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Abstract 

Clean energy resources have been considered globally as the energy of the future due to its low or no carbon footprint. 
Clean energy is the energy that replenished itself after use. To get most of these energy resources, constant improvement 
in manufacturing and process is highly needed. One of the key technologies revolutionizing the clean energy power 
generation is machine learning. Machine learning is an algorithm that examine enormous volumes of data in order to 
spot trends, generate predictions, and improve decision-making. This article therefore, using descriptive approach 
explored the application of machine learning in clean energy machinery efficiency and reliability as well as clean energy 
projects. The energy systems and projects considered in the article include, solar, wind, tidal, geothermal, biomass and 
hydroelectric energy sources. Based on this article findings, machine learning algorithm can be utilized to initiate 
predictive maintenance, provide real-time data for decision-making, and optimize process and overall improve the 
efficiency and reliability of these energy machines. In terms of clean energy project delivery, machine learning can be 
utilized in project planning, site selection and resources allocation. Although, machine learning has quite a number of 
benefits, no doubt it has its own drawbacks. These drawbacks include the quality and availability of data, which might 
be irregular or scarce in some clean energy resource which will determine how accurate machine learning models can 
be developed. Widespread adoption may be hampered by computational complexity and the requirement for a strong 
hardware foundation.  

Keywords: Machine learning; Clean energy; Reliability; Efficiency; Solar; Wind; Tidal; Geothermal; Biomass; 
Hydroelectric 

1. Introduction

The clean energy sector is quickly evolving, propelled by technological developments with an increasing demand for 
sustainable energy solutions to mitigate the changing climate [38]. In the UK for instance, the government's current 
plans call for at least 95% of electricity being generated from low-carbon sources by 2030, effectively aiming for clean 
power to meet 100% of its electricity demand by that time, with the majority of this coming from renewable sources 
like solar, offshore wind, and biomass etc. [55]. The UK is also committed to achieving net zero emissions by 2050, which 
would necessitate an even higher share of renewable energy [52]. Similarly, UK also plans to achieve 68% emissions cut 
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by 2030, and achieve net zero by 2050 [36]. Additionally, United state projected to have 44% of its electricity from 
renewable energy such as solar, wind, geothermal, hydroelectric and other clean sources, while its clean energy source 
amount to only 3% of its total generation provided in the energy projection outlook from the year 2022 reference case 
as illustrated in Figure 1. 

 
Source: [109]. 

Figure 1 Renewable energy projective target 

United states also pledges to boost energy storage systems, like the battery energy storage system, solar hybrid systems, 
natural gas fired generators to provide energy when non-dispatchable energy source such as the solar, wind is 
unavailable [109].  

Moreover, Germany is another country that pledges 100% of its electricity supply from clean energy by 2050. According 
to its updated Climate Change Act, Germany wants to reach net-zero emissions by 2045 and negative emissions after 
2050, with intermediate goals of about 65% decrease from 1990 levels by 2030 and 88% reduction by 2040 [44]. In its 
overarching objective is to reach net-zero emissions by 2045, Germany's energy transition strategy calls for 80% of its 
electricity to come from renewable sources by 2030 and 100% by 2035 [43]. 

From the above, it can be concluded that these targets directly or indirectly translate into a number of innovations, 
developments in the adoption of clean energy systems and clean projects delivery. Therefore, in order to achieve these 
targets, and successfully deliver this renewable energy projects, crucial data such as weather data (wind speed, solar 
radiation), geographic data (terrain, land use), grid connection details, load profiles, environmental impact data, 
resource potential assessments, economic factors; installation, maintenance, incentives [32]. Others include regulatory 
frameworks unique to the project location and selected renewable energy source (solar, wind, hydro, geothermal) are 
all essential for developing a renewable energy project [42]. However, to guarantee optimal energy production and 
financial viability, the efficiency and reliability of the machinery utilized in clean energy projects continue to be a 
significant obstacle that need to be overcome [93]. Thus, by enhancing the functionality, upkeep, and durability of 
renewable energy infrastructure, machine learning (ML), a branch of artificial intelligence (AI), is significantly 
contributing to the resolution of these issues [4]. Creating algorithms that examine enormous volumes of data in order 
to spot trends, generate predictions, and improve decision-making is known as machine learning [14]. By incorporating 
machine learning into renewable energy machinery, operators may exploit real-time data analytics, automate 
procedures, and increase overall system efficiency. In order to decrease downtime and improve the dependability of 
clean energy generation systems, energy suppliers can shift from reactive to predictive maintenance with the use of 
machine learning-driven solutions [49]. Therefore, for the purpose of this article, applications of machine learning in 
clean energy machines/systems and clean energy projects delivery will be considered. 

