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Abstract 

Modern structural health monitoring systems became more precise and effective after scientists combined AI and 
Genetic Algorithms (GAs) technologies. Structural integrity assessment relies primarily on five Traditional Non-
Destructive Testing (NDT) methods which include Ultrasonic Pulse Velocity (UPV) tests, Rebound Hammer (RH) tests, 
Half-Cell Potential (HCP) tests and Core Cutting tests and Carbonation Depth tests. The available detection methods 
create difficulties due to the unwanted data noise together with unpredictable accuracy levels throughout each 
assessment period and a lack of real-time investigation capability. The research evaluates how GAs enhance NDT 
procedures for optimizing structural maintenance operations. This study utilized MATLAB to process NDT data from 
six different sites which led to graphic outputs beneficial for GA-based computational evaluations. The GA adopted 
selection with crossover and mutation as techniques for precision refinement that fulfilled requirements of Indian 
Standard (IS) codes. GAs prove effective for maintenance strategy enhancement and prediction of structural 
deterioration and decision-making process improvement. Numerous field applications using GA techniques reach 
accuracy rates of 98% which suggests their suitability for on-site health monitoring operations. Recent research 
patterns show that GAs maintain their growing popularity for infrastructure maintenance applications because they 
offer affordable data-centered solutions. The research adds value to present-day developments of artificial intelligence-
based structural health monitoring protocols that emphasize the combination of computational intelligence with 
standard NDT techniques. AI-based methods lead to major improvements in the sustainability and reliability of 
infrastructure which results in both extended structural safety and optimized maintenance operations. 
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1. Introduction

Building construction requires structural maintenance as its fundamental element for maintaining durability and safety 
of buildings. Time-induced degradation of buildings occurs because of environmental conditions and material 
deterioration as well as outside loads which requires periodic inspections combined with maintenance work. The 
combination of visual inspections and typical Non-Destructive Testing (NDT) techniques demonstrates several 
limitations in both accuracy levels and real-time monitoring besides efficiency. Using NDT data together with Genetic 
Algorithms (GA) creates an optimized system for conducting structural maintenance operations. 

The research develops a complete maintenance strategy using Non-Destructive Testing techniques which combine 
Ultrasonic Pulse Velocity (UPV) as well as Rebound Hammer (RH) and Half-Cell Potential (HCP) and Core Cutting and 
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Carbonation Depth tests to create a methodology system. These tests provide processed data through MATLAB leading 
to graphical output that the genetic algorithm uses as an input. Optimizer maintenance strategies along with prediction 
of deterioration patterns emerge from the genetic algorithm implementation to guide better decision-making about 
vital repair and strengthening measures.  

Research need arises because both aging infrastructure and data-based maintenance strategies continue to increase 
while old infrastructure requires effective repair methods. Today many structures encounter delayed necessary repairs 
because current assessment methods prove ineffective. The research integrates genetic algorithms with NDT data with 
the purpose of creating an interface that will reduce the time lag between information acquisition and smart decision 
processes for structural health monitoring and maintenance improvements. This proposed technology delivers accurate 
results while reducing expense through better infrastructure viability by increasing operational duration.  

The investigation delivers substantial value to construction management through an organized framework for 
performing structural health monitoring. Engineers together with decision-makers obtain better predictions of 
maintenance requirements through this approach enabling optimal resource use for extending structure lifetime. The 
worldwide surge of urbanization and infrastructure expansion make the results of this study highly practical since they 
improve both residential and commercial building reliability and safety. 

2. Literature Review  

The research conducted by Demirboğa et al. analysed how aggregate type affects ultrasonic wave velocity (UPV) 
measurement results in high-strength concrete structures for mechanical and ultrasonic properties assessment in 
structural health monitoring applications [1]. Kılıç et al. applied image analysis techniques to investigate concrete 
particle-size distribution which enables durability analysis as well as non-destructive testing for improved quality 
evaluation [2]. According to Azariyoon and Khanzadi UPV testing proves successful for both detecting defects and 
validating the homogeneity of reinforced concrete structures [3]. The analysis presented by McCann and Forde 
evaluated multiple NDT testing methods with particular focus on value-based selection of multiple evaluation 
techniques for structural health assessment [4]. The research by Concu et al. examines NDT applications for concrete 
building refurbishment by explaining diagnostic capabilities and long-term maintenance roles [5]. 

The combination of AI and IoT technology and NDT has been researched as a method to enhance the accuracy of 
structural assessments according to [6, 7]. GA has become a popular investigative tool for damage detection within 
structural health monitoring (SHM) of bridges since it shows proven effectiveness in finding crucial damage 
identification parameters [8, 9]. Research investigators designed testing scenarios through which GA establishes 
partnerships with wave-based SHM systems for developing artificial intelligence algorithms and computational models 
for detecting fractures in homogeneous structures [10, 11]. 

