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Abstract 

This research paper aims to provide a comparative analysis of interpolation methods for estimating bathymetric data. 
Accurate measurement of bathymetry is crucial for a variety of applications, including navigation, oceanography, and 
coastal management. However, due to the high cost and difficulty of acquiring bathymetric data, gaps in measurements 
are common. Interpolation methods are widely used to fill these gaps and estimate the depths of water at unsampled 
locations. In this study, we analyze the most commonly used interpolation methods, including linear, inverse distance 
weighting, kriging, triangulated irregular network, moving least squares, piecewise cubic Hermite interpolating 
polynomial, and spline interpolation. We compare and evaluate the performance of these methods using both simulated 
and real-world datasets. Additionally, we provide a systematic analysis of the strengths and weaknesses of each method 
in terms of their accuracy in estimating bathymetry. The goal of this paper is to offer a comprehensive overview of 
interpolation methods for bathymetric data and to assist researchers and practitioners in selecting the most suitable 
method for a given task and dataset. 
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1. Introduction

Bathymetry is the study of the depths and shapes of oceans, lakes, and other water bodies. Bathymetric data refers to 
information about the depth of a body of water, typically collected using specialized instruments such as sonar or laser-
based systems. This data can be collected at various scales, ranging from small bodies of water to large oceans, and is 
often gathered as part of survey or mapping projects. It is used to generate maps of underwater topography, which serve 
various purposes, including navigation, resource exploration, oceanography, earth science research, and environmental 
monitoring [1]. However, there are several challenges and limitations associated with obtaining and using bathymetric 
data, which can restrict the types of analyses and applications possible. These challenges include cost, data quality, 
resolution, and format. To address these issues, several approaches can be employed, such as data sharing and 
collaboration, data standardization, improved measurement technologies, advanced data processing and interpolation 
techniques, and public-private partnerships [2]. Overall, addressing the challenges associated with bathymetric data 
will require collaborative efforts from various stakeholders, including government agencies, research institutions, and 
private companies. 
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Interpolation techniques are a valuable approach for addressing some of the challenges associated with bathymetric 
data, particularly in improving its resolution and accuracy [3]. These methods estimate bathymetric values at 
unsampled locations, effectively reconstructing a complete surface from sparse measurements. They can generate a 
continuous surface from irregularly spaced data points, which is useful for creating maps or visualizations of the 
underwater landscape or for further data analysis. Interpolation also helps fill gaps in the data, enabling depth 
estimation at locations where direct measurements are unavailable. Additionally, these techniques can smooth out 
noise or errors in the data, resulting in more accurate and reliable depth estimates [4]. Overall, interpolation techniques 
are a powerful tool for enhancing the quality and utility of bathymetric data, especially when the data is collected at low 
resolution or contains gaps. These methods range from simple techniques, such as linear interpolation, to more 
advanced approaches, including kriging and moving least squares. The choice of an appropriate interpolation method 
depends on factors such as dataset characteristics, desired accuracy, and computational efficiency. It is essential to 
carefully evaluate the strengths and limitations of different techniques to select the one best suited to specific needs. 
Therefore, this paper discusses and compares various interpolation techniques suitable for bathymetric data. The 
methods explored include linear, inverse distance weighting (IDW), kriging, triangulated irregular networks (TIN), 
moving least squares (MLS), piecewise cubic Hermite interpolation (PCHIP), and spline interpolation. Using both 
simulated and real-world datasets, this research evaluates the performance of these methods based on their accuracy, 
and suitability for different types of bathymetric data. By systematically examining the strengths and limitations of each 
method, this study aims to guide researchers and practitioners in selecting the most appropriate interpolation 
technique for their specific needs. The findings of this paper contribute to a deeper understanding of interpolation 
methodologies, enhancing the accuracy and utility of bathymetric data in various scientific and practical applications. 

