 , such that the following conditions 

are satisfied, 

[𝑲𝑻 − 𝟏] λi
∗ ≥ 0, and, λi

∗ℎ𝑖 (𝑥∗) = 0 

[𝑲𝑻 − 𝟐]  𝐴(𝑥∗)  + ∑ λ𝑖
∗
ℎ𝑖 (𝑥∗) = 0𝑙

𝑖=1 . 

Where λ𝑖
′𝑠 are called the Lagrangian multipliers associated with the local optimum 𝑥∗. 

3. Applications 

Here, we construct some examples and demonstrates how to verify the conditions of the theorem 

Consider the problem:  

Minimize 𝐴(𝑥) = −2𝑥1 − 𝑥2 

Subject to 𝑥1 − 𝑥2 ≤ 0 

𝑥1
2 + 𝑥2

2 ≤ 4  

𝑥1, 𝑥2  ≥ 0 

h1(𝑥) = 𝑥1 − 𝑥2 ≤ 0, 

h2(𝑥) =  𝑥1
2 + 𝑥2

2 ≤ 4. 

3.1. Solution 

The problem is a non-linear programming problem since the second constraints is nonlinear. 

𝐴(𝑥) = −2𝑥1 − 𝑥2 

ℎ1(𝑥) = 𝑥1 − 𝑥2 

ℎ2(𝑥) = 𝑥1
2

+ 𝑥2
2 − 4 

∇𝐴(𝑥) = [
𝜕𝐴

𝜕𝑥1

𝜕𝐴

𝜕𝑥2

] = [−2 −1] 

∇ℎ1(𝑥) = [
𝜕ℎ1

𝜕𝑥1

𝜕ℎ1

𝜕𝑥2

] = [1 −1] 

∇ℎ2(𝑥) = [
𝜕ℎ2

𝜕𝑥1

𝜕ℎ2

𝜕𝑥2

] = [2𝑥1 2𝑥2] 

Verifying the KT conditions; 

𝐴(𝑥) + ∑ λ𝑖ℎ𝑖 (𝑥) = 0𝑙
𝑖=1 . 

⇒  [−2 −1] + λ1[1 −1] + λ2[2𝑥1 2𝑥2] = 0 
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−2 + λ1 + 2λ2𝑥1 = 0   ……………………… (1) 

−1 − λ1 + 2λ2𝑥2 = 0          ……………… (2) 

λ𝑖ℎ𝑖(𝑥) = 0, ∀ 𝑖 = 1,2. 

⇒ λ1(𝑥1 − 𝑥2) = 0  … … … … … … (3) 

λ2(𝑥1
2 + 𝑥2

2 − 4) = 0  … … … … … … (4) 

ℎ𝑖(𝑥) ≤ 0, ∀𝑖 = 1,2. 

⇒ 𝑥1 − 𝑥2 ≤ 0   ……………… (5) 

     𝑥1
2 + 𝑥2

2 − 4 ≤ 0 … … … … … … (6) 

λ𝑖 ≥ 0, ∀𝑖 = 1,2. 

⇒ λ1 ≥ 0    ………………(7) 

λ2 ≥ 0     ………………(8) 

3.1.1. Solving simultaneously,  

From (3); λ1(𝑥1 − 𝑥2) = 0                 

Either λ1 = 0 𝑜𝑟 𝑥1 − 𝑥2 = 0 

From (4); λ2(𝑥1
2 + 𝑥2

2 − 4) = 0 

Either λ2 = 0 𝑜𝑟 𝑥1
2 + 𝑥2

2 − 4 = 0 ………………(9) 

From the above, we can have the following cases; 

Case1:    λ1 = 0 ; λ2 = 0 

Substitute,  λ1 = 0  𝑎𝑛𝑑 λ2 = 0 in (1)𝑎𝑛𝑑 (2); 

−2 = 0 ; −1 = 0 … 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑  

 Case 2:  λ1 = 0 ; λ2 ≠ 0 

Substitute λ1 = 0  𝑎𝑛𝑑 λ2 ≠ 0 in (1)𝑎𝑛𝑑 (2); 

−2 + 2λ2𝑥1 = 0 ⇒ 𝑥1 =
1

λ2
     ………………(10) 

−1 + 2λ2𝑥2 = 0 ⇒ 𝑥2 =
1

2λ2
     ………………(11) 

Also, from (9), when λ2 ≠ 0, 𝑥1
2 + 𝑥2

2 − 4 = 0    

Substitute 𝑥1 =
1

λ2
 𝑎𝑛𝑑 𝑥2 =

1

2λ2
 𝑖𝑛 𝑥1

2 + 𝑥2
2 − 4 = 0    

⇒ (
1

λ2
)

2

+ (
1

2λ2
)

2

= 4 
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1

λ2
2 +

1

4λ2
2 = 4 

4 + 1

4λ2
2 = 4 

5

4λ2
2 = 4 

5 = 16λ2
2 

λ2
2 =

5

16
 

λ2 = ±√
5

16
 

Since λ2 cannot be negative, λ2 = +√
5

16
 =

√5

4
 

Substitute λ2 =
√5

4
 𝑖𝑛 (10) ;  𝑥1 =

1

λ2
=

4

√5
 

Substitute λ2 =
√5

4
 𝑖𝑛 (11); 𝑥2 =

1

2λ2
=

4

2√5
=

2

√5
 

Since   𝑥1 =
4

√5
 𝑎𝑛𝑑 𝑥2 =

2

√5
  satisfy all the necessary conditions above, then 𝑥∗ = (𝑥1, 𝑥2) = (

4

√5
,

2

√5
) is the optimum 

solution. 

