

International Journal of Science and Research Archive

eISSN: 2582-8185 Cross Ref DOI: 10.30574/ijsra Journal homepage: https://ijsra.net/

(REVIEW ARTICLE)



The critical impact of machine learning and artificial intelligence in financial modeling platforms for SMEs and financial institutions

Peter Chimee Oyirinnaya ¹, Emmanuel Tachie-Menson ², *, Tawakalitu Omobolanle Abereijo ³, Joseph Darko Kessie ⁴, Chimdi Okechukwu Chikezie ⁵ and Oluwatosin Omotola Ajayi ⁶

- ¹ Center for Financial Studies, Chartered Institute of Bankers of Nigeria, Lagos, Nigeria.
- ² AI and Fintech, Innovesta, Houston, Texas, USA.
- ³ Automation Department, Amazon, Greensboro, North Carolina, USA.
- ⁴ Cybersecurity, Eastern Illinois University, Charleston, Illinois, USA.
- ⁵ Computer Science, Oregon State University, Corvallis, Oregon, USA.
- ⁶ Economics and Finance for Development, The University of Bradford, West Yorkshire, United Kingdom.

International Journal of Science and Research Archive, 2025, 14(03), 1036-1044

Publication history: Received on 08 February 2025; revised on 15 March 2025; accepted on 18 March 2025

Article DOI: https://doi.org/10.30574/ijsra.2025.14.3.0751

Abstract

The rapid evolution of Machine Learning (ML) and Artificial Intelligence (AI) is transforming the landscape of financial modeling platforms. These technologies have significantly enhanced decision-making, risk assessment, and predictive modeling, offering unprecedented efficiency and accuracy. For Small and Medium-sized Enterprises (SMEs) and large financial institutions, AI-driven financial modeling provides deeper insights into credit risk evaluation, portfolio management, fraud detection, and investment strategies. This paper examines the critical impact of AI and ML on financial modeling platforms, exploring their role, benefits, challenges, and future prospects within the financial industry.

Keywords: Machine learning (ML); Artificial intelligence (AI); Financial modeling platforms; SMEs; Financial institutions

1. Introduction

Financial institutions together with SMEs utilize financial modeling for risk assessment revenue forecasting and investment decision optimization [1]. Conventional financial models rely on static assumptions and historical data which prevent them from accurately representing dynamic market behaviors. Al and ML-driven models utilize expansive datasets alongside pattern recognition and real-time analytics to improve forecasting precision [2].

This research document examines the importance of AI and ML in financial modeling by analyzing their roles in automated risk assessment credit scoring fraud detection portfolio management and decision optimization. Our examination extends to the difficulties these technologies impose while we explore future trends in AI-driven financial modeling.

^{*} Corresponding author: Emmanuel Tachie-Menson

2. Role of AI and ML in Financial Modelling Platforms

2.1. Automated Credit Risk Assessment

AI-driven financial models revolutionize credit risk evaluation processes by enabling lenders and financial institutions to determine borrower creditworthiness with enhanced precision [3]. Machine learning algorithms use a combination of borrower financial history real-time transactional data alternative credit data such as utility payments rent and social media behavior along with macroeconomic indicators to produce dynamic personalized credit scores. ML-based models Unlike traditional credit scoring methods (e.g. FICO score) adapt to changing financial behaviors and trends ensuring more inclusive and fairer lending decisions [5].

AI-driven risk monitoring systems perform continuous analysis of borrower credit profiles to detect anomalies which signal potential financial distress [6]. The integration of real-time financial transactions with economic fluctuations and borrower behavior changes enables these models to proactively identify risks which helps in reducing non-performing loans. Furthermore, ML models analyze historical loan data alongside macroeconomic trends such as inflation and interest rates and borrower-specific indicators including income fluctuations and spending habits to predict loan default probabilities [7]. Recurrent neural networks among advanced deep learning models improve forecasting precision through their ability to detect sequential financial behavior patterns.

2.1.1. Case Study: AI in SME Lending

Research conducted by McKinsey and Company discovered AI-powered lending platforms achieved a 20% reduction in loan default rates while enhancing loan approval efficiency by 35%. Businesses classified as small to medium enterprises that utilized AI-driven credit evaluations experienced accelerated loan processing combined with enhanced financing accessibility [8]. See Figure 1 below.

