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Abstract 

Many difficulties have confronted the system-on-chip (SoC) industry during the previous ten years. These difficulties 
will likely become more significant as more and more applications revolve on the Internet of Everything (IoE). These 
issues include reducing power consumption for greater energy efficiency, overcoming numerous causes of variation to 
ensure reliable performance, and reducing design area to save money and boost integration. As a result, chip designers 
encounter various hurdles when attempting to create stable structures with complicated angles of capability while 
preserving a small die size and power expenditure. Memory components are among the most critical circuit components 
on every chip. They account for the majority of the chip's size and power consumption, which has an impact on the 
overall efficacy and reliability of the chip. These consist of a diverse multitude of serial elements in logic paths, caches, 
register files, and large memory arrays. In contemporary synchronized CMOS circuits, sequence elements are 
indispensable components. In fact, they can be responsible for up to 50% of the average number of cells in a 
semiconductor. We propose a novel methodology aimed at enhancing the reliability of pulsed latches while ensuring 
that there is no substantial decline in efficiency, area, or power consumption. Furthermore, given that sequential 
elements can be utilized in creating compact register files, the implementation of pulsed latches in register files is 
reviewed and compared with other conventional implementations, including static random-access memory (SRAM) and 
flip-flops. Also shown are new implementations of multiport register files, which are highly beneficial for many 
applications. The suggested approach has been proven to considerably decrease the enormous excess in area, power 
consumption, and latency that is typically associated with conventional methods of designing multiport register files. 
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1. Introduction

A significant amount of power in contemporary CPUs is allocated to register files [1]. Along with the cache array, they 
also take up a lot of space. Consequently, the design of the register files has a significant impact on the performance, 
power, and reliability of the processor's overall operation. The register file is often the most heavily used part of a chip 
due to the large volume of reads and writes it receives. As a result, the devices' performance can suffer and can rapidly 
increase the devices aging [2]. Register files in CMOS circuits have been implemented using SRAMs (static random-
access memories). Due to the need to store a substantial quantity of bits, each SRAM cell, which retains a single bit, is 
engineered to be as compact as possible to facilitate effective read and write operations while maintaining sufficient 
noise margins. Data may also be stored via standard cells like flip-flops and latches. However, while sequentially cells 
are developed in the library for various uses inside a chip's primary core, compared to SRAM cells, which are exclusively 
used for storing data, the design requirements and limitations are much different. A flip-flop or latch maybe three to 
five times larger than an SRAM cell. As a result, SRAM is recommended for implementing register files of medium to 
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large size. Nevertheless, SRAM is thus recommended for constructing medium- to large-sized register files. SRAM is not 
desirable for compact data storage because the area gain of single cells for a small register file may be less than the 
space and power overhead of the SRAM peripherals [3]. The use of typical cell-based register files instead of SRAM for 
smaller store capacities may therefore be more attractive. Additionally, standard cell-based register files are typically 
preferred for chips that require an ultra-wide range of voltage or use an ultra-low voltage supply [4, 5, 6, 7]. 

2. Related Work 

The implementation of register files has been extensively discussed in the literature. A register file design including 
several banks was created in [8] to reduce access time and mitigate logical complexity. A level-2 register file layout was 
proposed in [9] for superscalar processors to decrease both the size and the quantity of necessary ports. Several circuits 
for register files were assessed in [1]. Their energy efficiency relative to each other and the number of registers and 
ports was the main point of comparison. To cut down on power usage, an exclusive asymmetrically ported register file 
implementation was suggested in [10]. This power savings is due to the fact that certain ports are limited to reading 
and writing to the register's lowest significant value only, rather than the whole register. By increasing the number of 
read and write ports in register files from two to four, array replication and double pumping were examined in [11]. 
The use of bank replications of block RAMs and multi-pumping to implement register files on FPGA was investigated in 
[12]. An innovative design for multi-pumping was proposed that utilizes shift registers to deliver high performance 
while conserving power and space. In [13, 4], the traditional method of implementing register files using cells, which 
only have one read/write port, was discussed. There was a comparison and discussion of the SRAM implementation 
with the use of flip-flops and latches to construct the register files. Pulsed latches were used to create a 16x32-bit 
register file with one write port and two read ports for an extremely broad voltage range [5]. The space and power 
requirements are evaluated in comparison to an identical register file built using flip flops. Reference [14] examined the 
application of STT-RAM for constructing GPU register files. Two methods for improving the implemented register files' 
performance and power consumption were tested. As a result, it appears that considerable work has been expended in 
proposing alternative architectures for the efficient implementation of registration files. The schematic level was 
responsible for implementing certain projects, while the circuitry level was responsible for executing others. The 
objective was to obtain an efficient register file implementation in terms of energy that performs at the required 
efficiency level while occupying the least amount of space. Furthermore, innovative methodologies were investigated 
to incorporate additional read and write ports without substantial performance deterioration and with little size and 
power overheads. 

2.1. Single-read, single-write register file design 

We will examine four different ways that a shared register file with read/write ports may be implemented. Therefore, 
from now on, it will be known as the 1R1W registry file. In addition, we assume a register file of dimensions W ∗ B, 
where W denotes the quantity of word registers and B signifies the amount of bits per word. One way to look at the 
register file is as an array with B columns and W rows. Additionally, we presume a word access method that enables the 
entire register to be read and written, as is common with numerous register files. Furthermore, it is assumed that read 
and write operations have a delay of no more than one clock. 

2.2. Implementation Based on SRAM 

Many different types of applications have made heavy use of SRAMs, such as register files, caches, and big data storage. 
Traditional memory arrays frequently use the six-transistor (6T) SRAM bitcell as a building block; however, this kind 
of memory only supports a single read/write operation per cycle due to its single interface. Certain 6T devices enabled 
two read operations or one write operation each cycle by dividing the word line in half [15]. Time-sharing is still needed 
in order to do write and read tasks at the same time. Consequently, the write action occurs in the earlier half of a cycle 
of the clock, whereas the read action happens in the later half. Moreover, this places restrictions on the minimum clock 
time and calls for proper timing. 

