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Abstract 

Once, discrete circuit elements, called components, were heaped up on boards inside steel cages using wire-lead 
technology in just five short years. Fast forward to today, and your computer CPU fits about half an inch square on a 
chip. Both this constant miniaturization of electronic circuits and the rapid growth in the prevalence of third-party 
intellectual property parts have made hardware protection more worrisome than ever. 

Among all these issues, Hardware Trojans (HTs)—which represent corrupted or harmful additions during various 
design and fabrication stages—pose significant threats to system integrity, privacy of data, and essential infrastructure. 

Recent studies have investigated machine learning (ML) and artificial intelligence (AI) techniques designed to enable 
Hardware Trojans to be found, located, and eliminated in all stages from the register transfer level (RTL) and beyond. 

This survey gives an in-depth look at how AI can enhance RTL security. It classifies these AI-based techniques into four 
main categories: 

Graph-Based Techniques 

GNNs, for instance, can be used to estimate the topology of circuits, extract structural characteristics, and thus find 
where some corruption has occurred. 

The SALTY framework applies Jumping-Knowledge GNNs to improve the accuracy location for hardware Trojans. 

Deep Learning in Side-Channel and Power-Analysis Techniques 

Deep learning methods—such as Siamese Neural Networks (SNNs) and Long Short-Term Memory (LSTM) models—
have been developed to detect abnormalities brought about by Trojans in power consumption or electromagnetic (EM) 
radiation, granting non-invasive practices clear security benefits. 

Studies show that these techniques are superior to the traditional golden-model side-channel detection techniques. 

Machine Learning Analysis of RTL Code: 

In conjunction with AI, research teams are now building nearest-neighbor classifiers and decision trees and using 
reinforcement learning (RL) to recognize occurrences of Trojans inside RTL code. 

Some research uses Verilog/VHDL conditional statements as features for ML, making it possible for early warning 
signals to be effectively detected and introducing a proactive security mechanism during the design phase. 
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Comprehensive Security Measures and Logic Locking: 

A step-by-step methodology has evolved for prevention measures such as logic locking and layout hardening, which 
aims against a splendid prospect within reach. 

The TroLLoc framework uses logic obfuscation combined with security-aware placement and routing, thus mitigating 
security exposures post-design. 

However, comprehensive studies point out several outstanding problems: key recovery attacks and unintended data 
leakage related to security in logic locking. 

In this way, the paper evaluates various AI-driven security strategies in an organized, facilitative manner, thereby 
highlighting significant challenges and proposing future research directions 

Keywords: Logic Locking; Deep Learning in Power Analysis; Siamese Neural Networks (SNNs); Jumping-Knowledge 
GNNs; Verilog/VHDL Code Analysis 

1. Introduction 

The globalization of the integrated circuit (IC) supply chain has brought significant challenges to the security and 
trustworthiness of hardware. Adopting the fabless semiconductor model, in which companies outsource design, 
fabrication, and verification to third parties, further increases the risk of malicious alterations in the form of hardware 
Trojans (HTs) [1]. Hardware Trojans are low-profile changes to circuit design that can infiltrate sensitive data, sabotage 
system performance, or, in extreme cases, endanger the security of vital national infrastructure such as defense, health, 
traffic, and finance [2]. The complexity of modern IC designs and the widespread use of third-party IP cores pose further 
difficulties in detecting hardware Trojans. Traditional methods such as rule-based design verification (e.g., LVS and DRC 
checks), side-channel analysis, and functional testing have limitations: scalability issues and high false positives or 
negatives rates. They are also ill-equipped to deal with continuously evolving attack vectors [3]. Researchers are now 
using AI and machine learning (ML) techniques to generate new tools for design verification. Among these are Graph 
Neural Networks (GNNs), Siamese Neural Networks (SNNs), reinforcement learning (RL), and explainable AI (XAI), all 
to identify and mitigate Trojans [4]. This paper divides the AI-based RTL Security Methodology into four broad camps, 
each with its vigorously implemented badge: Graph-based detection techniques, which identify vulnerabilities from 
signal power levels. Power side-channel analysis featuring opportunities for greater power use. RTL machine learning 
models are designed to find and model new threats before they become real. Proactive logic locking mechanisms, as 
well as encrypting and decrypting keys. Through a thorough investigation and comparison of existing research on AI-
based detection frameworks for Trojans, this paper aims to highlight some key difficulties, discuss recent advances in 
research, and suggest future research directions for buttressing data-security methods in upcoming generations of 
semiconductors. 