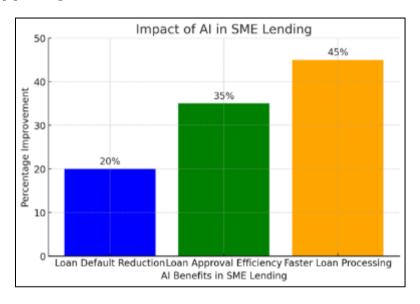


Figure 1 A pictorial representation of improved loan approval efficiency in SMEs

2.2. Fraud Detection and Prevention

Banks and financial institutions experience major monetary deficits due to fraudulent transactions. Fraud detection models powered by AI use extensive transaction datasets alongside behavioral analytics and real-time anomaly detection methods to pinpoint fraudulent activities while boosting security measures. Various AI fraud detection methods are documented throughout academic sources [9]. Anomaly detection algorithms exist. AI-powered fraud detection systems employ unsupervised machine learning methods such as k-means clustering and autoencoders to define standard transaction behaviors while detecting fraudulent anomalies through pattern deviations [10]. These models maintain an ongoing learning process from emerging fraud cases which enhances their detection abilities throughout time.

The examination of behavior through neural network systems represents the second focus area. Fraud detection systems built on deep learning techniques employ neural networks to scrutinize user transactions while evaluating

spending patterns to detect anomalies [11]. The system can identify and stop transactions for verification when a customer who usually shops in a particular area begins making large overseas purchases. AI models make it possible to implement reinforcement learning for fraud detection because they use reinforcement learning to develop fraud detection methods through iterative learning [12]. These models examine previous fraud incidents while modifying detection settings and independently advancing fraud prevention methods through dynamic adaptation to emerging fraudulent strategies.

2.2.1. Statistical Impact of AI-Based Fraud Detection

Table 1 Traditional vs AI-Powered Fraud Detection Systems and Improvement

Metric	Traditional Systems	AI-Powered Systems	Improvement (%)
Fraud Detection Rate	75%	92%	+22%
False Positives	12%	4%	-66%

Fraud Prevention Cost Savings - \$10B annually (indicating significant improvement)

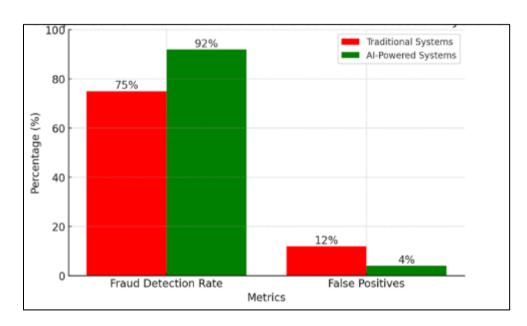


Figure 2 Comparison of AI-powered vs traditional fraud detection systems

2.3. Portfolio Management and Algorithmic Trading

Institutional and retail investors utilize AI-driven financial modeling platforms to enhance their investment strategies while managing risks and conducting market analysis [13]. Application of AI technology through robo-advisors enables portfolio optimization. Robo-advisors use artificial intelligence systems to deliver automated investment recommendations that rely on data analysis while considering an investor's risk tolerance financial goals and prevailing market conditions [14]. These systems employ ML to perpetually modify investment strategies through analysis of market trends combined with asset correlations and investor behavior.

AI-powered sentiment analysis examines news articles alongside financial reports, earnings calls, and social media discussions to assess investor sentiment and forecast market trends [15]. Through the application of Natural Language Processing (NLP) techniques, analysts derive essential insights from unstructured textual data which subsequently enhance trading and investment decisions [16]. High-frequency trading (HFT) algorithms driven by machine learning perform trades in milliseconds through the analysis of historical market data alongside price trends and liquidity conditions. These models detect arbitrage opportunities predict short-term price fluctuations and optimize trade execution to maximize profitability [17].

2.3.1. Examination of Artificial Intelligence Applications in Hedge Fund Operations

Goldman Sachs reports hedge funds with AI trading models achieved a 12% annual performance advantage over traditional funds. AI-led funds showed enhanced adaptability during volatile market conditions by effectively reducing losses.