Constructing a register file with autonomous read-write ports increases the complexity of the memory bit cell. Fig 1 
illustrates the outcome of a prevalent modification that incorporates an additional two transistors to create an 8T 
bitcell [16, 17, 18]. As with any regular 6T SRAM, the write operation is executed in a conventional manner. The write 
row address decoder activates the word line selector (wr), and the column decoder and sensing amplifiers apply the 
new data to the wr bit and wr bit (the write bit lines). The device reads one end at a time; consequently, the read line 
selection (rd) must be elevated to link the read bit line (rd bit) to the designated cell. When the cell stores '1' (Q is VDD), 
the read bit is subtracted from its previous changed value; conversely, when the cell stores '0', the read bit remains at 
its prior charge value. Reading from a lower supply voltage is more stable because the read transistors separate the 
storage node when reading [19, 20]. Two additional read transistors are embedded on the side of QB certain other SRAM 
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bit cells to create a differential read interface [16]. This will lead to a significant increase in area when the SRAM bit cell 
is upgraded to a 10T cell. Though there are two distinct column decoders for read and write data and two two-row 
decoders for read and write addresses, the remaining part of the circuit is the same as a standard SRAM. These decoders 
are in charge of producing the rd and wr signals for the bit cells. 

2.3. Implementation Based on Flip-Flops 

The SRAM register file and the FF-RF (flip-flop-based register file) vary in a subtle structural way. The read logic circuit, 
the flip-flop array, and the write logic circuit are the three distinct parts that comprise this circuit, as seen in Fig. 1. 

 

Figure 1 Conventional 8T SRAM bitcell layout for 1R1W register file 

2.4. Write Logic 

A write operation may be performed on one register of the flip-flop array at the next clock edge thanks to the enable 
signals generated by the write logic circuit, which is a block in the circuit. The conventional version of this decoding 
circuit uses the write enable (wr en) and write address (wr address) as inputs and outputs, respectively, as W 
enable signals. 

 

Figure 2 The conventional cell-based register file block diagram 

2.5. Array of Data 

The data array shows the real parts of the data storage. The flip-flops used to build this data collection are part of a 
register file that is based on flip-flops. W B flip-flops make up the array. Every B flip-flop is activated by an identical 
trigger signal generated by the write logic block to operate as a register. To facilitate the writing process, two distinct 
approaches may be used. Initially, flip-flops using an input enable signal are used. These flip-flops may store fresh data 
only when the clock edge reoccurs, depending upon the activation of their allowed signal. Otherwise, the stored data 
will remain unaltered after midnight. A 2-1 multiplexer is often included at the input of a basic flip-flop to facilitate its 
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operation. The external data enters the multiplexer, and the current output is sent back into it. Once this method is used 
for generating the data array, the exact same clock signal is going to be sent across the entire flip-flop array. 

The second option involves the use of basic flip-flops that do not have an enabling feature. The clock signals of these 
flip-flops are driven through clock gating cells (CGC), which are shared by each row of the array. These clock-gating cells 
are the only ones that receive the clock signal and the allowed signal in this case. As seen in fig 3, the outputs of these 
cells are used to clock the respective flip-flops. Upon selecting a register for reading, the relevant clock gating cell is 
activated. Thus, the pulse of the next cycle of the clock is sent to the specified row of flip-flops, where the source of write 
data is sampled and preserved. Simultaneously, the clocks in the other rows are often linked to logic '0' and are non-
operational. 

 

Figure 3 The data array's flip-flop registers showing the clock gating cell (CGC) applies to turn on the flip-flops 

We found that the second method saves space and power when we compared the two methods in our research. We use 
only one clock gating cell for every row of flip-flops instead of greater size-enabled flip-flops, which exceed traditional 
flip-flops in our technology by over 35% in the area. Using the clock gating cell strategy will significantly reduce area 
requirements for flip-flops with a number greater than 2 (i.e. B ≥ 3), as the added clock gating cell has an area that is 
only marginally larger than that of a single flip-flop. Moreover, the clock gating technique directs the primary clock 
signal towards the clock gating cells instead of the whole flip-flop array. By using the clock-gating strategy, a 
considerable amount of power is conserved during clock-switching. 

2.6. Read the logic 

In order to send data to the output port, the read logic circuit retrieves it from one of the array registers. On the basis of 
the input read address (rd address) and the input read enable (rd en)2, a specific register is chosen. Most register files 
employ an asynchronous read operation to update the output data instead of waiting for the next clock cycle to finish. 
Nevertheless, in specific designs, the read address input contains a latching stage—either flip-flops or latches—that 
sampling the address located at the currently running clock edge at the very beginning of the read cycle. Then, in the 
register file, the selected read resistor is based on the sampled address. Thus, we can verify that the read address stays 
constant throughout the read process and prevent any potential issues that may arise from bits not arriving 
simultaneously. Since other processing core circuitry usually generates read addresses, this can make this logic run 
more smoothly (it is not necessary to alter all address bits simultaneously) and provide the different read address bits 

some breathing room in terms of latency. 

B parallel W-to-1 multiplexers are often used to construct the read logic block. In most cases, this method works better 
than using a decoding circuit to turn on 3-state buffers at each register's output. 3-state buses can significantly impair 
the temporal integrity of selected data when transported over extensive distances due to their buffering difficulties [4]. 