The subsequent sections of this paper are structured as follows: Section 2 describes the study area. This section also 
delves into the source data and interpolation points where interpolation is to be performed. Section 3 and its 
corresponding subsections expound upon the methodology, providing a brief description of the interpolation methods. 
Section 4, along with its subsections, engages in a detailed discussion of the model's simulated outcomes, the accuracy 
of the interpolation methods, sensitivity analysis, and guidelines for researchers and practitioners in selecting the most 
appropriate interpolation technique for their specific needs. Section 5 presents the overarching conclusions derived 
from our investigation. 

2. Study Area and Data Preparation 

2.1. Study Area 

The study area for this research spans from 21°N to 23°N latitude and 90°E to 92°E longitude in the Bay of Bengal (BOB). 
It is part of the coast of Bangladesh, a region characterized by significant geographical and geological complexity (see 
Fig. 1). The area encompasses both coastal and offshore zones, including the dynamic Ganges-Brahmaputra Delta. This 
region lies at the interface of two contrasting geographical landscapes, the ocean and the hills, creating a highly complex 
and diverse environment. Understanding these features is crucial for navigation, environmental conservation, and 
sustainable development in the region. The Himalayas and Kashi-Jaintia hills, situated to the north and east of the 
country, respectively, contribute to inland flooding through monsoon rains and the melting of snow and ice. These 
processes feed numerous rivers, which cause riverbank erosion, sedimentation, and river migration [5]. On the other 
hand, the BOB is the source of various natural disasters, including tropical cyclones and associated storm surges, floods, 
salinity intrusion, and coastal erosion. Among these, tropical cyclones and their associated surges are particularly 
devastating for the coast of Bangladesh. From the above description, it is evident that the coastal belt of Bangladesh is 
one of the world’s most vulnerable regions. Additionally, two other critical factors influencing surge levels in the region 
are its shallow bathymetry and the presence of numerous islands of varying shapes. The bathymetry of this region is 
predominantly shallow, shaped by extensive sediment deposition from the Ganges and Brahmaputra rivers. These river 
systems transport and deposit massive amounts of sediment, forming a gently sloping seabed that extends into the BOB. 
The interaction of fluvial, marine, and tectonic processes further contributes to the region’s dynamic nature, making 
accurate bathymetric measurements a significant challenge. Given the complexities and data gaps inherent in this 
region, interpolation methods play a crucial role in bathymetric analysis. The sparsity of direct measurements, driven 
by the high cost and logistical challenges of marine surveys, necessitates robust interpolation techniques to estimate 
depths at unsampled locations. These methods are particularly relevant in the study area, where sedimentation patterns 
and tidal influences create a constantly evolving seafloor. 
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Figure 1 The study area spanning from 21°N to 23°N latitude and 90°E to 92°E longitude in the BOB 

2.2. Source Data and Interpolation Points 

The General Bathymetric Chart of the Oceans (GEBCO) data sets are among the most widely utilized global bathymetric 
resources [6]. Managed through an international collaboration of organizations and experts, GEBCO provides freely 
available, high-quality bathymetric data aimed at mapping the seafloor's shape and depth on a global scale. These data 
sets are compiled from a combination of direct measurements from ship-based surveys, satellite-derived altimetry for 
estimating seafloor features in areas lacking direct data, and contributions from national and international agencies, 
private organizations, and academic institutions. The GEBCO_2024 Grid offers a global bathymetric grid with a 
resolution of 15 arc-seconds (~500 meters), representing ocean floor depths relative to sea level. The dataset provides 
latitude and longitude coordinates in decimal degrees for every grid point. Depth measurements are given in meters, 
with negative values indicating depths below sea level. For the purposes of our study, the depth values were converted 
to positive values to simplify processing and analysis. To assess the performance of various interpolation methods, the 
original GEBCO dataset was systematically reduced to a coarser grid resolution of 30 arc-seconds (~1000 m). This was 
accomplished by skipping every second row and column in the original dataset. The resulting coarser grid simulates the 
presence of gaps in bathymetric data, reflecting real-world scenarios where data acquisition is incomplete or irregular 
due to logistical or environmental constraints. The skipped data points from the original 15 arc-second resolution were 
retained as ground truth for validating and comparing the accuracy of different interpolation techniques. The coarser 
30 arc second grid retains sufficient information to preserve the general bathymetric features of the study area while 
creating a challenging test scenario for interpolation algorithms. 