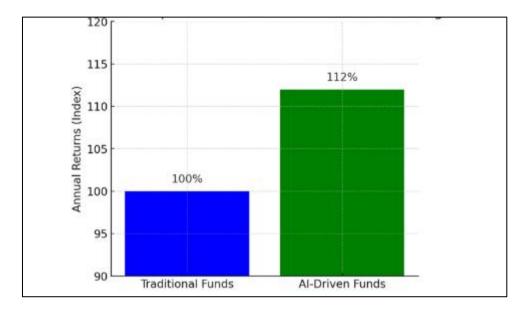


Figure 3 Performance comparison: Traditional vs. AI-Driven Hedge Funds

The chart illustrates the annual performance comparison between traditional hedge funds and AI-driven hedge funds. AI-powered funds outperformed traditional funds by 12%, demonstrating greater adaptability in volatile markets and improved risk mitigation. This highlights the growing advantage of AI in investment strategies [18].

2.4. SME Financial Forecasting and Decision Optimization

Enterprises of small to medium scale depend on AI-driven financial modeling platforms to enhance their cash flow predictions alongside pricing approaches and financial risk controls. Artificial intelligence demonstrates its capability to boost small and medium enterprise financial modeling through the prediction of revenue models. AI-driven forecasting models examine sales data economic conditions consumer trends and seasonal variations to predict future revenue streams [19]. These models incorporate external market factors including competitor pricing strategies and supply chain disruptions to achieve more accurate projections.

As stated in [1], AI algorithms detect expense management inefficiencies through the examination of operational costs alongside procurement expenses and production expenditures. AI systems through cost simulation and optimization techniques propose budget reallocation strategies to strengthen financial sustainability.

The tools powered by AI for risk assessment deliver to SMEs actionable insights regarding their financial vulnerabilities which include market fluctuations currency exchange risks and supply chain disruptions [20]. Through the simulation of diverse financial scenarios AI empowers small and medium enterprises to formulate contingency plans for economic downturn resilience.

Table 2 Statistical Impact of AI in SME Financial Forecasting

Metric	Without AI	With AI	% Improvement
Forecasting Accuracy	65%	90%	+38%
Decision-Making Speed	Manual	Instant	+50%
Optimal Cost Reduction	-	20%	Cost Savings

The table highlights the significant impact of AI on financial decision-making and operational efficiency. AI-powered systems improve forecasting accuracy from 65% to 90%, enhancing predictive capabilities. Decision-making speed shifts from manual processes to instant analysis, accelerating financial operations by 50%. Additionally, AI-driven models contribute to a 20% cost reduction, optimizing resource allocation and financial planning.

3. Challenges and Ethical Considerations

3.1. Data Privacy and Security

To function effectively AI models, demand extensive financial data access which creates worries about potential data breaches alongside unauthorized access and regulatory compliance issues [21]. Financial institutions need to establish robust cybersecurity protocols that incorporate encryption techniques together with secure cloud storage solutions and blockchain-based data verification methods to safeguard sensitive financial data [22]. The necessity to adhere to regulatory frameworks like General Data Protection Regulation (GDPR) and Basel III arises from their role in sustaining consumer trust while averting legal consequences [23].

3.2. The Presence of Algorithmic Bias in AI-Driven Financial Modeling Systems

AI-driven financial models exhibit bias which leads to uneven lending practices while creating discriminatory credit assessments and restricting access to financial services. Imbalanced training data combined with defective feature selection and systemic societal disparities can lead to bias emergence. Mitigating algorithmic bias requires the use of fairness-aware ML techniques along with model audits and Explainable AI (XAI) integration to achieve transparent decision-making [24].

3.3. Integration with Legacy Systems

A significant number of financial entities continue to use obsolete IT systems which create difficulties for integrating AI models. The shift to AI-driven platforms demands large-scale financial commitment towards cloud computing resources alongside API-based structures and real-time data processing systems [25]. Hybrid AI solutions that connect legacy systems to modern AI technologies enable seamless adoption without needing complete infrastructure changes [26].

4. Emerging Directions in AI-Driven Financial Modeling Techniques

The future of financial modeling platforms will be shaped by AI and ML advancements which will deliver new innovations that enhance financial decision-making risk management compliance monitoring and decentralized financial transactions [27]. Current patterns suggest that AI-driven financial solutions will merge with advanced computational technologies to build financial ecosystems that are more sophisticated efficient and secure.