2.7. Implementation Based on Latches  

The layout of the 1R1W register that uses latches opposed to flip-flops is identical to that of the flip-flop that was 
explained before. The register file that uses latches should be smaller than one that uses flip-flops due to the lower size 
of the former. Due to decreased leakage and internal power consumption of latches, the version that is based on register 
files is also expected to utilize less power. Latch timing restrictions are more severe than flip-flop timing constraints for 
a 50% duty cycle clock signal (half of the clock cycle) due to the latch's wide transparency window. When reading and 
writing to the same register causes the latch to enter a closed loop, the viewable window of the latch allows for the 
employment of external circuitry to feed the latch's outcome back into its input. One possible solution is to restrict the 
amount of data that may be read and written into the system. Another option is to incorporate flip-flops or latches, 
which are visible during the opposite fifty percent of the clock cycle, within the circuits that utilize this type of feedback 
[13]. Nevertheless, this will affect the timing of these external logics and add some power and space overhead. 
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2.8. Implementation of Pulsed Latch 

An agreeable compromise between latch-based and flip-flop-based register files is provided by pulse latch (PL)-based 
register files, allowing for optimal performance in both cases. PL's timing concept is quite similar to flip-flops since they 
are latches that are driven by brief pulsers. Moreover, they are anticipated to use less energy and occupy a smaller area 
compared to flip-flop based register files, similar to latch-based register files. When contrasted with the register file that 
relies on latches, the pulser is the only additional overhead. Considering that every B latch in a register uses the same 
pulser, this overhead is really little. The clock gating cell may be redundant since the pulser circuit seen in Fig 4 controls 
the latches' transparency via its produced pulse. Thus, to enable control of pulse creation via write logic, it is necessary 
to update the pulser circuit. Our proposed layout for the enhanced pulser circuit is shown in Fig 5.  

 

Figure 4 One of the data array's pulsed latch registers shows the pulser circuit has been used instead of the clock 
gating cell 

A "gated inverter" for the clock signal is what the NOR gate does. In the absence of an active enable signal (en), the 
output of the gate (clkb g) will remain a value of '0' irrespective of the input clock signal (logic '0' in the figure). At logic 
'1' for the en signal, the output clock (clkb g) is the inverse of the input clock. The assertion of the output clkb g occurs 
when the en signal is active before the clock's rising edge. Using delay buffers, an enhanced reversed clock signal (clkb 
g del) is produced. When the clock signal happens, the AND gate's two inputs turn into logic '1'. The outcome is the 
generated pulse. Simultaneously, the clkb g signal will be reduced by the activated clock signal. The resultant pulse will 
remain high until the clkb g del signal decreases to logic '0' shortly after the buffering delay. The width of the pulse may 
be altered by adjusting the buffers delay. 

 

Figure 5 Timing diagram for proposed pulser circuit 

There is another design choice available besides the one that was shown above. Two separate input clocks can be 
physically separated from the pulser's two clock paths (the clock and its delaying variant) due to the data array's regular 
structure (the identical structure repeated in different registers) and the reduced quantity of pulsers relative to the 
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quantity of bits (each register having its own pulser). This means that several pulsers can share the delay buffers instead 
of having them built into each individual pulser, as seen in Fig 6. Space and energy will be further reduced as a result.  

This strategy complicates the operations of location, route, and clock tree synthesis (CTS). Instead of transmitting just 
one clock signal to every pulser, two signals will have to be sent with the requisite skew to alter the pulse width. Also, 
typical delay buffers need to be carefully picked out and tested in a number of different situations, since any changes or 
problems with how they work would affect the whole function of the register file, not just one register. The other blocks 
in the register file will be a lot like the ones that use flip-flops. By applying the wr-enable & wr-address, the write logic 
creates the pulser enable signals. The read logic, on the other hand, uses the read enable & read address to choose which 
output data to read. From what was said above, PL-based register files seem to preserve all the positive aspects of latch-
based register files while mitigating most of their faults. Consequently, from now on, we will focus on register files that 
are PL-based, SRAM-based, or flip-flop-based rather than latch-based. 

 

Figure 6 Shared delay buffers are used in modified pulsers. (a) Circuit (b) A timing diagram 

2.9. Comparison of 1R1W Register File Implementations  

Three distinct implementations for the 1R1W register file have been reviewed: one based on SRAM, one based on flip-
flops, and one based on pulsed latches. We have used UMC 28nm technology to implement the three register file options 
that were described. For the implementation of SRAM, we used the two-port high density register file compiler from 
Synopsys. Standard threshold voltage transistors are used in the peripheral circuits, while high threshold voltage 
transistors are used in the bit cells. The standard cells libraries are used to implement the flip-flop and pulsed latch 
implementations. We employed standard threshold voltage cells for the combinational components while using high-
level voltage cells for the storage components (latches and flip-flops) to achieve a suitable alignment with SRAM. Clock 
gating was employed during the synthesis of the flip-flop design. Following the adoption of these measures and the 
adjustment of routes, the CTS (clock tree synthesis) was optimized for minimal power use. 

Table 1 UMC 28nm 1R1W SRAM bit-cell, flip-flop, and latch area 

Bitcell SRAM Flip- Flop Latch 

Area(Area (µm2) 0.4 1.8 1.2 
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To save space, SRAM bitcells are manufactured with the smallest possible size, in contrast to standard cells which have 
distinct design limitations (for instance, in order to guarantee alignment during place and route, the majority of cells 
should have the same height, and the cell length must be a multiple of certain routing grids provided by the design tools). 
As a result, standard cells are expected to produce storage elements that are substantially bigger than SRAM bitcells. 
Using the UMC-28nm process, this is shown in Table 1. On the other hand, SRAM secondary circuits take up a lot of 
space. Smaller SRAM register files may have a significant area overhead. The threshold at which the total size of the 
SRAM-based register file exceeds that of the traditional cell-based register file may reach up to 1 kbit, contingent upon 
the word count and bits per word [13]. For this research, we used industry-standard 32-bit word registers and 
generated many register files with counts ranging from 0 to 1024. Fig 7 displays the post position and route area for 
four different word counts for the three register file approaches that were explained earlier. Evidenced here is a 
constant size reduction of over 20% compared to flip-flop equivalents for register files based on pulsed latches. When 
compared to the register file based on SRAM, flip-flops and pulsed latches have a much higher rate of area growth. 
Compared to its SRAM counterpart, the PL-based register file is 17% bigger when W = 32. This value grows to almost 
2.3X for W = 128 and 4.2X for W = 1024, respectively. 

