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Abstract 

While the OpenAI API documentation presents a range of theoretical guidelines and optimization techniques for 
reducing latency and improving performance in language model applications, it largely focuses on high-level principles 
rather than providing quantitative, comparative data under realistic load conditions. In this paper, we offer an empirical 
evaluation of four OpenAI language models—o1-mini, o1-preview, GPT-4o, and GPT-4o-mini; across diverse task 
categories including explanatory, creative, technical, translation, and coding prompts. By employing asynchronous load 
testing with varying concurrency levels, we measure key performance metrics such as average response time, 
throughput, and token efficiency. Our study not only validates the optimization principles discussed in the API 
documentation but also provides actionable insights and a data-driven framework for model selection in real-world 
scenarios. This comparative analysis enables practitioners to make informed decisions based on measured performance 
trade-offs, thereby complementing and extending the theoretical recommendations in the OpenAI guidelines. 
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1. Introduction

The rapid evolution of language models has led to a proliferation of architectures and configurations, each tailored to 
specific use cases and application domains. While it is widely acknowledged that different models are optimized for 
distinct tasks—ranging from generating creative narratives to providing precise technical explanations; the selection 
process often relies on qualitative assessments and theoretical guidelines. The OpenAI API documentation, for instance, 
offers a set of principles for latency optimization and performance improvement. However, these guidelines primarily 
focus on high-level recommendations without providing a comparative, quantitative analysis of model performance 
under realistic load conditions. 

This paper presents a systematic empirical evaluation of four OpenAI language models: o1-mini, o1-preview, GPT-4o, 
and GPT-4o-mini—across a diverse set of prompt categories including explanatory, creative, technical, translation, and 
coding tasks. Our approach, characterized as "blanket testing," involves the application of asynchronous load testing 
with varying concurrency levels to generate measurable performance metrics such as average response time, 
throughput, and token efficiency. 

By integrating real-world load conditions into our evaluation framework, we aim to complement the theoretical 
optimization strategies outlined in the API documentation [1]. The intent is not to claim a universal superiority of one 
model over another, but rather to provide a robust, data-driven basis for informed decision-making. This enables 
practitioners to understand the trade-offs between latency, scalability, and resource utilization, thereby guiding the 
selection of the most appropriate model for their specific operational requirements. 
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In summary, while each OpenAI model is designed with a particular set of objectives, our research offers a comparative 
analysis that bridges the gap between theoretical recommendations and practical performance, supporting a more 
nuanced and empirical approach to model selection. 

2. literature review 

The evaluation of language models under real-world conditions has been an area of significant research, with studies 
examining various performance trade-offs, including latency, throughput, scalability, and robustness. While theoretical 
guidelines provided by model providers such as OpenAI offer optimization principles, empirical studies provide 
quantitative insights into how models perform under load, informing model selection for practical applications. This 
section reviews existing literature related to scalability, inference efficiency, and trade-offs in large language model 
(LLM) performance, positioning our work within this broader research landscape. 

2.1. Scalability and Model Performance Trade-offs 

The scalability of LLMs has been studied in various contexts, from inference latency and concurrency handling to 
robustness against adversarial attacks. Sun and Miceli-Barone (2024) investigate the scaling behaviour of LLMs in 
machine translation, revealing an inverse scaling phenomenon, where larger models, while more powerful, become 
increasingly vulnerable to prompt injection attacks in zero-shot settings [2]. Their findings highlight that scaling alone 
does not always lead to improved performance, reinforcing the importance of efficiency optimizations in model 
selection. While their research primarily focuses on adversarial robustness, it provides valuable insights into scalability 
trade-offs, complementing our investigation into how OpenAI models handle increasing concurrency levels in real-
world deployments. 

Beyond adversarial robustness, Tran et al. (2024) explore multi-dimensional LLM performance analysis in structured 
evaluation tasks, finding that reducing context length enhances reliability but increases computational cost [3]. Their 
study underscores the need for task-specific optimizations, a theme that aligns with our findings on how different 
OpenAI models exhibit varying performance patterns depending on prompt complexity and concurrency load. By 
highlighting efficiency trade-offs in structured assessments, their research reinforces our work's emphasis on balancing 
response speed, resource usage, and scalability in production environments. 