4.1. Explainable AI (XAI) for Transparent Decision-Making

The widespread integration of AI into financial modeling prompts regulatory bodies and stakeholders to call for enhanced transparency and interpretability of AI-driven financial decisions [28]. Explainable AI (XAI) guarantees that financial professionals can comprehend and justify AI-driven credit assessments along with risk evaluations and investment recommendations. The development of AI models now includes built-in explainability mechanisms which enable human-readable justifications for predictions [29]. SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) deliver methods to understand AI decision processes [30].

XAI frameworks adhere to financial regulatory standards which guarantee ethical AI implementation. JPMorgan Chase and similar institutions have created XAI-powered credit scoring models which deliver transparent loan approval explanations to reduce disputes while enhancing customer trust. AI-driven fairness algorithms function to detect and rectify biases within financial models to support inclusive finance and fair lending practices according to [10].

4.2. Quantum AI in Financial Modeling

Quantum computing stands poised to transform financial modeling through its potential to enhance AI-driven simulation speed and precision beyond current limitations. Quantum AI will enable portfolio optimization along with risk management and predictive analytics by solving intricate financial equations at speeds unattainable by traditional computing approaches [31]. Quantum AI finds application in finance through portfolio optimization high-precision risk simulation and algorithm trading. The system demonstrates effectiveness in portfolio optimization alongside high-precision risk simulation and algorithmic trading. Quantum AI systems will refine multi-asset allocation methods

through swift analysis of extensive market data sets to boost risk-return balances [15]. Quantum-powered Monte Carlo simulations will produce highly accurate financial risk forecasts that help reduce investment uncertainty. Quantum AI algorithms as stated in [31] will identify ultra-short-term market trends to exploit micro-arbitrage opportunities which classical AI models cannot reach.

4.3. AI-Powered Regulatory Compliance Solutions

AI-driven RegTech platforms emerge as transformative forces altering financial institutions' regulatory monitoring and compliance processes. Through the utilization of machine learning and AI technologies businesses achieve automation of compliance tasks while detecting possible breaches to lower regulatory supervision expenses [32].

Financial institutions now employ AI-driven compliance monitoring systems to automate regulatory compliance processes which helps them meet intricate financial regulations and minimize operational risks [33]. AI boosts compliance efficiency through automated reporting while it detects regulatory risks proactively and strengthens fraud prevention systems.

The realm of compliance monitoring has seen key AI advancements such as Automated Reporting alongside proactive risk detection and fraud detection and AML (anti-money laundering) solutions.

The generation of real-time regulatory reports by AI-powered compliance solutions becomes more efficient while reducing human intervention and manual errors [34]. These systems utilize natural language processing (NLP) together with machine learning (ML) algorithms to obtain and confirm essential financial information which guarantees both precise and prompt delivery to regulatory bodies [35]. Through maintaining immutable digital records of transactions and compliance reports this automation enhances both regulatory transparency and auditability.

AI-driven Anti-Money Laundering systems bolster financial security through real-time detection of suspicious transactions and illegal financial movements. Deep learning-based anomaly detection systems examine extensive transaction datasets to detect atypical patterns that suggest potential fraud activities [36]. AI-driven AML solutions enhance Know Your Customer (KYC) verification to strengthen identity authentication while minimizing financial crime risks [37].

4.4. Artificial Intelligence Powered Smart Contracts in Decentralized Finance Systems

The Decentralized Finance (DeFi) sector represents a newly developing industry which uses blockchain technology and artificial intelligence to improve financial transaction processes while reducing risks and refining lending systems. AI plays a crucial role in tackling problems within DeFi smart contracts risk assessment and liquidity management to enhance security and efficiency in DeFi ecosystems [38]. AI-Enhanced Smart Contracts along with real-time risk assessment tools and AI-powered lending protocols represent key advancements in DeFi technology.

Smart contracts with AI integration perform financial transactions independently when set conditions are met without intermediaries thus reducing fraud risks [39]. Contracts utilize AI-driven verification systems which examine transaction histories and user credibility prior to operation execution. Smart contracts utilize machine learning algorithms to alter transaction terms dynamically for enhanced security and market condition compliance [40]. Artificial intelligence systems function to stop double-spending attacks while simultaneously blocking unauthorized fund withdrawals within blockchain networks.