But there's a big difference in the power consumption figures. For the identical register files, the VCD post-place and 
route power numbers are shown in Fig 8. A clock frequency of 500 MHz is used to write and read data from randomly 
selected registers over the course of approximately 200 cycles. It has been shown that the pulsed latch register file's 
power consumption is often 40–50% less than the flip-flop version. Up to 64 words, flip-flop-based register files use 
less power than SRAM; however, with capacities more than 128 words, pulsed latch-based files may be more power-
efficient. The pulsed latch-based register files significantly decrease power consumption at these dimensions. When 
W=32, the pulsed latch register file consumes about 70% less power than its SRAM equivalent. At W = 64, this value 
increases to 51%, while at W = 128 it increases to 15%. In supposition, typical cell-based 1R1W register files may have 
a greater area than SRAM register files, nevertheless, they can use significantly fewer power for minor register files, 
especially those that use pulsed latches. Because register files are visited often, certain programs may find that a little 
area overhead is worth the advantage of reduced energy per memory access. Furthermore, the lowest supply voltage at 
which SRAM can function is much more confined [21]. SRAM bitcells become exceptionally slow at lower voltages 
because they require high threshold transistors to minimize leakage. Additionally, these transistors will experience 
substantial variability at lower voltages due to their almost minimum sizes. Hence, typical cell-based register files could 
be a better match for systems that must function at a lesser supply power. The articulation of typical cell-based register 
files in hardware descriptive interfaces will also provide design teams with additional control and flexibility. 
Furthermore, this will facilitate the design's adaptation to alternative technologies. 

2.10. Implementation using SRAM 

Multiport SRAM systems have found widespread application in numerous architectures. In order to manage numerous 
reads and stores at once [22] and to allow the synchronized execution of numerous commands in a single cycle [23, 24, 
25, 26, 27], multiport register files are frequently required by multi-core processors. A simple method for building multi-
port SRAMs is to expand the 8T SRAM bitcell in Fig 1 by adding additional read-write access transistors for each 
additional port, as seen in Fig 10. A read bitline, two read transistors, and a read word line selector are sacrificed for 
every additional read port. In order to handle the increased load on the bitlines, larger bitcell crossing coupled inverters 
will be required when adding extra read or write access transistors. Because more word lines and bitlines need to be 
wired, the memory capacity may also grow four times with the number of ports increased [11]. By integrating an 
inverter into each cell, the write bitline may be generated locally, saving wire and avoiding the requirement to send the 
second write bitline across the memory array [16]. Nevertheless, this extra inverter will cause every bitcell area to 
increase. The number of physical access ports in a memory cell must be decreased to significantly minimize the space 
of multiport register files. This will enhance latency and save power in addition to array savings. There are two methods 
for decreasing the size of the register file: employing numerous banks and time multiplexing. Each approach may be 
used separately or both can be used simultaneously. 

Time multiplexing goes by more than one name: double pumping. With this technique, it is possible to access a port 
multiple times—sometimes even twice—in a single clock cycle. For example, one write port can be used twice: once at 
the beginning of the clock cycle and once at the end [28]. Two writing processes will be executed as a result of this. As a 
result, there will be 50% fewer physical write ports. The read ports are no different; they permit the reading of one 
register during the first half of the clock cycle and another during the second half. Another choice would be to set the 
register file's frequency of the clock higher than the CPU core's. Hence, in the period of a single main processor clock 
cycle, the ports for the register files toggle multiple times. When an array is duplicated, it is split into two or more banks 
or copies. Each bank has a segment of the read ports (or half of the read ports if the array is repeated twice), and these 
ports share the write ports. This method is referred to as array duplication. A write action uniformly disseminates 
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identical data to all banks, but a read operation may occur via any bank, based upon the used read port. Increasing the 
number of read ports per array by 50% may halve the array size, so using two identical arrays with a reduced amount 
of read ports may result in a substantial area decrease. 

Both methods are capable of being utilized simultaneously. For instance, [11] suggests utilizing two register files, each 
with two read and one write port (2R1W), to create a register file with 4 read and two write ports (4R2W). Each register 
file contributes two read ports, resulting in four read ports due to array duplication; nevertheless, the two 2R1W sub-
arrays use a single write port collectively. Furthermore, write operations use double pumping, which generates two 
functional write ports from a singular common write port by accessing it twice inside a single clock cycle, hence 
facilitating two distinct write operations concurrently in one clock cycle. The finished 4R2W register file was two times 
smaller than the standard 4R2W file. 

 

Figure 7 Contrasts the three 32-bit 1R1W register file variations with different word counts 

 

 

Figure 8 Three 1R1W register files with different word counts and 32 bits each were compared visually 

3. Methodology 

3.1. Multiport register file design 

For superscalar microprocessors, multiport register files are essential [29]. The ability to perform write and read 
actions simultaneously allows for the implementation of several out-of-order and concurrent multi-threading 
processes. The register file of the Itanium microprocessor, for example, may simultaneously handle up to 12 read and 
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10 write operations [30]. A multiport register file with m read ports and j write ports is shown in Fig. 9 as a block 
diagram. The primary issue with multiport register files is that their space and power consumption both dramatically 
rise with the number of read or write ports. The several conventional implementations of multiport register files will 
be covered in the next section. 

3.2. RAM Based Implementation  

In many different architectures, multiport SRAM systems have been widely employed. Multiport register files allow 
many instructions to be executed concurrently in a single cycle [23,24,25,26,27], and multiport data caches are typically 
needed by multi-core processors to manage multiple simultaneous loads and stores [22]. Multi-port SRAMs may be 
easily constructed by adding more read-write access transistors to the 8T SRAM bitcell shown in Fig 1 for each extra 
port, as shown in Fig 10. Two read transistors, a read bitline, and a read word line selector can be purchased for each 
extra read port. Two access transistors, a write bitline, and its complement, and a write word line selector can be 
purchased for each extra write port. Enhanced bitcell crossing coupled inverters will be required to accommodate the 
amplified load on bitlines as additional read or write accessing transistors are added. Additionally, the wiring of 
additional word lines and bitlines may quadratically increase the quantity of memory with the total number of ports 
[11]. The amount of wire may be reduced by removing the additional write bitline routing in the array of memory and 
incorporating an inverter in each cell to produce the complementary write bitline locally for each cell [16]. All bitcell 
areas will, however, significantly rise as a result of this additional inverter. 