1.1. Key Challenges 

• Scalability and Complexity: It's impractical to verify modern ICs with billions of transistors manually. Many AI 
methods are not very good at this scale, mainly when they rely on deep neural networks as the learning models 
and graph theory as a coordination mechanism. 

• False Positives and Detection Accuracy: Traditional functional verification methods, such as those used in side-
channel analysis, are no guide for distinguishing between benign circuit variation and real Trojans because of 
the broad range of disturbances caused by today's design techniques.  

If AI fraud measures are to work, they can have just two attribute sensitivity, or operational drawbacks. 

• Golden Model Dependency: Many current approaches assume you always have a 'golden' reference IC. However, 
COTS components off the shelf do not provide global wiring as stated. Colleagues are testing AI methods using 
self-referencing side-channel analysis and dynamic post-processing ML models. 

• Adaptive Hardware Attacks: Hardware Trojans continuously evolve to evade detection. They repeatedly fool 
detection systems using low-power triggers, dynamic activation schemes, and hidden gates, requiring AI 
models to adjust in real-time for even the tiniest alteration or distortion. 

• Security of Logic Locking Techniques: There are specific difficulties with existing logic locking and layout 
hardening methods. They preclude the insertion of Trojans directly into a chip. Still, according to recent 
research uncovered by some of our colleagues here at Columbia University, such chips have proven leaky in an 
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embarrassingly short time. Furthermore, an AI-based testing framework should evaluate how well these 
protective devices operate and what can be done to improve them. 

1.2. Scope of the Paper 

These methods contain a class of techniques based on AI content examination, including the following few: 

1.2.1. Graph-Based Hardware Trojan Detecting Method 

For (Jumping Knowledge) GNN-SALTY is a programmable RTL security model relying on Graph Neural Networks [2]. 
Graph-based features represent the geographical orientation of infected nodes in IC layouts and network volumes [10]. 

1.2.2. AI and Side-Channel Analysis for Hardware Security 

Deep learning techniques, such as Siamese Neural Networks and LSTMs (Long Short-Term Memories), are deployed in 
compromised ICs to identify power or EM signal anomalies [12]. Methods using self-reference to lessen the reliance on 
the Golden chip [3]. 

1.2.3. Machine Learning for RTL Code Analysis Programs 

Machine Learning performed RTL verifying based on various principles, such as K-nearest neighbor classifiers, decision 
trees, and reinforcement learning [6]. In feature engineering, IP verification methods with Verilog/VHDL code scanning 
are also known as Hardware Trojan Detection [13]. 

1.2.4. Logic Locking and Secure ICs 

Logic obscuration and security-aware placement/routing combined in the TroLLoc Framework [15]. AI-powered 
vulnerability assessments can help locate the weak points in locked circuits and exposed data hazards [10]. 

1.3. Significance of Study 

This research results are significant for trust, data integrity, and business continuity. Therefore, it is essential to improve 
this technology in industries concerned with these problems - automobile manufacturing, aerospace, healthcare 
information systems (for both general practitioners and family planning secrets), etc. - as well as government 
organizations such as intelligence departments and the NSA. Significant contributions of this report included: 
Combining new theory with concrete applications This article unifies some of the basic research on PUF that has been 
done in recent years. It also examines how to implement practical security in this new era with artificial intelligence and 
related technology and realize and realize quantum-resistant architectures [9]. Promoting AI-driven security solutions 
The paper is testing the performance of AI-based detection algorithms. It examines the effectiveness of machine learning 
defense models for things like protecting against side-channel attack satellite transmissions or hardware Trojan horses 
[12]. It also considers how monitoring equipment can best combat the problem of pirates stealing your intellectual 
property. 