The study area, covering 21°N to 23°N latitude and 90°E to 92°E longitude, was divided into equally spaced [600,600] 
grid points. These points were used as interpolation points for various interpolation methods. The [600,600]  grid 
resolution was selected to ensure adequate coverage of the study area while aligning with the scale of the original 
GEBCO dataset. This resolution also allowed for sufficient gaps in the data to test how the interpolation methods 
perform in filling these gaps and generating a smooth bathymetric surface. As described earlier, the study area includes 
both land and water regions, making it necessary to discretize and approximate the boundary between land and sea. 
Discretization was essential to convert the continuous surface of the study area into a manageable grid format for 
computational purposes. Bathymetric data inherently focuses on water depths, meaning points falling on land are not 
relevant for depth interpolation. Without discretization and boundary approximation, identifying grid points as either 
land or sea would be ambiguous, potentially reducing the accuracy of interpolation. Several methods exist for 
approximating complex geometric domains, among which the stair-step representation is the simplest and most 
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effective [7]. This algorithm is particularly well-suited for handling the complex transitions between land and sea in 
regions like the Ganges-Brahmaputra Delta, where sediment deposition, tidal influences, and dynamic coastal processes 
create irregular boundaries. In this study, we also employed the stair-step representation algorithm to approximate the 
domain. By applying this algorithm, grid points were classified as either land or water, ensuring that interpolation 
methods were applied only to relevant water-covered points. This approximation improved the reliability of the 
generated bathymetric surfaces and provided a robust basis for comparing the performance of different interpolation 
methods. The approximated domain is shown in Fig. 2. 

 

Figure 2 The approximated domain after stair step representation 

3. Methodology 

The study area is complex, characterized by numerous wide and narrow rivers interconnected with the BOB. The region 
includes both water bodies and adjacent landmasses, where the land's elevation above sea level strongly influences the 
performance of interpolation methods. To address this, we tested the interpolation methods in two distinct ways to 
assess their robustness and accuracy under varying conditions. First (Approach 1), the interpolation methods were 
tested without making any adjustments to the elevation values. This scenario reflected real-world conditions, where 
interpolation must handle the natural variability of both land and sea elevations. This approach allowed us to observe 
how each interpolation method performs when confronted with the complexities of mixed terrain, including abrupt 
transitions between land and water. Second (Approach 2), the depth values above sea level (land elevations) were set 
to zero. This approach aimed to minimize the influence of land heights on the interpolation process, allowing the 
methods to focus solely on estimating bathymetry for the water-covered regions. By reducing the variability introduced 
by land elevations, this setup provided a controlled environment for evaluating the interpolation techniques in areas 
where bathymetric data gaps exist. These two experimental setups provided a comprehensive framework to compare 
and evaluate interpolation methods under both controlled and natural conditions. By analyzing the outcomes, we aimed 
to identify the strengths and limitations of each method in handling the unique challenges posed by the study area's 
bathymetric and topographic complexity. 
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3.1. Interpolation methods 

In this study, we have chosen seven interpolation methods that are often used in interpolating spatial data. Until now, 
interpolation methods have been very diverse. These methods are used depending on the case study. However, this 
study only focused on the interpolation methods stated earlier. A brief description of them is given below. 

3.1.1. Linear Interpolation 

Linear interpolation is a straightforward and widely used method for estimating values between two known data points. 
It assumes that the change between the two points follows a linear relationship and calculates the unknown value based 
on this assumption. This technique is particularly useful when dealing with evenly spaced data or when a simple 
approximation is sufficient. Linear interpolation works by drawing a straight line between two adjacent data points and 
determining the value at the desired location along this line. The method is computationally efficient and easy to 
implement, making it a popular choice for applications in fields such as engineering, computer graphics, and data 
analysis. However, it is important to note that linear interpolation may not accurately capture complex patterns or 
nonlinear relationships in the data, as it relies solely on the assumption of a straight-line relationship between points. 
Despite this limitation, it remains a valuable tool for quick estimations and smooth transitions between known values. 
For given two known points (𝑥0, 𝑦0) and (𝑥1, 𝑦1), the linearly interpolated value 𝑦 at a point 𝑥 (where 𝑥0 ≤ 𝑥 ≤ 𝑥1) is 
calculated as: 