 

Figure 9 m read and j write multiport register file block diagram 

To significantly decrease multiport register file size, lower the number of physical access ports in a memory cell. Power 
and latency savings will accompany array savings. Multiple banks and temporal multiplexing reduce register file size. 
Both techniques can be used simultaneously or separately. Double pumping is time multiplexing. A port can be accessed 
twice in a clock cycle using this method. A single writing port can be accessed twice in a clock cycle [28]. Two effective 
write operations result. This halves the physical write ports. The first half of the clock cycle allows the read ports to read 
one register, while the second half allows them to read the other register. Another approach is to operate the register 
file at a higher clock frequency than the CPU core. Thus, the register file ports toggle many times every main processor 
clock cycle. 

The technique of multiple banks, also referred to as array duplication, involves the division of the memory array into 
numerous copies, or "banks." Each copy is assigned a portion of the read ports (or fifty percent of the read ports in the 
scenario of a double-duplicated array), while each copy is permitted to share the write ports. . While reading can happen 
from any bank (based on the read port selected), writing always writes the same data to all banks. Since adding more 
read ports to an array might triple or quadruple its size, having two similar arrays with half as many read ports can 
significantly minimize the amount of space needed. 
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Figure 10 m read, j write multiport register file block diagram 

The two techniques may be combined. So, for example, to construct a register file having four read and write ports 
(4R2W), it is recommended in [11] to use two 2R1W register files. Two 2R1W sub-arrays share a single write port in 
this array duplication situation, and the two read ports out of each register file are combined to create four read ports. 
Furthermore, two write operations can be performed in a single clock cycle thanks to double pumping, which involves 
accessing the single common write port twice. This technique effectively creates two write ports. When compared to a 
standard 4R2W register file, the resultant file was twice as small in size. 

3.3. Application Based on Existing Cell Standards 

It is also possible to add more read/write ports to standard cell-based register files, such as pulsed latches and flip-
flops. To accommodate the greater cell loads caused by the additional ports, the data array structure—the primary 
distinction between register files based on pulsed latches and those based on flip-flops—may be substituted with higher 
driving cells of the same kind. Read and write logic will undergo the most significant alterations. Adding more read ports 
is as simple as installing a second multiplexer in parallel with the one in Fig 2. When dealing with a high number of bits 
per register and/or registers, a considerable area overhead is produced by connecting their outputs to the multiplexers' 
inputs on the read ports. This is particularly true when the number of read ports is considerable. We can easily increase 
the number of read ports by installing an additional multiplexer parallel to the one in Fig. 2. The interconnection of 
register outputs to the inputs of the read port multiplexers accumulates significant spatial overhead when dealing with 
a large number of registers or bits per register. When there are a lot of read ports, this becomes even more apparent. 

Adding read or write ports will degrade performance, increase power consumption, and increase area, much like SRAM. 
Another method to decrease the number of physical ports is array duplication and double pumping, which is comparable 
to SRAM. Both methods will still have substantial area and power overheads, though. Furthermore, there will be a cap 
on the amount of ports that can be obtained by duplicating or pumping. By utilizing the two segments of the clock cycle 
for double pumping, two functional write ports can be achieved. But it might be trickier to have more than two write 
ports without incurring a lot of extra expense. Similarly, if you need more read ports, array duplication could be a 
solution. But there's a huge space penalty for making copies of the data array. Additionally, the power consumption 
increases with duplicate arrays due to dynamic power (from writing the exact same data in multiple data arrays 
simultaneously) and leakage power (from additional bit storage components). 

3.4. Virtual Ports and a Pulsed Latch-Based Register File 

When implementing small to medium register files, pulsed latch based files can offer some benefits, as mentioned in 
section 2.6. Along with reduced latency and smaller footprint compared to flip-flop based register files, they can 
significantly reduce power consumption. But, like with previous register file designs, incorporating read/write ports 
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can lead to performance loss, power consumption spikes, and substantial space overhead. Pulser circuits may be used 
to provide access to the same register several times in a single clock cycle since pulsed latches depend on them to create 
short pulses via clock signals. Furthermore, additional pulsers can be organized into groups, which we refer to as Pulser 
Groups (PGs), to carry out specific tasks required for read or write transactions. Fig 11 depicts the result: a register file 
with several virtual ports produced from a relatively small number of physical ports via the employment of control logic 
blocks to perform both read and write operations. Several pulser groups are used in these control logic blocks to 
generate control signals. Additionally, they store intermediate data, including internal read and write addresses and 
data. What follows are two parts that go into this issue at length. 

3.4.1. Implementing Virtual Read Ports 

The read logic that generates the data output for every reading port is often achieved by parallel W-to-1 multiplexers, 

as described in section 2.6. These multiplexers' outputs are the required output data, and the read address acts as a 

selection. These multiplexers must be replicated for each extra read port in order to utilize a traditional register 

file with multiple physical read ports. Nevertheless, our proposed architecture will employ a single multiplexer 

to produce the necessary data for each of the virtual terminals on multiple occasions within a single clock cycle. 

This can only be achieved by logic-based selection of an input read address for an enabled read port. In addition, 

additional logic is required to retain the routed read data for each port. Detailed block diagrams for our proposed 

read logic are illustrated in Fig 12. It has five principal components, including the primary data multiplexer, 

identical to that found in the 1R1W register file. 

 

Figure 11 Virtual port-based pulsed latch register file structure 

3.5. Clock Generator Internal 

Producing clock signals having phases different from the principal input clock signal (clk) is the duty of this block. When 
no read operation is needed, as indicated by the lack of any read enable signals (rd en's), it is made up of a clock-gated 
cell that controls the clk signal. If no less than one of the rd en is active, the clk signal is sent to clk g. The read logic will 
use this signal as its main clock signal. Utilizing delay buffers, the clk g is used to produce several clock signals (clk g 
del) with distinct phases. To regulate the read operation for each read port, the other four blocks employ these clk g del 
signals. 
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Figure 12 The read logic structure that is being proposed to provide multiple virtual read interfaces 

3.6. Pulser Group for Address Selector Reading 

The Address Mux selects the input read addresses to read next based on the control signals generated by this block. For 
every read port, it has m sub-blocks. Each of the building blocks is a pulser circuit with a layout similar to the one in Fig 
6 (a). Two clock signals come from the internal clock generator and one input enabling signal is the rd en of each pulser's 
associated port. One of the Address Mux selectors produces a pulse as its output. 