Research indicates that GA demonstrates success in detecting structural deterioration by analyzing grid structure 
damage through stiffness degradation factors and frequency tests and vibration form evaluations [12, 13]. Researchers 
have developed existing GA models through improved recombination and mutation operations which enhance both 
damage identification accuracy and speed of convergence [14, 15]. According to researchers GA provides a suitable 
method for beam structure damage assessments through frequency-based crack detection which operates effectively 
across different loading environments [16, 17]. 

Real-time structural damage identification along with precise damage detection through the combination of AI/Internet 
of Things/computer vision with GA has greatly improved both structural safety and operational lifespan according to 
research reports [18, 19]. Research on GA applications demonstrated the ability to achieve high structural defect 
detection accuracy reaching above 90% accuracy persistently [20, 21]. The methods use efficient techniques for 
determining fast repair solutions while reducing maintenance costs and developing improved strategic approaches [22, 
23]. The combination of GA with machine learning followed by its integration to deep learning enhanced structural 
maintenance through expanded industrial applications and greater precision and effectiveness [24, 25]. 

Research experiments have integrated GA with artificial neural networks (ANN) and artificial neural networks (ANN) 
for developing improved structural health monitoring approaches [26, 27]. The research field demands multi-objective 
optimization through GA for maintenance scheduling purposes because it helps balance cost-effectiveness against long-
term durability [28, 29]. Research by scientists demonstrates that GA-based models display superior performance to 
classic NDT methods when it comes to identifying emerging damage and forecasting structural durability [30, 31]. 
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Figure 1 Last 10 years literature survey 

3. Methodology  

 

Figure 2 Flow chart of project 

4. Results  

• The GUI developed for two different cases i.e. direct and indirect methods. The result generated gives accuracy 
up to 5 to 7 %. 

• This system saves time in interpretation of results. 
• The recommendations are as per the previous test reports and may be modified as per the site conditions. 

5. Discussion  

The implementation of the Genetic Algorithm (GA) for Non-Destructive Testing (NDT) data handled by MATLAB 
operated on data from six structural sites. The data points analyzed using Ultrasonic Pulse Velocity (USPV), Rebound 
Hammer (RH), Half-Cell Potential (HCP), core cutting, and carbonation depth were processed by MATLAB for both 
computational operations and graphical output generation. The GA achieved optimized structural integrity assessment 
through its real data processing where it used repeated selection crossover and mutation operations to generate 
findings which matched site parameters. The research results obtained passing tests based on the conventions set by 
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Indian Standard (IS) codes to verify their compliance. The automated reporting system in MATLAB produced PDF 
reports that integrated data verification between projections and field readings thus improving both efficiency and 
structural maintenance decisions.  

Through MATLAB users gained the ability to conduct direct and indirect assessments of structural health evaluation. 
Compressive strength and durability parameters were determined by the direct method through core cutting and 
carbonation depth analysis according to empirical relations and IS code provisions. The indirect method used NDT 
readings including USPV, RH and HCP that were connected to strength parameters through pre-established models and 
integrated machine learning techniques in MATLAB. The ability to obtain precise material property predictions 
emerged through MATLAB when it’s fitting, and optimization tools operated on these datasets. The assessment benefits 
from both direct and indirect methods which created a detailed approach towards structural evaluation and 
maintenance planning through data-driven strategies as shown below in figures (3-8). 

  

Figure 3 Dependencies used for test report Figure 4 Test report is generated 

  

Figure 5 Test report is generated for Indirect Method 
 

Figure 6 Test report is generated for Direct Method 
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Figure 7 Test report is generated in PDF format Figure 8 Test report is generated in PDF format 

6. Conclusion  

The research implements an organized approach between Non-Destructive Testing data (NDT) and Genetic Algorithms 
(GA) to improve structural upkeep methodologies. Structural health evaluation and repair strategy optimization proves 
possible through the combination of NDT test readings including USPV, RH, HCP, core cutting and carbonation 
assessments. The combination of Genetic Algorithms proves suitable for analyzing complicated datasets through which 
maintenance forecasts become dependable. Through the proposed methodology decision-making becomes more 
effective and structures require timely maintenance thus their lifespan increases, and the safety standards of the 
construction sector improve. 

7. Future Scope 

Future research should explore the use of deep learning and neural networks technology to improve the structural 
health monitoring process. Real-time IoT-based sensor integration alongside NDT procedures enables continuous 
structural monitoring of events with dynamic data evaluation for predictive maintenance. The validation of the model 
depends on expanding its dataset to include structural materials of multiple kinds and tests performed in various 
construction environments. Planning should investigate both the practical usability alongside financial viability of this 
method for massive infrastructure projects to study its actual effects. 
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