1.1. Overview of Clean energy and their sources 

The term clean energy describes energy that comes from renewable sources, such as solar, wind, hydropower, 
geothermal, and biomass, which emit few or no greenhouse gases [108]. As the name implies, clean energy is a form of 
energy that does not in any way contribute to air pollution. Because it originates from continuously replenishing 
sources, it is also known as renewable energy [8]. This basically means that, in comparison to fossil fuels like coal and 
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fossils fuel, they have a smaller environmental impact. It also frequently includes energy that is saved through energy 
efficiency measures [39]. As illustrated in Fig. 2, there are various forms of clean energy based on their sources. 
Harvested from the sun is solar energy, which is the result of light and heat being transformed into energy [86]. Several 
technologies are used in this conversion. For various reasons, including low maintenance costs and cost-effective 
technologies, it is the most affordable energy source when compared to other sources [24]. According to [51], China is 
the world's top producer of solar energy, followed by the US, Germany, and Japan. The largest drawback of solar energy 
however, is that it depends on weather and takes a lot of area to erect solar panels [103]. 

 
Source: [86]. 

Figure 2 Forms of clean energy  

1.1.1. Solar energy 

One of the most widely utilized energies in the world is solar energy (SE), it is the radiant ionization energy that the Sun 
emits [5]. Solar energy uses photovoltaic (PV) energy one of the most popular and well-known solar energy technologies 
for a potential future energy source, currently PV energy accounts for about 2% of the world's electricity demand [23]. 

1.1.2. Wind energy 

Another type of clean energy is wind energy, which uses wind to create electricity. The turbines transform the wind's 
kinetic energy into mechanical energy, which a generator subsequently transforms it into electrical energy [120]. India 
ranks fourth in terms of wind energy production, behind China, Germany, and the United States. Wind energy's primary 
drawback is its high land capacity requirements. They are frequently placed in isolated areas that are distant from the 
energy consumers; as a result, transportation expenses rise [56]. 

1.1.3. Hydro energy 

According to [19], utilizing the force of flowing water to generate electricity is known as hydro energy. [98], noted that 
in this type of energy, the water's potential energy is transformed into kinetic energy, that powers the turbine and the 
generator, which generates electricity. The biggest drawback of hydro electricity generation is that, it needs a lot of area 
to store water, and building a dam facility costs a lot of money up front when compared to other kinds [13]. 

1.1.4. Tidal energy 

Tidal energy generates electricity by harnessing the kinetic energy of tides and the rise and fall of seawater [64]. 
According to [29], although tidal turbines are constructed underwater, this is similar to wind energy in turbines. A major 
factor in the production of tides is gravity [96]. Since tides are more predictable than the sun and wind, this is more 
dependable. However, there is still much study and development to be done on this technology [65].  

1.1.5. Geothermal energy 

According to [71], the heat from the earth is used in boilers to create steam, which powers turbines, the form of energy 
generated via this process is known as geothermal energy. [95] reported that, for many years, this energy has been 
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utilized for purposes other than electricity. The primary concerns with this form of energy are that in order to extract 
the heat, they must be constructed at precise locations, like tectonic plate borders [67]. 

1.1.6. Biomass energy 

The only organic energy source is biomass energy, it is a form of energy that is extracted from either living or non-living 
things [107]. Microorganisms, plants, animals, etc. are all present in the source [16]. In this clean energy form, biomass 
feedstocks are utilized and transformed into power and various other uses, primarily biofuels [71]. 

From the foregoing, it can be observed that while none of the aforementioned energy sources are environmentally 
hazardous, each type has its own disadvantages. In place of non-renewable resources like petrol and diesel, biomass 
energy is currently being considered by numerous researchers and governments for the manufacture of different fuels 
like bioethanol, biodiesel, bio-butanol, etc. The application of machine learning on machinery efficiency and reliability 
in clean energy project delivery will also be considered in the subsequent section. 