3.7. Group for Reading Address Sampling  

This block allows one to create the address pulse signal. This signal triggers the latches for reading addresses found in 
the Current Read Address Sample and Hold block. The functional viewpoint holds that a large "pulser" circuit may 
generate a limited number of pulses in one clock cycle. Though it contains two produced clock signals instead of an input 
enable signal, it has m pulser circuits, same like the read address selector pulser group. For the read address latches, 
the enable signal is produced by combining the outputs of several m pulsers. 

3.7.1. Sample of Current Read Address and Hold 

This block must first choose an input read address and maintain it for a sufficient duration to enable the data multiplexer 
to decide and send the necessary register data to the latches on the ports for output. It is composed of two sub-blocks: 
the Address Mux and the Address Latch. The Address Mux, a collection of multiplexers, selects one of the input read 
addresses based on the choice signals supplied by the read address selector pulser group. The read addresses on ports 
0, 1, and so on are given higher priority by arranging this collection of multiplexers in a specific order. Additionally, if 
no selectors are set, the Address Mux will automatically display the read address of port 0. Fig. 13 shows how this 
Address Mux is laid up. The address of port 0 is selected if the read port 0 selection is activated. In that case, the read 
port selector is checked by the multiplexer, and so on. When none of the selectors are in use, port 0 is chosen 
automatically. Port 0 is used as the default address to reduce the setup time for read-enable signals since it is the primary 
virtual port in the clock cycle to be checked if enabled. The address latch is responsible for storing the address of the 
resistor that is currently being read. It is necessary to hold the current read address constant long enough for the Data 
Mux to transfer the data from the chosen registers to their output and then for one of the latches on that output port to 
save that data. A signal known as an address pulse activates this latch. For the current read address, the Address Latch 
and the Read Address Sampling Pulser Group constitute a pulsed latch register. 
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3.8. Ports for the Output Latches 

During a single clock cycle only one data multiplexer is employed to read out data from various read ports, for its output 
to be one of the register file's actual read port outputs, it must be placed at the right time throughout the cycle. 
Additionally, each read output must remain stable until a new read operation is performed on the same port. This is 
achieved by using the Output Ports Latches block. The block contains a limited quantity of periodic latches, each with 
an identical quantity of read ports. A clock signal produced by the clock's internal generator resumes each pulsed latch 
once it has been activated by a read-enable signal. The choice of the triggered clock will help to guarantee that the data 
mux output includes suitable data for storage.  

 

Figure 13 Address Mux structure emphasizing read ports in sequence 

3.9. Implementing Virtual Write Ports 

As explained in section 2.4, the write logic block is accountable for activating the pulser of a specific register inside the 
data array of a register file that employs a pulsed latch. Usually, a decoder can do this by activating one of its outputs in 
response to the wr address after being triggered by the wr en signal. For a single decoder to support numerous write 
operations, control logic is needed to activate each write address sequentially before sending it to the decoder circuit. 
The same control logic should also decide which inputs to write and send them to the data array simultaneously with 
its present write address and enable signal since all of the data array's inputs are identical. The Port Selector is the name 
we give to this control logic. One multiplexer manages the write address, another handles the write enable, and the third 
manages the write data. The multiplexer select signal is generated by the Write Port Selector block, which is responsible 
for controlling these multiplexers. The block derives its signals from the internal clock generator. 

Fig 14 displays the suggested write logic design. To create the data array's write clock signal, you'll need an additional 
control block in addition to the Port Selector. If you want to execute numerous write operations in a single clock cycle, 
you'll need to trigger the clock signal more than once. This is because the data array's register pulsers use the triggering 
clock signal to generate the enable pulses for the latches. This is made possible by the Data Array Clock Generator, which, 
whenever a write operation is required, activates the data array's clock signal (clkw data array). Based on the current 
write address, the write decoder ought to have already enabled the required register prior to the triggering event. 
Additionally, the data array should already have the current write data.  
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Figure 14 Multiple virtual write ports in the proposed write logic structure 

4. Results 

4.1. Register Circuit Designs Files 

To evaluate the different methods for implementing multiport register files, we used all of the available 
implementations to create 32-word register files, each with 32 bits, and a small number of multiport configurations (2 
or 4 read ports with 1 or 2 write ports, for example). Alongside the 1R1W configuration, four additional multiport 
configurations were evaluated, including a 2R1W register file featuring 2 read as well as 1 write port, a 2R2W register 
file comprising 2 read and 2 write ports, a 4R1W register file with 4 read and 2 write ports, and a 4R2W register file 
containing 4 read and 1 write port. Nonetheless, comparable design concepts may be implemented for different 
quantities of write and read ports. 

An instance of 1R1W was created for the SRAM executions utilizing the UMC 28nm register file compilers. Using CACTI 
[31], a software for modelling dynamic and leaky power, accessing time, and area of cache and other memory types, we 
first scaled the 1R1W values in order to get the required area metrics for various actual multiport setups. The 1R1W 
power values were adjusted utilizing the CACTI metrics following the application of the power analysis tool to derive 
approximate energy for each write and read port of 1R1W. After that, the average power usage for a specific activity in 
the register files was calculated by adding the scaled numbers according to the action retrieved from VCD files. 
Additionally, we used array recurrence and double pumping on the 1R1W memory array to compare our proposed 
methods to current solutions for multiport SRAM register files. Using a shared write port, this array was duplicated 
twice to produce the 2R1W register file. To obtain the 4R1W register files, it was necessary to duplicate the memory 
array four times using the same write port. By incorporating extra circuitry to execute both write operations inside the 
same clock cycle, a technique known as "double pumping" was employed to achieve two write ports. Both write 
operations occur throughout the clock cycle, however, the first one happens in the first half and the second in the second. 
The 2R2W and 4R2W register files were obtained using this dual pumping in conjunction with the array replication that 
was formerly covered. 