Through intricate real-time assessments AI models boost DeFi by analyzing cryptocurrency market risks including liquidity conditions, price volatility, and potential security threats [41]. AI-driven predictive analytics examine past trading records alongside social media sentiment and blockchain activity to deliver investors precise risk assessments. This mechanism empowers decentralized exchanges (DEXs) alongside DeFi platforms to refine strategic decision-making and asset management approaches which helps mitigate losses caused by market crashes or unexpected volatility [42, 43]. AI systems perform collateral management automation through predictive analysis of asset price variations which helps maintain the stability of collateralized loans against market risks. This innovation reduces loan defaults alongside credit risks while enhancing decentralized lending efficiency and security [44, 45].

5. Conclusion

Financial modeling platforms for SMEs and financial institutions undergo revolutionary changes through Machine Learning and Artificial Intelligence. The technologies enable advanced risk assessment alongside credit evaluation while detecting fraud and optimizing portfolios to achieve enhanced accuracy and efficiency with predictive power.

Al implementation faces challenges such as data privacy concerns algorithmic biases and integration difficulties. The 0 advancement of AI technology combined with quantum computing and decentralized finance will create new paradigms in financial modeling. The pursuit of sustainable growth and competitive advantage drives financial institutions and SMEs to adopt AI-driven financial modeling as an essential requirement for future financial success.

Author Contributions

- Peter Chimee Oyirinnaya: Conceptualization, methodology, and overall project supervision.
- Emmanuel Tachie-Menson: Data analysis, model development, and manuscript drafting.
- Tawakalitu Omobolanle Abereijo: Literature review, AI implementation strategies, and validation.
- Joseph Darko Kessie: Cybersecurity framework integration and technical review.
- Chimdi Okechukwu Chikezie: Software development, algorithm testing, and result visualization.
- Oluwatosin Omotola Ajayi: Economic impact analysis and policy recommendations.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] N. I. Okeke, O. A. Bakare and G. O. Achumie, "Forecasting financial stability in SMEs: A comprehensive analysis of strategic budgeting and revenue management," Open Access Research Journal of Multidisciplinary Studies, vol. 8, no. 1, pp. 139-149, 2024.
- [2] J. Ramya, S. S. Yerraguravagari, S. Gaikwad and R. K. Gupta, "AI and Machine Learning in Predictive Analytics: Revolutionizing Business Strategies through Big Data Insights," Library of Progress-Library Science Information Technology & Computer, vol. 44, no. 3, 2024.
- [3] M. A. Faheem, "AI-Driven Risk Assessment Models: Revolutionizing Credit Scoring and Default Prediction.," Iconic Research and Engineering Journals, vol. 5, no. 3, pp. 177-186, 2021.
- [4] A. A and A. Owen, "Enhancing Financial Stability through Real-Time Credit Risk Monitoring Using Machine Learning Techniques and Advanced Data Analytics.," 2024.
- [5] S. Andrae, "Machine Learning in Social Finance: Facilitating Inclusive Finance Approaches.," AI Strategies for Social Entrepreneurship and Sustainable Economic Development, pp. 17-46, 2025.
- [6] H. P. Kothandapani, "Advanced Artificial Intelligence Models for Real-Time Monitoring and Prediction of Macroprudential Risks in the Housing Finance Sector: Addressing Interest Rate Shocks and Housing Price Volatility to Support Proactive Decision-Making by Federal Agencies.," Journal of Artificial Intelligence Research, 2022.
- [7] B. Fazlija, "Credit risk assessment via machine learning: impact of pandemic and macroeconomic variables on mortgage loan default prediction.," 2022.
- [8] L. Videgaray, P. Aghion, B. Caputo, T. Forrest, A. Korinek, K. Langenbucher, H. Miyamoto and M. Wooldridge, "Artificial Intelligence and Economic and Financial Policy Making," 2024.
- [9] O. A. Bello, A. Ogundipe, D. A. F. Mohammed and O. A. Alonge, "AI-Driven Approaches for real-time fraud detection in US financial transactions: challenges and opportunities.," European Journal of Computer Science and Information Technology, vol. 11, no. 6, pp. 84-102, 2023.
- [10] O. O. Oguntibeju, "Mitigating artificial intelligence bias in financial systems: A comparative analysis of debiasing techniques.," Asian Journal of Research in Computer Science, vol. 17, no. 12, pp. 165-178, 2024.
- [11] Y. Alghofaili, A. Albattah and M. A. Rassam, "A financial fraud detection model based on LSTM deep learning technique.," Journal of Applied Security Research, vol. 15, no. 4, pp. 498-516, 2020.
- [12] O. E. Ejiofor, "A comprehensive framework for strengthening USA financial cybersecurity: integrating machine learning and AI in fraud detection systems.," European Journal of Computer Science and Information Technology, vol. 11, no. 6, pp. 62-83, 2023.