2. Contents Reviewed and Recent Works 

2.1. As for the methods of Hardware Trojans detection 

Researchers have made innumerable attempts to detect and remedy hardware trojans (HTs). The earliest methods 
attempted to use are functional verification, circuit design analysis, and formal verification. Each of these had 
limitations: 

A. They could not find non-functional trojans, B. needed exhaustive manual analysis to get program information and 
relied upon frame models [6]. 

Although this resulted in efficiency improvements and greatly enhanced scalability, machine learning (ML) and artificial 
intelligence (AI) are still evolving. 

A typical early AI-based detection model, GNN4, used Graph Neural Networks (GNNs) to automatically extract RTL 
security and targeting features, etc. [7]. Other works used deep learning techniques, such as Siamese Neural Networks 
(SNNs) associated with Side Channel Analysis, plus the use of Long Short-Term Memory (LSTM) Models to track power 
and EM signatures corresponding to hardware trojans [12]. 
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More recently, GNN4HT has extended its range from FPGAs to gate-level and RTL designs. This addressed situations 
where class similarity was significant, and data augmentation was limited [8]. 

2.2. New AI-augmented Safety in RTL and Gate-Level Designs 

Explainable AI (XAI) is a recently developed technology with promise, especially in hardware Trojan localization and 
security-aware anomaly detection. Some results under the SALTY framework use Jumping-Knowledge (JK) GNNs to 
extract patterns, thereby improving resolution for trojans [2]. 

ML-based detection frameworks, such as SVM, decision trees, and reinforcement learning (RL), have applied RTL-level 
verification, extracting security-sensitive patterns from conditional statements in Verilog/VHDL [6]. 

Another advancement is ML models' self-referencing and dynamic post-processing, substituting for golden reference 
chips, thus allowing non-destructive Trojan detection in commercial off-the-shelf (COTS) components [3]. 

• New Methods of Hybrid Cryptography: Various methods are now being researched to protect secure silicon 
architectures from attacks such as authentication tricks or Trojans. These include physically unclonable 
function-based encryption (PUFs). 

• Logic Locking and Hardware Security Reinforcement: To counteract hardware Trojan insertion or other 
invasive methods of attack from attackers, trickery during the design stage increases the difficulty for them [3]. 
The TroLLoc framework integrates secure placement/routing with logic obfuscation to reduce on-die security 
traps after design [4]. 

Recent studies note potential flaws in logic locking techniques, such as key recovery attacks and accidental data leakage 
risks [10]. 

AI-assisted vulnerability assessments are being developed to evaluate the effectiveness of logic-locking mechanisms. 

2.3. AI-Based Hardware Security's Challenges 

Despite advances, several challenges remain 

• Scalability: Existing models must scale to large IC designs with billions of transistors [5]. 
• False Positives: High detection model sensitivity causes false alarms, complicating the differentiation between 

benign and malicious changes [6]. 
• Adaptive Hardware Attack: Evolving stealthy trojan designs demand adaptive, self-learning AI models [8]. 
• AI Model Safety: AI-based security mechanisms are vulnerable to attacks, highlighting the need for robust, 

attack-resilient AI frameworks [11]. 

3. Methodology and Implementation 

3.1. Applying GNN to Hardware Trojan Detection Techniques 

Machine learning techniques, such as graph neural networks (GNNs), have been widely acclaimed for their effectiveness 
in HT detection due to their ability to simulate complex interactions in a circuit netlist. [15] To uncover potential Trojan 
occurrences, GNN effectively represents the circuit as a graph—where nodes are circuit components (e.g., gates, 
registers) and edges are the connections between them. Typical structures linking activities indicative of Trojan 
behavior can be captured almost effortlessly. 

3.1.1. Representation of Circuits Based on GNN 

Because netlists have a non-2D structure, traditional Convolutional Neural Networks (CNNs) can find this difficult. By 
constructing a graph-based representation for circuit layout, GNNs can overcome this problem. 