In order to construct various designs in RTL utilizing the UMC 28nm libraries, standard cell-based register files were 
examined. The clock tree synthesis (CTS) operation was completed along with the synthesis, placement, and routing of 
all the designs. The design was augmented from the 1R1W architecture seen in Fig 2 for traditional cell-based register 

 

Figure 4.14: The structure of the proposed write logic that provides multiple virtual write 
ports. 
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files that included actual ports. Each new write port required a supplementary write decoder, together with hardware 
to manage the activated signals and data inputs to a data array. The addition of read ports was achieved by adding 
additional multiplexers in parallel. A flip-flop data array and a pulsed latch data array were both included in the two 
standard cell register files that were applied to each multiport arrangement. 

Utilizing virtual ports and pulsed latches, the recommended register file was implemented. Elaborated in Fig 15 is the 
read logic that provides two read virtual ports. Two gated clock variants, one with a delay of 0 and the other with a delay 
of 1, are required to support two read interfaces. Additionally, you may use the rd en 1 and clk g del 0 signals to directly 
specify which read address to be read at a specific time, avoiding the Read Address Selector Pulser Group. If both signals 
are set to '1', port 0 will be utilized by default, however this may be altered. Every time the Read Address Sampling 
Pulser Group generates a pulse signal, the rd address current latches samples the given address. The required address 
pulse signal is generated by ORing the outputs of the two pulser circuits that make up this pulser group. Both pulsers 
are activated by the read-enable signals originating from the two separate read ports. Before choosing the event-
triggering clock for each pulser, the necessary read address is picked and directed to the latch inputs, as seen in Fig. 15 
of the timing diagram. Data from the output was stored in two pulsed latches. Finally, each port's read enable signals 
were selected to turn it on, and the triggering clocks were set up to only activate the pulsed latches once the data out 
signal was successfully routed through the required read data. When the clk g del 1 clock signal rises, the pulsed latch 
on port 0 will activate, and when the clk g del 0 clock signal falls, the pulsed latch on port 1 will activate. By modifying 
the read logic as illustrated in Fig 16, four read ports can be obtained. The generation of an extra delayed clock signal is 
accomplished by incorporating a third delay buffer. A 4-bit signal is generated through the combination of the rd addr 
0 pulse signal obtained from the Read Address Sampling Pulser Group with the three control signals from the Read 
Address Selector Pulser Group. One of the four read addresses is selected by the Address Mux's selector using this signal. 
In accordance with the approach specified in Section 3.7, the ports are assessed in a prioritized sequence. The rd address 
0 is selected when the rd addr 0 pulse signal is active. Then, the first available RD address is used. If it isn't, the second 
address will be chosen if the second selector for RD is activated. Finally, rd address 3 is chosen if there is just one active 
signal, that is, rd addr 3 sel. In the absence of any of the four signals, rd address 0 is chosen automatically. 

 

Figure 15 is the suggested architecture for the read logic of register files that have two virtual read ports 

The address pulse signal is generated by ORing the four pulser circuits that make up the Read Address Sampling Pulser 
Group. One of the read-enable signals activates each of the four pulsers, and two clock signals having different phases 
are selected to supply the necessary pulse signal. Two clock signals are used; one originates the pulse and the other 
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stops it. The two clock signals are selected in such a way that the necessary read address is pre-picked, sent to the 
address latches' input, and maintained stable during the pulse. Each port's output data is stored using four pulsed 
latches, two of which are activated at the rising edge of the clock signal and the other two at the falling edge. After being 
triggered by the corresponding clock signals, the read enables signals activate each port. This ensures that the data out 
is prepared with the required read data, just like in the two-port configuration. Fig 16(b) shows how the read logic 
functions overall if four read operations are carried out immediately. The purpose of the read logic is to ensure that all 
read data is stable at the output ports before the next clock cycle. This should allow adequate time for preparation for 
the subsequent step, which reads the register file's output. 

Two write ports' logic designs are shown in Fig 17. To do two write operations in parallel, you need one delayed clock 
signal and one gated clock signal. The port selection process requires three write enable, write address, and write data 
2-to-1 multiplexers. You can think of the gated clock signal clkw g as the selector for the three multiplexers. This means 
that every port is chosen for half a clock cycle. The enable decoder would turn on a data array register if the chosen port 
is enabled. The clock signal for the data array, referred to as clkw data array, is generated using the AND-OR 
configuration. When the write port is enabled, or the write current is '1', a clock signal is produced to turn on the chosen 
register's pulsed latch. Fig 17(b) of the timing diagram illustrates how to ensure a correct write operation by activating 
the clkw data array sufficiently long after the write address is selected and data is moved to it. Two intervals are 
indicated in each half of the clkw g signal in the timing diagram. 

 

Figure 16 Our proposed register file reading logic with four virtual read ports 

A register is enabled by the enable decoder when the port selector selects the writing port. New write data is captured 
and stored by the data array at the second interval. Every design was low-area and power. A Synopsys Design Compiler 
synthesized the designs. We used Synopsys IC Compiler for location, route, and clock tree synthesis. Synopsys VCS 
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simulated all designs on different testbenches at 500MHz. Post-place and route simulation VCD files were utilized for 
power analysis in Synopsys Prime Time PX. 