2. Clean energy projects delivery 

The process of planning, creating, building, and running a project that uses renewable energy sources, such as solar, 
wind, hydro, geothermal, or biomass, to produce heat or electricity with emphasis on sustainability and minimizing 
environmental impact over the course of the project is known as clean energy project delivery [60]. Clean energy 
sources like wind and solar are inherently intermittent and far from consumer’s demand. Supply chain techniques could 
be very beneficial in addressing these temporal and spatial disconnects [71]. Battery storage, for example, would 
provide as an inventory buffer for the grid when combining wind and solar power, which are less predictable [102]. 
Clean energy sources will not be financially viable without a strong supply network. The Clean Energy Delivery (CED) 
project works with important organizations in the renewable energy industry (such as generators, technology 
providers, and electric grid operators) to develop new supply chain methods for cost-effective clean energy delivery to 
end users [62]. The project's researchers hope to create insights and tools for problems ranging from daily operations 
management to strategic planning for the gradual implementation of clean energy generation and transmission [59]. 
Furthermore, the clean energy delivery project can assist businesses beyond the energy industry in aligning their 
environmental initiatives, such as carbon footprints, with commercial prospects from renewable energy procurement 
and, in some circumstances, generation [34]. 

2.1. Clean energy projects machineries 

Basically, any technology that uses clean energy sources like sunlight, wind, water, geothermal heat, and organic matter 
to produce electricity or heat with little impact on the environment is used in clean energy projects [22]. Examples of 
such machines include solar panels, wind turbines, hydroelectric generators, geothermal heat pumps, biomass boilers, 
tidal turbines, and wave energy converters [73]. 

2.1.1. Solar photovoltaic panels 

According to [84], to effectively turn sunlight into energy, solar power generation uses photovoltaic (PV) panels and 
other equipment. A solar power system's main component is its solar panels. Their components are photovoltaic cells, 
which use semiconductors, typically silicon to transform sunlight into direct current (DC) power. There are two primary 
varieties of solar panels, they are monocrystalline and polycrystalline [33]. Other machinery components include; solar 
panel, DC electricity is converted into alternating current (AC) for grid use via inverters. Common types include; power 
optimizers, microinverters, and string inverters [87]. Mounting structures which may be tracking or fixed systems that 
position panels to receive the most sunlight possible [47]. Charge controllers; control the flow of power in battery 
storage systems to avoid overcharging and the batteries systems store extra energy for use when there is little or no 
sunlight, lead-acid and lithium-ion batteries are frequently utilized [54]. Finally, grid-connected systems, transformers 
increase voltage for distribution and transmission. Figure 3 illustrate solar power plants showing the PV panels and 
their mounting structures inset for solar power generations. 
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Source: [99]. 

Figure 3 Solar power plant project 

2.1.2. Wind energy generation machines 

Wind energy is generated via wind turbines, that transforms the wind's kinetic energy into electrical power [37]. 
Onshore (land-based) and offshore (placed in oceans for stronger, more dependable wind resources) constitute the two 
main categories of wind turbines [21]. With continuous advancements, enhancing efficiency and grid integration, wind 
energy is a vital clean energy resource that provides a low-carbon, sustainable substitute for fossils fuel. The turbines 
are made up of various essential components including the Rotor Blades; that usually equipped with three aerodynamic 
blades for maximum efficiency, these blades capture wind energy and revolve [1]. Other parts including the generator, 
gearbox, and control systems are housed in the nacelle. The Gearbox boosts rotational speed to maximize the production 
of electricity. The generator transforms the revolving blades' mechanical energy into electrical energy [27]. The Tower 
raises the turbine to harness more powerful and steady winds while Yaw and Pitch Systems are used for optimal 
efficiency, modify the turbine's direction and blade angles [58]. Figure 4 exemplify one of the biggest global wind farms 
for power generation projects in Japan. 

 
Source: [20]. 