𝑦 = 𝑦0 +
(𝑥 − 𝑥0)

(𝑥1 − 𝑥0)
(𝑦1 − 𝑦0) 

3.1.2. IDW Interpolation 

IDW interpolation is one of the simplest and most straightforward methods for spatial interpolation. This technique 
predicts values at unknown points based on the distances between the observed data points and the target prediction 
point. Specifically, the closer an observation point is to the prediction point, the greater its influence on the interpolated 
value compared to more distant observation points [8]. The method calculates the interpolation value at each target 
point as a weighted average of the values from nearby scattered data points. The weight assigned to each observed point 
decreases as its distance from the prediction point increases [9]. IDW interpolation performs particularly well when the 
data points are evenly distributed across the study area [8]. The method provides a deterministic estimate of unknown 
values by computing a linear combination of the observed values, with weights inversely proportional to their distances 
from the prediction point [10]. The mathematical formula for IDW interpolation is as follows: 

𝑧𝑗 =

∑
𝑥𝑖

𝑑𝑖𝑗
𝛽

∑
1

𝑑𝑖𝑗
𝛽

 

where 𝑧𝑗  – the value of unknown or interpolated points, 𝑛 – the total number of sample points, 𝑥𝑖  – the 𝑖th value of 

known or observation points, 𝑑𝑖𝑗 – the difference between the known and unknown values, and 𝛽 – the weighting power 

[11]. 

3.1.3. Kriging Interpolation 

Kriging is an advanced interpolation technique that utilizes Gaussian processes for data modeling and prediction, 
making it widely recognized as Gaussian Process Regression. Unlike deterministic interpolation methods, Kriging 
incorporates a statistical model that accounts for spatial autocorrelation. Spatial autocorrelation refers to the 
relationship between the values of data points and their spatial separation. This method is especially effective when 
there is a known spatial dependence, such as a distance or directional bias in the data. To model a surface using Kriging, 
a semi-variogram is first constructed based on the known data points [12]. There are several variants of Kriging, 
including Simple Kriging, Ordinary Kriging, Universal Kriging, and External Trend Kriging [13]. For this study, Simple 
Kriging will be employed. In Simple Kriging, weight values are determined by minimizing the error variance. The 
method relies on a variogram, which is a function of the separation distance, to quantify spatial covariance [11]. The 
empirical equation used to construct the variogram is as follows: 

𝛾(𝑑𝑖𝑗) =
1

2𝑛
∑[𝑥𝑖 − (𝑥𝑖 + 𝑑𝑖𝑗)]

2
𝑛

𝑖=1
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where 𝛾(𝑑𝑖𝑗) – the function of the ℎ-variogram, 𝑛 – the total number of sample points, and 𝑥𝑖 – the 𝑖th value of known 

or observation points. 

3.1.4. TIN Interpolation 

Another effective approach for representing topography is the TIN, which models a surface by dividing it into a series 
of continuous, non-overlapping triangles. Each node of these triangles is assigned an elevation value, and the elevation 
between nodes can be interpolated to create a continuous surface [14]. The TIN model serves as an alternative to grid-
based and geometric models, providing a way to predict values in unsampled regions while preserving the original 
shape of the terrain or objects. It has been widely used to address various challenges, such as generating topographic 
maps, creating object buffers, and managing multi-layer data [15]. The triangles generated by the TIN method are known 
as Delaunay triangulations. This approach is particularly advantageous for interpolation within triangles because it 
produces the most equiangular set of triangles possible. A Delaunay triangle is defined as one in which no other points 
lie on the circumscribed circle that passes through its three vertices [16]. This property ensures optimal geometric 
properties for interpolation and surface representation. 