4.2. Register Files Area 

Several register file executions with different port counts are shown in Fig 18, along with their respective area numbers. 
Certain area advantages are provided by the 1R1W SRAM register file, The area, however, begins to grow rapidly upon 
the integration of additional read-or write-oriented ports. The size grows by almost 30 to 40 % for each extra write port 
and almost two times for each additional read port. The significant expansion results from the wiring of the read and 
write bitlines [11]; the increased size of SRAM bitcells guarantees proper read and write capability with the enhanced 
bitline capacitance. When compared to a single memory array, the register file space that comes from using array 
duplication is smaller. Additionally, compared to having a second physical write port, employing dual pumping for write 
operations only results in a small area overhead. As additional read/write ports are added, the fundamental cell-based 
register file expands in size, much like static random-access memory (SRAM). However, compared to SRAM, the area 
expansion rate is far slower. The register file based on flip-flops is consistently smaller than its SRAM equivalent, with 
the exception of the 1R1W register file. 

 

Figure 17 Our suggested register file write logical framework with two virtual write ports 

However, the flip-flop-based register file exhibits specific area gains for read ports numbering more than two when 
array replication is used. Moreover, when array replication and dual pumping are used on SRAM, there is a noticeable 
area advantage in all variants of the pulsed latch register file with physical ports (with the exception of the 1R1W). 
However, a considerable amount of space is still required for each extra port (4R2W register files are more than 2.4 
times larger than 1R1W files). 
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Here comes one of the benefits of our suggested approach. Fig 18 shows a minor area overhead introduced for each 
additional read or write port. A 4R2W pulsed latch register file, for example, has an area that is just 20% larger than the 
1R1W register file due to our virtual port design. The use of pulsed latches or flip-flops contributes around 15% to the 
area overhead required to achieve an equivalent number of physical ports, but using SRAM results in just 3% space 
overhead. The same proposed technique may be used to create additional read or write ports. Based on the operating 
clock frequency and the relevant technology, the maximum number of virtual ports that may be used with a single read 
or write port is established. It is possible to add a second port and apply the same read/write logic on both if the required 
number of ports is more than the supreme number that can be used with a single physical port. This will lead to a 
significant decrease in floor area relative to the other implementation alternatives. 

Furthermore, because of the relatively low area overhead of the 4R2W register file in comparison to the 1R1W, the 
4R2W architecture may be used generally in all designs. Depending on the operating application, the processing unit 
will have the liberty to use as many ports as necessary at run time. Having several read and write ports could help in 
the processing time of programs with several independent processes that can be handled in parallel. 

 

Figure 18 Comparative analysis of the area of five variants of the 32-bit x by 32-word register files with varying read 
and write ports 

4.3. Register Files Power Consumption 

We estimated the average energy consumption of register file structure by performing post-layout power evaluations 
using VCD activity gathered from examine benches made for each register file configuration, in which data is read from 
and written to random addresses. This was executed at a clock frequency of 500 MHz for over 200 cycles. Fig 19 
illustrates the power usage measured for various register file executions with differing port counts. The power usage of 
SRAM consistently exceeds that of conventional cell-based systems, as anticipated for a 1-Kbit register file size. The 
energy consumption of the 4R2W SRAM register file is more than 2.5 times that of register files based on flip-flops or 
pulsed latches. Using array replicating and dual pumping results in a small rise in the SRAM register file's power usage. 

In comparing typical cell-based solutions with the two pulsed latch applications, the flip-flop-based register file 
consistently uses more power. The power consumption of shared pulser flip-flops is anticipated to be greater than that 
of pulsed latches. The increased input clock demand of flip-flops correspondingly amplifies power consumption in the 
clock network. In comparison to our proposed virtual port approach, the pulsed latch execution with a separate physical 
port for read/write operations uses less power than the other one. The power overhead of the mentioned method is 
just 7% more than its physical port counterpart on average, regardless of the number of ports. With a difference of less 
than 10%, the pulsed latch register file with virtual ports uses 9% less power on average than flip-flop-based 
alternatives. 
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Applications that need fewer ports may benefit from the universal use of the 4R2W pulsed latch register file with a 
virtual port. However, the additional power usage is unlikely to be substantial. The proposed 4R2W register file's power 
consumption during the execution of similar test benches used for the power analysis of different port counts is shown 
in Fig. 18. The power overhead is around 2%, except for the 1R1W configuration, as illustrated. Even though there is an 
87% power overhead compared to a specialized 1R1W pulsed latch register file, the 4R2W register file operating as a 
1R1W will use more than 10% less power than a flip-flop-based 1R1W register file. 

 

Figure 19 The 5 register file implementations with varying port numbers and their respective power consumption 

 

Figure 20 Pulsed latch-based register file power consumption with 4R2W virtual ports compared to lower port count 
testing benches  
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List of Abbreviations 

Acronym Abbreviation 

SRAM Static Random-Access Memory 

FPGA Field Programmable Gate Arrays 

STT-RAM Spin-Transfer Torque Random Access Memory 

FF-RF Flip Flop-Based Register File 

CGC Clock Gating Cycle 

PL Pulse Latch 

CTS Clock Tree Synthesis 

Wr Write 

Rd Read  

5. Conclusion 

We examined various methods of execution of register files. The conventional methods of implementing 1R1W register 
files utilizing SRAM, flip-flops, and latches were compared in order to offer a standard cell solution that is efficient for 
small register files. The final decision was to use a pulsed latch architecture. In addition, we discussed several 
approaches to multiport register file layouts that increase area efficiency. 

We covered the specifics of adding a virtual read/write port with a reduced number of physical ports and offered a new 
pulsed latch implementation for multiport register files. Various multiport register file implementations were 
showcased and evaluated, each with a unique number of ports. The proposed approach with virtual ports led to 
considerable space savings compared to previous systems employing SRAMs, flip-flops, or pulsed latches with physical 
ports. Furthermore, the recommended solutions are 7% more power efficient compared to the pulsed latch-based 
register file that uses physical ports, demonstrating their exceptional power efficiency. Its power consumption, but, is 
consistently lower than that of its flip-flop or SRAM equivalents. 

In order to test how well the suggested virtual port approach works with 4R2W register files, we looked at them as a 
generic implementation of register files that can be adjusted at runtime to use the number of ports needed by the 
program. The results obtained with fewer ports for the register file show a minimal energy overhead when compared 
with other register files having specific read and write ports. Additionally, the area overhead is just around 20% when 
associated with a dedicated 1R1W pulsed latch register file. 
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