Figure 4 Wind power projects  

2.1.3. Hydro energy generation machines 

The kinetic energy of falling or flowing water is transformed into electrical power via hydroelectric energy machines 
[98]. The hydroelectric turbine, that is powered by water flow, is the main part. Generators that transform mechanical 
energy into electrical energy are attached to these turbines [11]. Hydroelectric plants employ a variety of turbine types. 
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Reaction turbines, like Francis and Kaplan turbines, are appropriate for lower-head, high-flow situations, whereas 
impulse turbines, like Pelton wheels, are utilized for high-head, low-flow water sources [12]. The water pressure and 
flow rate at the location determine the choice of the turbine to be use. There are three types of hydroelectric plants; 
pumped-storage, run-of-river, and dam-based [80]. When energy is needed, dam-based facilities discharge the water 
that has been stored in reservoirs. With little storage, run-of-river plants use the natural flow of rivers to produce power 
[120]. As energy storage devices, pumped-storage facilities release water through turbines during periods of high 
electricity demand and pump it to an upper reservoir during periods of low demand. Hydroelectric power plants 
generate electricity in an efficient, low-carbon, and renewable manner [83]. Nevertheless, they can affect regional 
ecosystems and necessitate substantial infrastructure. Innovations in small-scale hydro systems and fish-friendly 
turbines are enhancing sustainability while preserving energy efficiency [88]. 

2.1.4. Tidal energy generation machines 

Tidal energy can be generated by transforming the kinetic energy of the tidal stream into electrical energy [83]. Different 
heads between two bodies of water can theoretically provide tidal energy [116]. Like other clean energy resources like 
wind and solar, tidal currents and tides waves are predictable, although they are sporadic, resulting from semi-diurnal 
and spring-neap variability [111]. Tidal energy was commonly used as tidal mills centuries ago in Europe and around 
the Atlantic coast of North America [53]. The hydrokinetic system and oscillating water column are the two Tidal energy 
technologies that are currently in use. By 2020, tidal power is anticipated to improved and more economical with 
increased technology [10]. Figure 5 shows a tidal or subsea power generation system. 

 
Source: [61]. 

Figure 5 Tidal or subsea power generation system   

2.1.5. Geothermal energy generation machines 

Geothermal energy producing devices generate power by using heat from the Earth's core. These systems draw steam 
or hot water from subterranean reservoirs using geothermal wells. Turbines attached to electric generators are then 
used to transform the thermal energy into mechanical power [85]. Geothermal power plants come in three primary 
varieties; binary cycle, flash steam, and dry steam. Turbines in dry steam plants are directly powered by subterranean 
steam. High-pressure hot water is extracted in flash steam facilities, where it quickly transforms into steam to power 
turbines [70]. Binary cycle plants transfer heat without directly producing steam by using a secondary working fluid 
that has a lower boiling point than water. For geothermal sources with moderate temperatures, this technique works 
well. [72] noted that continuous operation of geothermal energy devices produces dependable, renewable, and low-
emission electricity. To maximize performance, they need specialized equipment such as cooling systems, heat 
exchangers, and steam separators [13]. By intentionally fracturing rock to boost heat extraction, enhanced geothermal 
systems (EGS) are being created to increase the availability of resources [63]. Geothermal machines provide long-term, 
sustainable energy solutions, despite their high initial price and geographic restrictions. Geothermal power is becoming 
more widely available and effective for meeting the world's energy needs [28]. 
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2.1.6. Biomass energy generation machines 

Biomass energy generation machine produces heat or power from organic resources like wood, agricultural waste, and 
biodegradable trash [94]. To break down biomass and release energy, these systems use pyrolysis, gasification, 
anaerobic digestion, or combustion. [15], reported that burning biomass creates steam in direct combustion systems, 
which powers a steam turbine that is coupled to an energy generator [71]. Biomass is transformed by gasification into 
syngas, or synthetic gas, which fuels gas turbines and internal combustion engines. By using bacteria to break down 
organic waste, anaerobic digestion produces biogas, primarily methane, which powers petrol engines and 
microturbines [87]. Biomass is thermally broken down by pyrolysis to produce syngas, charcoal, and bio-oil, which can 
then be converted into fuels [105]. Large industrial facilities and small-scale home digesters are examples of biomass 
power plants. Boilers, turbines, digesters, gasifiers, and emission control systems are essential parts that maximize 
efficiency and minimize pollution [81]. Improved feedstock processing, carbon capture, and high-efficiency boilers are 
the main topics of recent developments [90]. By using waste materials, biomass energy machines provide renewable, 
carbon-neutral energy; but, in order to avoid emissions and deforestation, they need sustainable source [76]. Despite 
advancements in waste-to-energy and sophisticated biofuels, biomass continues to play a significant role in the world's 
renewable energy mix [77]. 