2.2. Inference Optimization and Latency-Throughput Trade-offs 

Efforts to optimize LLM inference efficiency have introduced novel techniques for managing throughput and latency, 
especially in large-scale AI applications. Agrawal et al. (2024) address this challenge by introducing Sarathi-Serve, a 
scheduling framework that optimizes request batching for scalable LLM inference [4]. Their study identifies 
inefficiencies in existing model-serving infrastructures, demonstrating that prioritizing either latency or throughput 
alone results in suboptimal performance under high concurrency. By implementing Chunked-Prefills and Stall-Free 
Scheduling, Sarathi-Serve achieves 5.6× improvements in throughput while maintaining low latency. These findings are 
directly relevant to our work, as we examine how OpenAI models respond to concurrent requests, providing empirical 
evidence on performance bottlenecks and API scalability trade-offs. 

Similarly, Jaiswal et al. (2025) introduce SAGESERVE, a hybrid inference framework designed to dynamically allocate 
GPU resources based on workload demand [5]. Their research highlights that traditional GPU allocation strategies either 
over-provision or underutilize compute resources, leading to inefficiencies in large-scale AI applications. By combining 
reactive and predictive scaling strategies, SAGESERVE improves GPU-hour utilization by 25% while maintaining 
response-time guarantees. These findings align with our study’s focus on model efficiency under concurrency stress, 
reinforcing the importance of dynamic resource scheduling in real-world LLM deployments. 

2.3. Model Evolution and Evaluation Frameworks 

Understanding the historical evolution of LLMs is crucial for contextualizing their current scalability challenges. Zhou 
et al. (2023) provide a comprehensive survey on Pretrained Foundation Models (PFMs), tracing their development from 
early transformer architectures (e.g., BERT, GPT-3) to modern large-scale models (e.g., GPT-4, ChatGPT) [6]. Their 
analysis highlights key scalability and efficiency challenges, particularly in instruction tuning and inference 
optimizations. While their survey does not specifically examine model concurrency, it offers critical background on why 
scaling strategies differ across LLM architectures, informing our study on how OpenAI models perform under varying 
levels of concurrent requests. 
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A more structured evaluation approach is presented by Liang et al. (2023) in HELM (Holistic Evaluation of Language 
Models), a benchmarking framework that assesses 30 major LLMs, including OpenAI’s GPT-3 and InstructGPT, across 
multiple performance dimensions [7]. HELM evaluates models on accuracy, robustness, fairness, efficiency, and bias, 
providing standardized metrics for LLM comparison. Although HELM does not directly assess concurrent API 
performance, its emphasis on efficiency trade-offs complements our empirical analysis of latency degradation, 
throughput bottlenecks, and token processing efficiency in OpenAI models. 

2.4. Positioning Our Work 

While prior research has explored scalability, inference efficiency, and task-specific LLM optimizations, there remains 
a gap in empirical studies on how OpenAI’s models handle concurrent requests in real-world applications. Our study 
builds on these foundational works by conducting a quantitative analysis of latency, throughput, and token efficiency 
under varying concurrency levels, bridging the gap between theoretical model optimizations and practical performance 
trade-offs. By benchmarking o1-mini, o1-preview, GPT-4o, and GPT-4o-mini, we extend prior research on scalability 
and efficiency, offering actionable insights for model selection in high-load environments. 

3. Implementation 

This section details the experimental framework developed to empirically evaluate the performance of selected OpenAI 
language models under real-world load conditions. Our approach systematically measures key performance metrics 
like average response time, throughput, and token efficiency; across diverse task categories using asynchronous load 
testing. The following subsections describe our methodology, organized into four parts. 

3.1. Prompt Categories 

To capture a broad spectrum of use cases, we evaluate each model on five distinct prompt categories. These categories 
were chosen to represent tasks ranging from explanatory content and creative narrative generation to technical 
explanations, translation, and coding. Table I summarizes these categories along with descriptions and representative 
sample prompts. 