- [13] O. Onabowale, "AI and Machine Learning in Fraud Detection: Transforming Financial Security.," 2024.
- [14] Z. Shen, Z. Wang, J. Chew, K. Hu and Y. Wang, "Artificial Intelligence Empowering Robo-Advisors: A Data-Driven Wealth Management Model Analysis," International Journal of Management Science Research, vol. 8, no. 3, pp. 1-2, 2025.
- [15] M. Lopez de Prado, J. Simonian, F. A. Fabozzi and F. J. Fabozzi, "Enhancing Markowitz's portfolio selection paradigm with machine learning.," Annals of Operations Research, pp. 1-22, 2024.
- [16] B. Dash, "Information Extraction from Unstructured Big Data: A Case Study of Deep Natural Language Processing in Fintech," University of the Cumberlands, 2022.
- [17] J. Arora and V. Jain, "Innovative Applications and Advanced Practices in Financial Data Science and Machine Learning for High-Frequency Trading.," Machine Learning and Modeling Techniques in Financial Data Science, pp. 185-208, 2025.
- [18] J. A. Niang, "Artificial Intelligence and Hedge Fund Performance: An Analysis of Hedge Fund and Trading Styles," 2021.
- [19] G. Ocran, S. O. Yusuf, P. Owusu and E. A. Boateng, "AI-driven Business Analytics for SMES: Unlocking value through predictive and prescriptive analytic.," International Journal of Science and Research, vol. 13, no. 1, pp. 3009-3022, 2024.
- [20] J. Campbell and B. A. Koffi, "The Role of AI-powered financial analytics in shaping economic policy: A new era for risk management and national growth in the United States.," World Journal of Advanced Research and Reviews, vol. 23, no. 3, pp. 2816-2825, 2024.
- [21] H. Ijaiya, "Harnessing AI for Data Privacy: Exaimining risks, opportunities, and strategic future directions," 2024.
- [22] O. P. Olaiya, T. O. Adesoga, A. Ojo, O. D. Olagunju, O. O. Ajayi and Y. O. Adebayo, "Cybersecurity strategies in fintech: safeguarding financial data and assets.," GSC Advanced Research and Reviews, vol. 20, no. 1, pp. 50-56, 2024.
- [23] A. C. Ozioko, "Preventive Strategies for Financial Institutions: Compliance and Legal Implications," Multi-Disciplinary Research and Development Journals International, vol. 5, no. 1, pp. 86-107, 2024.
- [24] L. Emma, "The Ethical Implications of Artificial Intelligence: A Deep Dive into Bias, Fairness, and Transparency.," 2024.
- [25] J. Prosper, "Deploying Scalable Deep Learning Models for Real-Time Customer Insight.," 2019.
- [26] B. K. Pandey, A. Tanikonda, S. R. Peddinti and S. R. Katragadda, "AI-Enabled Predictive Maintenance Strategies for Extending the Lifespan of Legacy Systems.," Journal of Science and Technology (JST), vol. 2, no. 5, 2021.
- [27] S. Basly, "Artificial Intelligence and the Future of Decentralized Finance.," Decentralized Finance: The Impact of Blockchain-Based Financial Innovations on Entrepreneurship, pp. 175-183, 2024.
- [28] N. Rane, S. Choudhary and J. Rane, "Explainable Artificial Intelligence (XAI) Approaches for Transparency and Accountability in Financial Decision-Making," 2023.
- [29] M. A. Akhtar, M. Kumar and A. Nayyar, "Towards Ethical and Socially Responsible Explainable AI," 2024.
- [30] Y. Wang, "A Comparative Analysis of Model Agnostic Techniques for Explainable Artificial Intelligence," in Research Reports on Computer Science, 2024.
- [31] N. K. Bhasin, S. Kadyan, K. Santosh, H. P. Ramya, R. Changala and B. K. Bala, "Enhancing Quantum Machine Learning Algorithms for Optimized Financial Portfolio Management," in Third International Conference on Intelligence Techniques in Control Optimization and Signal Processing (INCOS), 2024.
- [32] A. Balakrishnan, "Leveraging artificial intelligence for enhancing regulatory compliance in the financial sector.," International Journal of Computer Trends and Technology, 2024.
- [33] I. A. Adeniran, A. O. Abhulimen, A. N. Obiki-Osafiele, O. S. Osundare, E. E. Agu and C. P. Efunniyi, "Strategic risk management in financial institutions: Ensuring robust regulatory compliance.," Finance & Accounting Research Journal, vol. 6, no. 8, pp. 1582-1596, 2024.
- [34] O. R. Aziza, N. S. Uzougbo and M. C. Ugwu, "The impact of artificial intelligence on regulatory compliance in the oil and gas industry," World Journal of Advanced Research and Reviews, vol. 19, no. 3, pp. 1559-1570, 2023.