3. Efficiency and reliability in clean energy generating machines 

The transition to a sustainable energy future depends on the efficiency and reliability of renewable energy generating 
equipment or machine [50]. Clean energy technologies, such as geothermal systems, hydroelectric generators, wind 
turbines, and solar panels, are made to transform renewable resources into usable power with as little negative 
influence on the environment as possible [75]. The ability of a system to efficiently transform available energy into 
electrical power is referred to as efficiency in clean energy generation [30]. For example, depending on the technology 
employed, solar panels' efficiency ratings usually range from 15% to 22% [110]. This efficiency is being increased by 
developments in photovoltaic materials, such as perovskite cells. With advancements in aerodynamics and blade design, 
wind turbines may increase their output while operating at 35% to 50% efficiency [28]. Because hydroelectric and 
geothermal power plants can capture continuous natural energy flows, their efficiency frequently surpasses 80% [97]. 

Consistent energy generation over time is guaranteed by reliability, clean energy sources can produce intermittently, in 
contrast to fossil fuel facilities that produce continuously [2]. Because solar and wind power are weather-dependent, 
energy storage devices like batteries are crucial for reliability. However, more reliable generation is provided by 
geothermal and hydroelectric electricity [74]. Grid integration, maintenance requirements, and machine durability all 
have an impact on reliability. Therefore, to increase longevity and performance, contemporary wind turbines and solar 
farms should include predictive maintenance technology and intelligent monitoring systems [112]. Efficiency and 
reliability are continuously improved by technological developments in materials, energy storage, and system 
integration [15]. AI-driven energy management, smart grids, and advancements in battery storage all contribute to the 
optimization of renewable energy consumption, lowering downtime and enhancing efficiency [48]. Clean energy 
technologies are essential to a sustainable energy future because they are becoming increasingly competitive with 
conventional fossil fuels [77]. In the subsequent section, the application of machine learning on the efficiency and 
reliability of clean energy machines will be the main focus of the article. 

3.1. Machine learning and efficiency and reliability of clean energy machineries 

According to [100], the optimization of clean energy machines’ efficiency and reliability has emerged as a critical 
concern as the world moves towards sustainable energy solutions. A subset of artificial intelligence (AI), machine 
learning (ML) is crucial for improving the efficiency of several renewable energy machines components, such as 
hydroelectric power generation systems, geothermal, biomass, wind, solar, and tidal power [16]. Machine learning 
algorithms examine enormous volumes of data, spot trends, and make forecasted choices that enhance resource usage, 
maintenance planning, and energy production [50]. The function of machine learning (ML) in improving clean energy 
machine reliability and efficiency is covered in this study. 

3.1.1. Machine learning in solar energy  

Photovoltaic (PV) panels and concentrated solar power (CSP) plants are two examples of solar energy systems that 
greatly benefit from machine learning (ML) applications [112]. Machine learning models can be utilized to improve the 
efficiency and reliability by forecast solar irradiance based on temperature fluctuations, cloud cover, and weather 
patterns, thereby maximizing energy output [25]. By means of predicting changes in energy production and energy 
demands, forecasting algorithms like deep learning models and artificial neural networks (ANNs) facilitate improved 
grid integration [45]. Additionally, by identifying issues with solar panels like shadowing, dust buildup, or cell 
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deterioration, ML-driven predictive maintenance lowers downtime and boosts overall efficiency and reliability of the 
entire solar clean energy system [68]. 

3.1.2. Machine learning in wind energy 

Due to their reliance on fluctuating wind conditions, wind turbine efficiency optimization is a difficult task [101]. 
Dynamic blade angle adjustments and power production maximization are made possible by machine learning 
algorithms that use historical and meteorological data to anticipate wind direction and speed [35]. Turbine control 
systems are improved using reinforcement learning (RL) algorithms, which discover the best operational practices to 
lower mechanical stress and increase lifespan at the same improving the efficiency and reliability of the system [7]. 
Furthermore, predictive maintenance and fault detection systems based on machine learning (ML) find early indications 
of wear and tear in turbine parts, lowering the chance of unplanned breakdowns and maintenance expenses [35]. 
Additionally, machine learning algorithm for instance, regression, (Supervisory Control and Data Acquisition) SCADA 
and simulated data can be utilized to monitor wind blades faults and temperature in the generator components of the 
wind energy system [101]. Several kinds of datasets may be used by a wind farm condition monitoring system. SCADA 
and other operational and event datasets serve as the foundation for the majority of condition monitoring models that 
have been described in [104]. By delivering time-series signals at regular intervals, SCADA systems have been integrated 
into turbines to regulate the production of electricity [117]. Sensors mounted on important wind turbine components, 
such as bearing vibration, temperature, phase currents, wind speed, etc. are used in this kind of system to gather basic 
data for use in condition monitoring in order to increase system efficiency and reliability [119]. 