3.1.5. MLS Interpolation 

The MLS method was introduced by Lancaster and Salkauskas for smoothing and interpolating data [17]. The core idea 
of the method is to use a weighted least squares formulation for an arbitrary fixed point and then extend this process 
across the entire parameter domain. For each point in the domain, a weighted least squares fit is computed and 
evaluated individually. The global function 𝑓(𝑥) is derived from a set of local functions 𝑓𝑥(𝑥), which are obtained by 
minimizing the following expression: 

𝑓(𝑥) = 𝑓𝑥(𝑥), 𝑚𝑖𝑛
𝑓𝑥∈∏  𝑑

𝑚

∑ 𝜃(‖𝑥 − 𝑥𝑖‖)‖𝑓𝑥(𝑥𝑖 − 𝑓𝑖)‖2

𝑖

 

Instead of constructing a global approximation directly, the MLS method continuously constructs and evaluates a local 
polynomial fit over the entire domain, resulting in the MLS fit function. The weighting function plays a critical role in 
this process: when the distance between points is very small, the weights approach infinity near the input data points. 
This forces the MLS fit function to interpolate the prescribed function values at these points. 

3.1.6. PCHIP Interpolation 

The PCHIP is a widely used interpolation method designed to preserve the shape of the data and avoid overshooting or 
oscillating behavior, which is common in other interpolation techniques like cubic splines. PCHIP constructs a piecewise 
cubic polynomial that interpolates the data points while ensuring that the interpolant is monotonic in intervals where 
the data is monotonic. This makes it particularly suitable for applications where preserving the original trend and shape 
of the data is critical, such as in scientific visualization, engineering, and data analysis [18]. The method works by 
defining a cubic polynomial for each interval between consecutive data points. Unlike standard cubic splines, PCHIP 
uses a carefully chosen set of slopes (derivatives) at the data points to ensure that the interpolant does not introduce 
extrema (maxima or minima) that are not present in the original data. These slopes are computed based on the shape 
of the data, ensuring that the interpolant remains smooth and visually pleasing while adhering to the monotonicity 
constraints. For each interval [𝑥𝑖 , 𝑥𝑖+1], the cubic Hermite polynomial 𝐻𝑖(𝑥) is defined as: 

𝐻𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)

3 

where 𝑎𝑖 – the function value at 𝑥𝑖 , 𝑏𝑖 – the slope at 𝑥𝑖 , 𝑐𝑖 and 𝑑𝑖 – the coefficients determined by the function values and 
slope at 𝑥𝑖 and 𝑥𝑖+1. 

3.1.7. Spline Interpolation 

Spline interpolation is a powerful and widely used method for constructing smooth curves that pass through a given set 
of data points. Unlike simpler interpolation methods like linear interpolation, spline interpolation uses piecewise 
polynomials achieve a high degree of smoothness and flexibility. This makes it particularly useful in applications where 
smoothness and continuity are critical, such as computer graphics, numerical analysis, and engineering design [19]. The 
key idea behind spline interpolation is to divide the domain into smaller intervals and fit a polynomial to each interval, 
ensuring that the resulting curve is continuous and smooth at the points where the intervals meet. The most common 
type of spline interpolation is cubic spline interpolation, which uses third-degree polynomials and ensures that the 
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interpolant has continuous first and second derivatives. For a set of data points (𝑥𝑖 , 𝑓𝑖) a cubic spline 𝑆(𝑥) is defined as 
a piecewise function: 

𝑆(𝑥) = {
𝑆0(𝑥),                𝑥0 ≤ 𝑥 < 𝑥1

⋮                                                 
𝑆𝑛−1(𝑥),       𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛

 

Each 𝑆𝑖(𝑥) is a cubic polynomial of the form:  

𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)

3 

4. Results and Discussion 

4.1. Evaluation Metrics 

To assess the performance of various interpolation methods, we evaluated the Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and the total number of water-covered interpolated points where depth values were above sea 
level (negative points). The RMSE and MAE indicate overall accuracy, while the total negative points highlight cases 
where the interpolation method incorrectly predicted land elevations in the sea. RMSE and MAE are respectively 
formulated below. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑧𝑗)

2
, 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑖 − 𝑧𝑗|, 

where 𝑧𝑗 – the value of unknown or interpolated points, 𝑛 – the total number of sample points, and 𝑥𝑖 – the 𝑖th value of 

known or observation points [8,13]. 