Table 1 Prompt Categories 

Prompt 
Category 

Description Sample Prompt 

Explanatory Requires clear explanation of complex 
concepts. 

“Explain the principles behind quantum computing in 
simple terms.” 

Creative Demands narrative generation and creative 
storytelling. 

“Write a short story about an AI that saves a city from a 
cyber-attack, in a suspenseful tone.” 

Technical Focuses on precise technical explanations and 
comparisons. 

“What are the key differences between supervised and 
unsupervised machine learning? Provide examples.” 

Translation Involves converting text between languages 
with an emphasis on brevity. 

“Translate the following sentence into French: 'The 
future of technology is bright and full of innovation.'” 

Coding Requires generating functional code or 
algorithmic solutions. 

“Write a Python code for binary search.” 

3.2. Load Testing Setup 

The performance evaluation was conducted using an asynchronous load testing framework implemented in Python. 
This framework leverages the asyncio [8] library to simulate real-world, concurrent usage of language models. For each 
prompt category, we executed tests at multiple concurrency levels, specifically: 

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝐿𝑒𝑣𝑒𝑙𝑠 = { 1, 2, 5, 10, 20, 30, 40 } 

At each level, 5 requests per model were issued. This setup enables us to observe how the models perform as the number 
of simultaneous requests increases, thereby providing insights into their scalability, latency, and overall efficiency. 
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3.3. Metrics Extraction and Equations 

Key performance metrics were derived using the following definitions and equations: 

Average Response Time (𝑻̅): The mean time required for a model to generate a response: 𝑇̅ =  
1

𝑁
 ∑ 𝑇𝑖

𝑁
𝑖=1  

where 𝑇𝑖 represents the response time for the ith request and 𝑁 is the total number of requests. 

Throughput (𝜼): The number of requests processed per second: 𝜂 =  
𝑁

𝑇𝑡𝑜𝑡𝑎𝑙
 

where 𝑇𝑡𝑜𝑡𝑎𝑙 is the total elapsed time for processing 𝑁 requests. 

Token Efficiency (𝑼̅): The average number of tokens generated per response: 𝑈̅ =  
1

𝑁
∑ 𝑈𝑖

𝑁
𝑖=1  

with 𝑈𝑖 representing the token count for the 𝑖th response. 

These equations underpin our quantitative analysis and support the visual and statistical comparison of model 
performance. 

3.4. Implementation Details 

The overall architecture of our implementation is composed of several modules designed to ensure reproducibility and 
consistency: 

• API Call Wrappers: Custom functions were developed to interface with each OpenAI model. These wrappers 
are responsible for sending prompts, recording the response time, and extracting token usage where available. 

• Asynchronous Load Testing Engine: Using Python’s asyncio and semaphore-based concurrency control, the 
engine orchestrates parallel API calls. This design ensures that the number of concurrent requests adheres to 
predefined levels, mimicking real-world load scenarios. 

• Data Aggregation and Analysis: Response data is aggregated into a structured, nested dictionary organized 
by model, prompt category, and concurrency level. This dataset is then used to compute average response 
times, throughput, and token efficiency using the equations described above. 

• Visualization: Finally, the aggregated metrics are visualized through a series of plots, with separate graphs for 
average response time, throughput, and token efficiency. These visualizations facilitate a comprehensive, side-
by-side comparison of model performance under varying load conditions. 

This implementation framework not only complements the theoretical guidelines provided by OpenAI but also extends 
them by offering empirical, data-driven insights. By systematically evaluating these models under controlled conditions, 
our study enables practitioners to make informed decisions based on measurable performance trade-offs. 

4. Results 

In this section, we present a detailed analysis of the experimental findings obtained from our load testing framework. 
The performance metrics—average response time, throughput, and token efficiency—were computed across five 
prompt categories: Explanatory, Creative, Technical, Translation, and Coding. The following subsections describe the 
observations for each metric, supported by quantitative data and summarized in Table II. 