3.1.2. Hence, theorem 1 is verified in this example. 

Consider the problem where the objective function and the constraint sets are non-linear.  

   𝑀𝑖𝑛𝑚𝑖𝑧𝑒 𝐴(𝑥) = 6(𝑥1 − 10)2 + 4(𝑥2
2 − 12.5)2  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑥1
2 + (𝑥2 − 5)2 ≤ 50, 

𝑥1
2 + 3𝑥2 ≤ 250 

(𝑥1 − 6)2 + 𝑥2
2 ≤ 37. 

𝐴: ℝ2 → ℝ,  ℎ: ℝ2 → ℝ3. 

Were,  ℎ = ℎ1, ℎ2, ℎ3  

ℎ1 =  𝑥1
2 + (𝑥2 − 5)2 − 50 ≤ 0 

ℎ2 = 𝑥1
2 + 3𝑥2

2 − 250 ≤ 0. 

ℎ3 = (𝑥1 − 6)2 + 𝑥2
2 − 37 ≤ 0. 

∇𝐴(𝑥) = [
𝜕𝐴

𝜕𝑥1

𝜕𝐴

𝜕𝑥2

] = [12(𝑥1 − 10) 8(𝑥2 − 12.5)]𝑇 
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∇ℎ1(𝑥) = [
𝜕ℎ1

𝜕𝑥1

𝜕ℎ1

𝜕𝑥2

] = [2𝑥1 2(𝑥2 − 5)]𝑇 

∇ℎ2(𝑥) = [
𝜕ℎ2

𝜕𝑥1

𝜕ℎ2

𝜕𝑥2

] = [2𝑥1 6𝑥2]𝑇 

∇ℎ3(𝑥) = [
𝜕ℎ3

𝜕𝑥1

𝜕ℎ3

𝜕𝑥2

] = [2(𝑥1 − 6) 2𝑥2]𝑇 

             Verifying the condition  

𝐴(𝑥) + ∑ λ𝑖ℎ𝑖 (𝑥) = 0𝑙
𝑖=1 ’ 

⇒ [
12(𝑥1 − 10)
8(𝑥2 − 12.5

]+λ1 [
2𝑥1

2(𝑥2 − 5)
] + λ2  [

2𝑥1

6𝑥2
] + λ3 [

2(𝑥1 − 6)
2𝑥2

] = 0 

12(𝑥1 − 10) + 2𝑥1λ1 + 2𝑥1λ2+2(𝑥1 − 6)λ3 = 0.    ………………(12) 

8(𝑥2 − 12.5) + 2(𝑥2 − 5)λ1 + 6𝑥2λ2+2𝑥2λ3 = 0. ……………… (13) 

Solving equations (12) and (13) simultaneously for (𝑥1,𝑥2, λ1, λ2, λ3) gives  

𝑥1, = 7, 𝑥2 = 6, λ1 = 2, λ2 = 0, λ3 = 4, 

(λ1
∗ , (λ2

∗ , λ3
∗ ) = (2,0,4). 

Therefore, (𝑥1
∗

,
𝑥2

∗) = (7,6)  

Now, we test if (𝑥1
∗

,
𝑥2

∗)is a candidate for optimal solution to the problem. First, we verify the set of effective constraint 

denoted by 𝑇 by testing the feasibility of (𝑥1
∗

,
𝑥2

∗)  

ℎ1(7,6) = 0 ≤ 0 

ℎ2(7,6) = −93 ≤ 0 

ℎ3(7,6) = 0 ≤ 0 

Therefore, the effective constraints  𝑇 = {1,3} 

We check the rank of the gradient of the effective constraints, 𝜌∇ℎ𝑇 ((𝑥1
∗

,
𝑥2

∗) 

∇ℎ1(7,6,) = [
14
2

] 

∇ℎ3(7,6,) = [
2

12
] 

∇𝐴(7,6,) = [
−36
−52

] 

∇ℎ𝑇(7,6,) = [
14 2
2 12

] 

Since the determinant of   ∇ℎ𝑇(7,6,) ≠ 0 → 𝜌∇ℎ𝑇(7,6) = 2 = 𝑇 

Where  |𝑇| denotes the cardinality of 𝑇,that is, the number of elements in the set, 𝑇. Then, there exists a vector λ =
  (λ1

∗ , (λ2
∗ , λ3

∗ ) ≥ 0  such that 
∇𝐴(𝑥) + ∑ ∇2

𝑖∈𝑇 ℎ𝑖(𝑥∗)=0 
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[
−36
−52

] +   λ1
∗ [

14
2

] + λ3
∗ [

2
12

] = [
0
0

] ………………(14) 

Solving equation (14), we have, 

(λ1
∗ , λ2

∗ , λ3
∗ ) ∈ ℝ3 = (2,0,4). 

Hence, (𝑥1
∗

,
𝑥2

∗) = (7,6) satisfies the Kuhn-Tucker condition and therefore (𝑥1
∗

,
𝑥2

∗) = (7,6) is a candidate for an optimal 

solution of the problem given.  

4. Conclusion 

Here in, we have been able to discuss the theorem of Kuhn Tucker (KT) and its application in obtaining the optimal 
solutions of inequality-constrained problems with nonlinear functions, verifying all the conditions of KT is an 
interesting part of the steps. This result shows that the Kuhn-Tucker method is very efficient in obtaining the optimal 
solutions of inequality-constrained problems.  
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