4.2. Comparison of Interpolation Methods 

To evaluate interpolation performance, we implemented the first approach, where no adjustments were made to the 
elevation values. The results are summarized in Table 1.  

Table 1 Performance comparison of interpolation methods (Approach 1) 

Method RMSE MAE Total Negative Points 

Linear 3.09 1.07 8,290 

IDW 3.08 1.15 8,096 

Kriging 3.05 0.89 10,182 

TIN 3.31 1.04 9,594 

MLS 18.36 11.67 51,942 

PCHIP 3.00 1.14 8,177 

Spline 3.85 1.27 8,492 

From the RMSE and MAE values, Kriging performed the best in terms of overall error, achieving the lowest MAE (0.89) 
and a competitive RMSE (3.05). PCHIP and IDW also showed relatively lower RMSE and MAE values, making them 
reliable choices for bathymetric interpolation. In contrast, Moving Least Squares (MLS) performed the worst, with an 
exceptionally high RMSE (18.36) and MAE (11.67), indicating that it produced significantly higher overall errors in 
comparison to other methods. The high values of both RMSE and MAE suggest that MLS generated large discrepancies 
between the estimated and true depth values, making it unreliable for bathymetric applications in this study area. 
Additionally, MLS generated a substantial number of false land points in water, which indicates that the interpolation 
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method misclassified water areas as land. In comparison, Inverse Distance Weighting (IDW) produced the fewest false 
land points, suggesting that it handled the land-water transition more effectively. Kriging and PCHIP also showed 
relatively reliable performance, with lower RMSE and MAE values, but IDW emerged as a more dependable method 
when it comes to reducing misclassification errors, particularly in the boundary regions between land and water. On 
the other hand, MLS’s poor performance underscores the importance of choosing an interpolation method that not only 
minimizes error but also avoids misclassifying land and water regions. The evaluated depth values obtained using the 
interpolation methods under Approach 1 are presented in Fig. 3. 

4.3. Comparison of Interpolation Methods (Approach 2) 

  

a) Linear b) IDW 

  

c) Kriging d) TIN 

  

e) MLS f) PCHIP 
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g) Spline 

Figure 3 The evaluated depth values obtained using the interpolation methods under Approach 1 

To further evaluate interpolation performance, we implemented a second approach where land elevations above sea 
level were set to zero. The results are summarized in Table 2. By setting land elevations above sea level to zero in 
Approach 2, we observed a substantial reduction in both RMSE and MAE for most interpolation methods. These metrics 
are critical for assessing interpolation performance, where RMSE measures the overall magnitude of errors (including 
larger discrepancies) and MAE quantifies the average absolute error. Linear, PCHIP, IDW, and TIN all exhibited relatively 
low RMSE and MAE values, indicating that these methods performed well in minimizing interpolation errors and 
provided reliable depth estimates. Notably, none of these methods generated false land points in water, demonstrating 
their effectiveness in managing the land-water boundary and preventing misclassification. This is a significant 
improvement compared to Approach 1, where more false land points were observed. Kriging, despite its lower RMSE 
(0.46) and MAE (0.15), still had a noticeable number of false land points in water (5,171 misclassified points). Although  

Table 2 Performance comparison of interpolation methods (Approach 2) 