The gate-level netlist is first translated into a graph with attributes such as gate connectivity, signal path, logic allocation, 
etcetera. The graph construction proceeds in these steps: 

• Extract all individual parts of the circuit and their interconnections. 
• Represent the gates as nodes v and connections between them as edges e. 
• Assign the node attribute values: gate kind, fan-in/out ratios, and logic depth. 
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Mathematically, the propagation rules of a GNN layer can be described as: 

𝒉ᵢ^(ˡ⁺¹) = 𝜎 (𝑾^(ˡ) ∑ⱼ∈ᴺ⁽ⁱ⁾ 𝛼ᵢⱼ 𝒉ⱼ^(ˡ) ) ……………(1) 

where: 

• hi(l) represents the node feature at layer l, 
• W(l) is the learnable weight matrix, 
• Σ is the activation function, 
• N(i) is the neighborhood of node iii, 
• αij is the attention coefficient computed as: 

 

𝛼ᵢⱼ = 𝑒ˣᵖ (𝐿𝐞𝐚𝐤𝐲𝐑𝐞𝐋( 𝒗ᵀ [𝑾 𝒉ᵢ || 𝑾 𝒉ⱼ] ) ) / ∑ₖ∈ᴺ⁽ⁱ⁾ 𝑒ˣᵖ(𝐿𝐞𝐚𝐤𝐲𝐑𝐞𝐋𝐔(𝒗ᵀ [𝑾 𝒉ᵢ || 𝑾 𝒉ₖ]))………… (2) 

This approach enables feature propagation across circuit elements, aiding efficient anomaly detection in netlists [2]. 

3.2. Side-Channel and Power Analysis-Based Detection  

In addition to these traditional approaches, deep learning models like Siamese Neural Networks (SNNs) and Long Short-
Term Memory (LSTM) networks are used more frequently for Side-Channel Analysis (SCA). These technologies deviate 
from normal circuit behavior by analyzing power consumption and electromagnetic (EM) emissions, which might as 
well be on their radar screen. 

3.2.1. Signal Processing and Feature Extraction  

During regular operations and with a Trojan infection, these power traces from a circuit are collected. After that, 
statistical and machine learning algorithms are used to extract all sorts of features related to abnormal activity. 

(𝑡) = V(𝑡) ⋅ 𝑰(𝑡)  …………. (3) 

where: 

• V(t) is the instantaneous voltage, 
• I(t) is the instantaneous current. 

3.3. Machine Learning-Based Power Classification  

After extracting features, one may train a Siamese Neural Network to classify Trojan and non-Trojan power patterns. 
The SNN objective function is 

Siamese Neural Network Objective Function 

𝐿 = ∑ᶦⁿ=¹ⁿ 𝑦ᵢ || (𝑥ᵢ) − (𝑥ⱼ) ||² + (1 − 𝑦ᵢ) 𝑚𝑎(0, 𝑚 − || 𝑓(𝑥ᵢ) − 𝑓(𝑥ⱼ) ||)²………………(4) 

where: 

• xi, xj, are input feature vectors, 
• yi is the similarity label, 
• f(x) is the feature extractor, 
• m is a margin parameter. 

This method achieves high accuracy in detecting power anomalies caused by Trojan insertions [6]. 

3.4. Logic Locking and Secure RTL Design 

To prevent hardware Trojan insertion, logic locking and layout hardening techniques are used [15]. The TrojLoc 
framework integrates logic obfuscation with secure placement and routing, making it difficult for attackers to insert 
malicious modifications post-design [10]. 
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3.4.1. XOR-Based Logic Locking 

One widely used type of logic locking is XOR/XNOR-based obfuscation. Under this technique inserts key-controlled gates 
into a design so only the correct key can give forth normal behavior. The logic equation for a locked gate is as follows. 

𝑌 = (𝐴 ⊕ 𝐾₁) ⋅ (𝐵 ⊕ 𝐾₂)  ………………..  (5) 

where: 

• K1, K2 are secret keys, 
• A, B are logic inputs, 
• Y is the locked output. 

Path Sensitization for Security Evaluation Path sensitization techniques are used to evaluate the security of logic locking. 
Through ATPG the secure outputs of a locked circuit will remain unpredictable unless the correct key is put in [13]. Not 
all locked circuits will be this secure, however. 

𝐷 = ∑ᶦⁿ=¹ⁿ 𝑆ᵢ 𝑃ᵢ   ……………..  (6) 

where: 

• Si is the sensitivity function, 
• Pi is the probability of leakage for key bit i. 

Security evaluations determine the resilience of locked circuits against key-recovery attacks by analyzing these 
constraints [9]. 