3.1.3. Machine learning in tidal energy 

Ocean currents and tidal movements, which are impacted by weather patterns, sea level fluctuations, and lunar cycles, 
are used to generate energy in tidal power plants [56]. In order to maximize turbine positioning and energy extraction 
efficiency and reliability, machine learning algorithms examine hydrodynamic patterns for example, the feed-forward 
neural networks (FFNN), recurrent neural networks (RNN), back-propagation neural networks (BPNN), and cascade-
correlation neural networks (CCNN) demonstrated good results in predicting the wave height [113, 6]. Forecasting 
variations in tidal currents, predictive analytics enhance turbine scheduling and guarantee steady energy production 
which subsequently improves efficiency and reliability [46]. Also, through identifying anomalies like biofouling or 
structural deterioration in submerged turbines, machine learning (ML) also improves real-time monitoring systems, 
increasing operating longevity and dependability [80]. 

3.1.4. Machine learning in geothermal energy 

According to [115], in order to produce energy, geothermal power plants use heat from the Earth's interior. Real-time 
performance monitoring, drilling optimization, and reservoir characterization are some of the geothermal energy uses 
of machine learning [85]. Machine learning models find the best drilling locations by evaluating seismic and geological 
data, which lowers exploration expenses and increases extraction effectiveness [40]. Furthermore, well integrity is 
monitored by ML-powered predictive maintenance systems, which identify early indicators of scaling, corrosion, or 
equipment failure to guarantee uninterrupted power generation [113]. Artificial neural network (ANN) and Levenberg–
Marguardt algorithm are important ML algorithm utilized in operation optimization and bottom-hole-temperature 
prediction for geothermal power stations [78]. Additionally, Shallow machine learning (ML) models, like the XGBoost 
model based on the decision tree, random forest model, and support vector machine (SVM), frequently outperformed 
the ANN in predicting influencing parameters, like the reservoir temperature and drill speed [115]. More notably, deep 
learning (DL) models performed better than shallow ML models like ANN and SVM in reservoir temperature prediction, 
productivity prediction, and geological logging [106]. 

3.1.5. Machine learning in biomass energy 

Biomass power plants use anaerobic digestion, gasification, or combustion to turn organic resources into energy [77]. 
According to [114], maximizing process efficiency, feedstock selection, and combustion conditions, machine learning 
improves the generation of biomass energy. In order to identify the optimal fuel mix, which maximizes energy output 
while minimizing emissions, advanced machine learning algorithms examine the attributes of the feedstock [122]. 
Additionally, identifying abnormalities in biomass boilers, turbines, and gasifiers, ML-driven predictive maintenance 
systems lower operating expenses and downtime [79]. Biomass plants can achieve real-time monitoring and adaptive 
control for enhanced performance and sustainability by combining machine learning (ML) with Internet of Things (IoT) 
sensors [91]. 
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3.1.6. Machine learning in hydroelectric power 

In order to generate electricity, hydroelectric power plants depend on reservoir levels and water flow [31]. [18] 
reported that forecasting inflow rates, reservoir levels, and seasonal fluctuations, machine learning models improve the 
management of water resources. Machine learning assists hydropower operators in modifying turbine operations to 
ensure maximum efficiency, reliability and avoid water waste by evaluating meteorological data [9]. In order to identify 
early indications of wear or possible breakdowns, predictive maintenance systems employ machine learning algorithms 
to monitor turbines, generators, and dam structures [92]. This proactive strategy prolongs the life of hydroelectric 
infrastructure, improves efficiency, reliability, and lowers maintenance costs [41]. 