4.1. Average Response Time 

The average response time is defined as the mean duration required for a model to generate a response. Our 
experiments, conducted over seven concurrency levels (1, 2, 5, 10, 20, 30, 40) with 5 requests per level, revealed distinct 
latency profiles for each model: 

• Explanatory Prompts: GPT-4o consistently produced the lowest response times, whereas o1-preview exhibited 
significantly higher latencies. 

• Creative Prompts: Although GPT-4o maintained stable and low response times, GPT-4o-mini showed increased 
variability at higher concurrency levels. In this category, o1-preview again lagged behind. 
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• Technical Prompts: GPT-4o outperformed the other models with response times typically between 7 and 9 
seconds. In contrast, o1-preview’s response times fluctuated between 18 and 25 seconds, while o1-mini and 
GPT-4o-mini showed intermediate performance. 

• Translation Prompts: All models achieved lower response times in this category; notably, GPT-4o managed sub-
second responses, with o1-preview trailing at 6–7 seconds. 

• Coding Prompts: The fastest responses were observed with GPT-4o (approximately 5–6 seconds), whereas o1-
preview peaked near 23 seconds. GPT-4o-mini and o1-mini maintained moderate response time 

  
Figure 1: Average Response Time vs. Concurrency Level – 
Explanatory 

                Figure 2: Average Response Time vs. 
Concurrency Level - Creative 

 

  

Figure 3 Average Response Time vs. Concurrency Level – 
Technical 

Figure 4 Average Response Time vs. Concurrency 
Level - Translation 
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Figure 5 Average Response Time vs. Concurrency Level – Coding        

4.2. Throughput 

Throughput is measured as the number of requests processed per second. It is calculated by dividing the total number 
of requests by the elapsed time for the batch. Our findings include: 

• Explanatory Prompts: GPT-4o achieved the highest throughput, peaking near 1.0 req/s, while o1-preview 
maintained the lowest throughput. 

• Creative Prompts: Both GPT-4o and o1-mini delivered high throughput at lower concurrency levels; however, 
GPT-4o sustained its performance as concurrency increased. 

• Technical Prompts: GPT-4o again led the performance, reaching around 0.6 req/s, whereas o1-preview 
remained near 0.2 req/s. 

• Translation Prompts: This category showed exceptional throughput for GPT-4o and GPT-4o-mini, with peak 
values as high as 5.5 req/s. The other models lagged significantly. 

• Coding Prompts: GPT-4o demonstrated superior throughput (~0.75 req/s), while o1-preview consistently 
showed lower throughput (~0.2 req/s). 

  
Figure 6 Throughput vs. Concurrency Level – Explanatory Figure 7 Throughput vs. Concurrency Level - Creative 
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Figure 8 Throughput vs. Concurrency Level – Technical                 Figure 9 Throughput vs. Concurrency Level - 
Translation 

 

 

Figure 10 Throughput vs. Concurrency Level – Coding  

4.3. Token Efficiency 

Token efficiency reflects the average number of tokens generated per response. Lower token usage indicates more 
concise outputs without sacrificing quality: 

• Explanatory Prompts: o1-preview consumed up to ~1600 tokens per response, with o1-mini slightly lower 
(approximately 900–1100 tokens). In contrast, GPT-4o and GPT-4o-mini maintained a token count around 
400–500. 

• Creative Prompts: GPT-4o led in efficiency by averaging between 700 and 900 tokens, while o1-preview peaked 
around 1800 tokens, and o1-mini showed moderate verbosity (1000–1300 tokens). 

• Technical Prompts: o1-preview and o1-mini produced more verbose responses (up to ~2500 and ~1400–1500 
tokens respectively), while GPT-4o and GPT-4o-mini stayed under ~700 tokens. 

• Translation Prompts: In tasks requiring brevity, GPT-4o and GPT-4o-mini were the most efficient (50–100 
tokens), compared to o1-mini (~300–400 tokens) and o1-preview (~450–550 tokens). 