4. AI-Driven Security Enhancements 

4.1. Federated Learning for Secure IC Verification  

Federated learning allows AI models to be trained across multiple fabs without exposing proprietary design data [14]. 
The federated learning model aggregation rule is  

𝜃ₜ = ∑ᶦⁿ=¹ⁿ (𝑚ᵢ / 𝑀) 𝜃ᵢ   ……………… (7) 

where: 

• θt  is the global model, 
• mi is the number of samples at fabrication site iii, 
• M is the total dataset size. 

This guarantees secure and private updates for AI-driven Trojan detection, allowing continuous safety improvement 
without losing data confidentiality. 

5. AI-Augmented Routing Security  

To suppress crosstalk, electromagnetic (EM) leakage, and side-channel attacks on the system, a constrained shortest-
path algorithm is employed for secure routing driven by AI. 

𝐶 = ∑⁽𝑢,⁾∈ᴾ 𝑤(𝑢, 𝑣)  ………………. (8) 

where: 

P represents all possible paths, 

w (u, v) is the routing cost, considering wirelength, congestion, and security risks. 

The security-aware routing optimization function is: 

where: 
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𝑚𝑖𝑛 (𝐶 + 𝛽 𝑆 )  ……………… (9) 

S represents side-channel vulnerability, 

α, β are weighting coefficients that balance performance and security. 

This AI-driven routing framework ensures secure signal transmission while minimizing susceptibility to hardware 
Trojans and side-channel attacks [5]. 

6. Evaluation and Performance Analysis 

6.1. Performance Metrics of the Model 

The effectiveness of AI-based hardware Trojan (HT) detection models can be assessed by a range of classification 
metrics, including accuracy, precision, recall (true positive rate - TPR), false positive rate (FPR), F1-score, and area 
under the curve (AUC) [1]. The expressions for these are: 

Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) 

Recall (TPR):  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) 

False Positive Rate (FPR): 

𝐹𝑃𝑅 = 𝐹𝑃 / (𝐹𝑃 + 𝑇𝑁) 

F1-Score:  

𝐹1 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  …………….. (10) 

For the efficiency of Graph Neural Networks (GNNs) and machine learning detection models, these metrics were applied 
to multiple datasets from Trust-Hub benchmarks [2][6]. 

6.2. Evaluation of Strategy of Cases 

A three-tiered strategy was adopted in the evaluation process of AI-powered detection models: 

6.2.1. Case I: Machine Learning-Based Classification 

The decision tree model was trained on the netlist features extracted and employs an approach based on the nearest 
neighboring [1]. The expression represents it: 

(𝑥) = 𝐷𝐸𝐶𝐼𝐒𝐼𝑂𝑁 𝑇𝑅𝐸𝐸 (𝑥, 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 (𝑥, 𝐷)) ……………. (11) 

This case showed an improvement of ~5% in accuracy over traditional feature-based classification methods [3]. 

6.2.2. Case II: Graph-Based Trojan Detection 

In RTL designs, Graph Neural Network (GNN) classification was employed to analyze circuit relationships and to detect 
malicious tampering [8]. We have: 

𝑦 = 𝑓(𝑥) ………………. (12) 
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where y denotes the predicted output, 𝑓𝜃 represents the deep learning model, and 𝑥 is the extracted netlist feature 
vector. 

This method improved false positive reduction by 12% and significantly enhanced detection sensitivity for unknown 
Trojan types [5][7]. 

6.2.3. Case III: Node-Level Classification with GNNs 

With the development of this method, instead of classifying entire netlists, it is now possible to identify each infected 
node based on its power characteristics. As a result, we see that in the Softmax activation function employed here with 
Graph Convolutional Network (GCN), the classification can be expressed as follows: 

𝑦  = 𝐺𝐶(𝑥) ………………….  (13) 

where 𝑦  is the classified node label and x represents node embeddings. 

This approach successfully identified Trojan locations within netlists with an accuracy of ~98%, making it superior to 
traditional machine learning-based detection techniques [6][9]. 