- [35] C. S. Ajmal, S. Yerram, V. Abishek, V. M. Nizam, G. Aglave, J. D. Patnam, R. S. Raghuvanshi and S. Srivastava, "Innovative Approaches in Regulatory Affairs: Leveraging Artificial Intelligence and Machine Learning for Efficient Compliance and Decision-Making.," The AAPS Journal, vol. 27, no. 1, p. 22, 2025.
- [36] D. O. Njoku, V. C. Iwuchukwu, J. E. Jibiri, C. T. Ikwuazom, C. I. Ofoegbu and F. O. Nwokoma, "Machine learning approach for fraud detection system in financial institution: A web base application.," Machine Learning, pp. 01-12, 2024.
- [37] L. A. Aziz and Y. Andriansyah, "The role of artificial intelligence in modern banking: An exploration of AI-driven approaches for enhanced fraud protection, risk management, and regulatory compliance," Reviews of Contemporary Business Analytics, vol. 6, no. 1, pp. 110-132, 2023.
- [38] U. Eswaran, V. Eswaran, V. Eswaran and K. Murali, "Security, Risk Management, and Ethical AI in the Future of DeFi.," AI-Driven Decentralized Finance and the Future of Finance, pp. 48-88, 2024.
- [39] O. Kuznetsov, P. Sernani, L. Romeo, E. Fronto and A. Mancini, "On the integration of artificial intelligence and blockchain technology: a perspective about security.," IEEE Access, pp. 3881-3897, 2024.
- [40] S. Tanwar, Q. Bhatia, P. Patel, A. Kumari, P. K. Singh and W. C. Hong, "Machine learning adoption in blockchain-based smart applications: The challenges, and a way forward," IEEE Access, pp. 474-488., 2019.
- [41] Azeez, M., Nenebi, C. T., Hammed, V., Asiam, L. K., & James, E. (2024). Developing intelligent cyber threat detection systems through quantum computing. *International Journal of Science and Research Archive*, 12(2), 1297-1307.
- [42] A. Nafiu, S. O. Balogun, C. Oko-Odion and O. O. Odumuwagun, "Risk Management Strategies: Navigating Volatility in Complex Financial Market Environments," 2025.
- [43] T. Weingartner, F. Fasser, P. Reis Sa da Costa and W. Farkas, "Deciphering DeFi: A Comprehensive Analysis and Visualization of Risks in Decentralized Finance," Journal of Risk and Financial Management, vol. 16, no. 10, p. 454, 2023.
- [44] C. S. Babu, M. Sudhir and S. Kumar, "Application of Support Vector Machine Algorithm Lending Protocols for Decentralized Finance Platforms," Decentralized Finance and Tokenization in FinTech, pp. 1-20, 2024.
- [45] Azeez, M., Ugiagbe, U. O., Albert-Sogules, I., Olawore, S., Hammed, V., Odeyemi, E., & Obielu, F. S. (2024). Quantum AI for cybersecurity in financial supply chains: Enhancing cryptography using random security generators. *World Journal of Advanced Research and Reviews*, 23(1), 2443-2451.