• Coding Prompts: GPT-4o and GPT-4o-mini averaged around 500 tokens per response, whereas o1-preview and 
o1-mini generated outputs ranging from 1200 to over 2200 tokens. 
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Figure 11 Average Token Usage vs. Concurrency Level – 
Explanatory                       

Figure 12 Average Token Usage vs. Concurrency Level - 
Creative 

  

Figure 13 Average Token Usage vs. Concurrency Level – 
Technical                       

Figure 14 Average Token Usage vs. Concurrency Level - 
Translation 

 

 

Figure 15 Average Token Usage vs. Concurrency Level – Coding 

4.4. Combined Performance Summary 

The following table (Table II) summarizes the overall performance characteristics of each model across the three key 
metrics. 
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Table 2 Combined Performance Summary 

Model Average Response Time Throughput (req/s) Token Efficiency 

GPT 4o 
Lowest response times across 
categories 

Highest throughput; excels in 
translation tasks 

Most efficient; lowest token 
usage 

GPT 4o-
mini 

Moderate response times; some 
variability at high load 

High throughput, slightly 
below GPT-4o 

Highly efficient, slightly more 
verbose than GPT-4o 

o1-mini 
Moderate performance with increased 
latency at high concurrency 

Moderate throughput 
More verbose compared to GPT-
4 series 

o1-
preview 

Consistently highest response times 
across categories 

Lowest throughput; poor 
scalability 

Most verbose; highest token 
consumption 

5. Discussion 

The experimental findings reveal critical trade-offs in model performance under load. The superior performance of GPT-
4o, evidenced by its minimal response times, high throughput, and efficient token usage, makes it a favorable choice for 
applications that demand rapid and scalable performance. The data indicate that GPT-4o’s advantages are particularly 
pronounced in translation and technical tasks, where latency and resource efficiency are paramount. 

Conversely, while GPT-4o-mini offers a viable alternative, its performance variability under high concurrency suggests 
potential limitations in stability that may affect user experience in peak load scenarios. The o1 series, particularly o1-
preview, consistently underperformed across all metrics, indicating that their design may favor other aspects (such as 
creativity or domain-specific optimizations) over pure latency and efficiency. 

These results extend the theoretical guidelines provided in the OpenAI API documentation by grounding them in 
empirical data. While the documentation outlines optimization principles such as reducing token count and parallelizing 
requests, our study quantifies the impact of these strategies under real-world conditions. The comprehensive 
comparative analysis presented here enables practitioners to make informed decisions by aligning model selection with 
the specific operational requirements of their applications. 

6. Conclusion 

In conclusion, our empirical evaluation under varying concurrency levels revealed distinct performance profiles for the 
four models tested. GPT-4o consistently achieved the lowest response times and highest throughput, maintaining its 
advantage even as concurrency increased, while also proving the most token-efficient by using the fewest tokens per 
response. GPT-4o-mini came close to GPT-4o’s performance but exhibited slight latency increases and higher variability 
at peak loads, indicating some instability under extreme concurrency. In contrast, o1-mini delivered only moderate 
performance, with latency rising significantly at higher concurrency levels. At the lower end of the spectrum, o1-preview 
lagged in all metrics, suffering the longest response times, lowest throughput, and highest token consumption. This 
severe performance degradation under concurrent load reflects poor scalability for o1-preview. 

These concurrency-induced performance disparities and degradations have direct implications for stability and 
scalability in real-world deployments. Notably, latency directly affects end-user experience, throughput determines 
how well a service scales with parallel requests, and token efficiency influences resource consumption and cost. Models 
that degrade significantly under heavy concurrency (such as o1-preview and, to a lesser extent, GPT-4o-mini) can 
produce inconsistent response times and limit a system’s ability to scale to high user volumes. Conversely, GPT-4o’s 
robust performance at scale indicates greater reliability for serving many simultaneous users. From a practical 
perspective, our findings guide practitioners in aligning model choice with operational demands. For applications that 
must sustain high throughput with minimal latency, GPT-4o stands out as the optimal choice. If smaller models (e.g., 
GPT-4o-mini or o1-mini) are preferred due to cost or other constraints, the performance trade-offs identified here 
should inform capacity planning and system design. By quantifying latency, throughput, and token usage under realistic 
conditions, this study provides a rigorous, data-driven foundation that complements theoretical guidelines and informs 
model deployment decisions in production environments. 
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