6.3. Side-Channel and Power Analysis Evaluation 

Siamese Neural Networks (SNNs) were used for side-channel and power analysis. While they do not directly attack the 
chip, rather their physical effects on power consumption cycles, one useful thing about SNN is that it is free from 
computationally intensive calculations to generate power cycle versions of on-chip waveforms. The classification 
function is: 

𝐼𝐺ₓ(𝑥) = (𝑥𝑓𝑖 − 𝑥′𝑓𝑖) × ∫₀¹ 𝜕𝐹 (𝑥′ + 𝛼 × (𝑥 − 𝑥′)) / 𝜕𝑥𝑓𝑖 𝑑𝛼  …………. (14) 

where F(x) is the model output and 𝛼 is a scaling factor. 

This method achieved: 

• 98% accuracy in power-based anomaly detection 
• Reduced dependency on golden-chip models [12]. 

6.4. Logic Locking Security Assessment  

The security of different logic-locking technology, such as XOR-based obfuscation, was evaluated in light of how 
resistant they were to key recovery attacks. Path sensitization techniques were also used when assessing the extent to 
which there was a danger of leakage from a key: 

𝐷 = ∑₁ⁿ 𝑆ᵢ 𝑃ᵢ  ………………… (15) 

where 𝑆ᵢ is the security sensitivity function and 𝑃ᵢ is the probability of a successful attack [10]. 

This study found that traditional XOR-based methods were vulnerable to Boolean SAT-based attacks, while TroLLoc 
(Logic Locking + Layout Hardening) improved security resilience by 43% [15]. 

6.5. Secure AI-Driven Routing Optimization 

In this research, to prevent signal leakage and Trojan insertion in IC routing, an AI-driven constrained shortest-path 
optimization was put:  

𝐶 = ∑⁽𝑢, 𝑣⁾∈ᴾ (𝑢,𝑣) ………………………………. (16) 

where P represents possible paths, and w (𝑢, 𝑣) accounts for wirelength, congestion, and security risks. 

Results showed: 

• 27% improvement in security-aware routing efficiency. 
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• Lower susceptibility to electromagnetic (EM) side-channel attacks [5].  

7. Conclusion 

This paper introduces an artificial intelligence-driven method for locating and preventing hardware Trojans at the 
various phases of IC design. The main findings are as follows: Graph Neural Networks (GNNs): Offer Trojan-infected 
node localization capabilities with an accuracy of as high as 98%, making them superior to all types of machine learning 
models temporarily used for other purposes. [8] AI-assisted side-channel analysis: Utilizing Siamese Neural Networks 
(SNNs) can sense power leakage and electromagnetic radiation produced by HTs. The True Positive Rate (TPR) of the 
anomaly detected in this way is 98 percent. [12] Logic Locking Techniques: TroLLoc (Dual Technique for Logic Locking 
and Layout Hardening) can raise the average success rate by 43% compared to prevention. [15] AI-embedded routing 
optimization: Can lower susceptibility to signal leakage while making these systems more resistant to electromagnetic 
side-channel attacks than ever. [5] Federated Learning-based Security frameworks: Allow secure multi-party IC 
verification without sacrificing design confidentiality, thus showing up supply chain security. [14] This paper offers: A 
comprehensive hardware Trojan detection scheme based on artificial intelligence, incorporating AI to deliver low-cost 
detection and location results. An in-depth evaluation of these latest AI models, giving their comparative accuracy, 
scalability, and robustness against adversarial attacks. A hardware security strategy for the future based on AI, including 
its concentration on architectures immune to quantum attacks, the use of adversarial training methods, and approaches 
to federated learning. Future Horizons For the next phase of research, we should take account of the following trends:  

• A cryptographic architecture combining post-quantum encryption with PUFs. 
• Real-time AI adversarial training to counteract covert Trojan attacks. Integration with cloud-based EDA 

platforms for scalable and distributed security verification. 
• Establish a framework for detecting AI-powered anomalous behavior on a post-silicon level. 

 
This research lays the foundation for next-generation hardware security solutions, built on the latest advances in AI and 
cryptography. It ensures that semiconductors are finally credible—not just for missions when one's life depends upon 
them, as with defense and healthcare yesterday. Instead, they will be equally worthy today in autonomous cars 
tomorrow, serving on all fronts! 
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