Method RMSE MAE Total Negative Points 

Linear 0.61 0.28 0 

IDW 0.67 0.34 0 

Kriging 0.46 0.15 5,171 

TIN 0.57 0.23 37 

MLS 9.61 6.72 9,238 

PCHIP 0.67 0.34 0 

Spline 0.67 0.27 1,715 

Kriging achieved the best overall error metrics, the misclassification of water as land suggests that this method remains 
sensitive to the topography, even when land elevation values are adjusted. This result highlights a trade-off: Kriging can 
minimize overall error but may still struggle in accurately distinguishing between land and water in certain regions. 
The Moving Least Squares (MLS) method exhibited the highest RMSE (9.61) and MAE (6.72) values, signifying that it 
was the least accurate of all the methods evaluated. Additionally, it produced a large number of false land points (9,238), 
further underscoring the limitations of this method in handling bathymetric data. The high RMSE and MAE values 
suggest that MLS fails to capture the true depth values effectively, particularly in areas where the land-water transition 
is critical. Interestingly, spline interpolation, while showing an MAE (0.27) similar to TIN and IDW, still generated a 
significant number of false land points (1,715). This indicates that, despite its relatively low average error (MAE), the 
method is more prone to misclassifying land and water regions compared to other methods like IDW and TIN, which 
produced no false land points. In summary, the results indicate that reducing land elevation to zero improved 
interpolation accuracy across most methods, particularly in terms of RMSE and MAE. However, methods like Kriging 
and Spline demonstrated trade-offs: while their overall error values were low, they still misclassified land and water 
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points, emphasizing the sensitivity of interpolation methods to topographical constraints. The MLS method, on the other 
hand, continued to perform poorly with high error metrics and a significant number of false land points, confirming its 
unsuitability for bathymetric applications in this study. The evaluated depth values obtained using the interpolation 
methods under Approach 2 are presented in Fig. 4. 

  

a) Linear b) IDW 

  

c) Kriging d) TIN 

  

e) MLS f) PCHIP 
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g) Spline 

Figure 4 The evaluated depth values obtained using the interpolation methods under Approach 2 

4.4. Effect of Land Elevation on Interpolation 

Given the complexity of the study area, where multiple wide and narrow rivers connect to the BOB, land elevation above 
sea level has a significant influence on interpolation methods. To evaluate this effect, we tested two approaches: the 
first used raw elevation values without modification, while the second set land elevations above sea level to zero before 
interpolation. The results from the first approach indicated that certain methods, particularly Kriging and MLS, were 
more prone to introducing artificial land elevations in sea regions. In contrast, the second approach aimed to reduce the 
influence of land elevation on interpolation accuracy by ensuring that only water-covered areas were considered for 
depth estimation. 

4.5. Implications for Bathymetric Interpolation 

The findings of this study highlight the importance of selecting an interpolation method based on the specific 
characteristics of the study area. The presence of rivers, complex coastal boundaries, and varying sedimentation 
patterns strongly influences interpolation performance, making it essential to consider both accuracy and the potential 
for land-sea misclassification when choosing an interpolation technique. Future research may explore hybrid 
approaches that combine the strengths of multiple interpolation methods or investigate modifications to Kriging and 
MLS to improve their ability to distinguish between land and water regions. 

4.6. Recommendations for Further Research 

Further studies should explore hybrid interpolation techniques that integrate Kriging’s accuracy with the robustness of 
IDW to enhance bathymetric estimation. Additionally, testing higher-resolution datasets could provide insights into the 
scalability and applicability of interpolation methods in more detailed bathymetric modeling. The impact of 
preprocessing techniques, such as land-sea boundary smoothing, should also be evaluated to determine their 
effectiveness in improving interpolation accuracy. These advancements would contribute to more accurate and reliable 
bathymetric data generation, which is essential for applications such as coastal management, marine navigation, and 
oceanographic modeling.   

5. Conclusion 

This study evaluated multiple interpolation methods for bathymetric data in a complex coastal environment. The results 
demonstrated that PCHIP and IDW were the most reliable interpolation techniques, achieving a balance between 
accuracy and correct land-sea classification. Kriging produced the lowest MAE but struggled with land-sea boundary 
misclassification, highlighting its sensitivity to elevation variations. The Moving Least Squares (MLS) method was found 
to be unsuitable for bathymetric interpolation due to high error rates. A key finding was that reducing the influence of 
land elevation by setting land heights above sea level to zero significantly improved interpolation accuracy. The two 
tested approaches showed that interpolation performance is strongly influenced by land-sea boundary conditions, 
making careful preprocessing an essential step in bathymetric modeling. Overall, the study emphasizes the importance 
of selecting interpolation techniques that align with the geographical complexity of the study area. Future research 
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should focus on refining interpolation algorithms to improve land-sea boundary handling and exploring hybrid 
approaches for enhanced bathymetric accuracy.  
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