3.2. Machine learning in clean energy project delivery 

The implementation of sustainable energy projects is being revolutionized by machine learning (ML), which maximizes 
efficiency, lowers costs, and increases dependability [48]. Machine learning improves decision-making, automation, and 
predictive analytics in a variety of renewable energy industries, such as solar, wind, tidal, geothermal, hydropower, and 
biomass energy using huge datasets [68]. Clean energy solutions become more economical and sustainable as a result 
of this technology's ability to manage resource distribution, expedite project development, and enhance overall system 
performance [8]. In sites selection for sustainable energy projects for instance, machine learning algorithms examine 
enormous datasets that include environmental, meteorological, and topographical data. ML assesses the impacts of 
terrain, shade, and sunshine exposure on solar energy [3]. It evaluates turbulence, land elevation, and wind patterns in 
wind energy. ML is used to assess water flow rates, depth, and ecosystem impact in tidal and hydroelectric projects. 
ML's capacity to analyze geological data and identify regions with high subsurface heat potential is advantageous for 
geothermal energy. Biomass site selection uses ML to optimize proximity to organic waste sources and minimize 
transportation costs [82]. 

[118] state that machine learning improves feasibility studies through modelling energy output, environmental impact, 
and economic viability. [72] also state that simulating possible hazards like equipment deterioration or resource 
fluctuations, it guarantees well-informed decision-making. In hydroelectric and tidal projects, ML predicts seasonal 
water level variations to determine long-term viability [59]. ML forecasts project timeframes by examining past project 
data, which aids stakeholders in anticipating delays. Construction phases for wind turbine installations, biomass plants, 
and solar farms are optimized by ML-driven scheduling, which reduces interruptions [60]. According to [14], forecasting 
material requirements, allocating workers, and optimizing budgets, machine learning simplifies resource allocation. 
Machine learning predicts the amount of drilling equipment needed for geothermal projects, and it maximizes the 
efficiency of wind and solar energy by optimizing the distribution of panels or turbines [93]. 

4. Challenges and future directions 

Despite its many advantages, there are a number of difficulties in integrating machine learning into renewable energy 
devices and clean energy projects delivery [63]. The quality and availability of data, which might be irregular or scarce 
in some renewable energy sectors, determine how accurate machine learning models can be developed [81]. 
Widespread adoption may be hampered by computational complexity and the requirement for a strong hardware 
foundation [26]. To avoid any cyberthreats, cybersecurity issues pertaining to ML-driven energy management systems 
also need to be resolved. It is anticipated that future developments in machine learning (ML), such as explainable AI 
(XAI), federated learning, and quantum computing, would further improve the dependability and efficiency of 
renewable energy equipment [8]. Innovations in machine learning applications will be fueled by cooperative research 
and industry partnerships, guaranteeing that renewable energy systems run as efficiently as possible while having the 
least possible negative environmental impact and cost [89].  

5. Conclusions  

In the era of energy transition to clean energy, mainly driven by climate change and its related environmental concerns. 
There is global pledge to cut down emissions especially from energy use which can be achieved through clean energy 
resources such as solar, wind, tidal, geothermal, biomass and hydroelectric energy systems. The development of this 
energy resources also necessitate transition in both operational and manufacturing process of these energy machines. 
This article therefore, using descriptive approach provide an insight on how machine learning as an AI component can 
be utilized to improve machinery efficiency and reliability in clean energy systems and clean energy projects. The article 
showed that machine learning can be utilized to improve machine efficiency and reliability in clean energy systems as 
well as clean energy project delivery in a number of ways. In solar energy for instance, machine learning algorithm can 
utilize weather data to predict the amount of irradiant energy needed for solar PV farm in energy project delivery. 
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Machine learning can also be used to maximize efficiency, enhance dependability, and lower operating costs, thereby 
transforming the renewable energy industry. Optimization algorithms, real-time monitoring systems, and machine 
learning (ML)-driven predictive analytics improve the efficiency of renewable energy systems utilized in solar, wind, 
tidal, geothermal, biomass, and hydroelectric power. As technology develops, machine learning will become 
increasingly more important in hastening the world's shift to sustainable energy, helping to create a cleaner and more 
resilient energy landscape. Machine learning also significantly enhances site selection, feasibility, duration estimation, 
and resource allocation in clean energy projects, driving efficiency and sustainability. 

Recommendations 

Although this article effectively highlights the transformative role of machine learning in enhancing machinery 
efficiency and reliability in clean energy systems and clean energy projects delivery. However, it recommends that:  

• The discussion on predictive maintenance could be expanded with specific examples of how machine learning 
algorithms reduce downtime and maintenance costs. 

• Integrating comparisons between traditional maintenance approaches and machine learning-driven solutions 
would strengthen the paper’s argument. 

• More emphasis on challenges, such as data quality, computational costs, and implementation barriers, would 
provide a balanced perspective.  
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