
 Corresponding author: Emmanuel Joshua 

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Reducing benign positives in threat detection systems: A graph-based approach to 
contextualizing security alerts 

Emmanuel Joshua * 

Department of Computer Science, Texas Southern University, Texas, USA. 

International Journal of Science and Research Archive, 2025, 14(03), 346-352 

Publication history: Received on 19 January 2025; revised on 03 March 2025; accepted on 05 March 2025 

Article DOI: https://doi.org/10.30574/ijsra.2025.14.3.0641 

Abstract 

Threat detection systems form the backbone of modern enterprise cybersecurity programs, analyzing massive volumes 
of logs, network flows, and user activities to identify potentially malicious events. Despite continuous advances in 
detection techniques, these systems generate an abundance oding to alert fatigue, wasted analyst resources, and a 
delayed response to actual threats. This paper surveys the problem of benign positives and proposes a graph-based 
framework that unifies alerts, user roles, infrastructure metadata, and historical dispositions in a knowledge graph. By 
representing alerts and contextual entities as interconnected nodes and edges, security teams can quickly detect 
recurring benign patterns (e.g., routine scanning tasks, staging environment bulk transfers) and implement precise 
suppression rules. Experimental findings from a simulated enterprise environment indicate that this approach 
significantly reduces benign positives compared to conventional static filters or standalone machine learning methods. 
The paper closes with recommendations for integrating multi-cloud data, automated rule generation, privacy 
safeguards, and user-friendly interfaces that support non-expert security analysts. 
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1. Introduction

Organizations employ a multitude of threat detection systems (TDS) to guard against intrusions, data exfiltration, and 
other malicious behaviors. These systems ingest logs, network events, and endpoint telemetry from disparate sources, 
often centralized via Security Information and Event Management (SIEM) platforms like Splunk or IBM QRadar [1]. 
Through signature-based rules, anomaly detection algorithms, or statistical correlation, TDS raise alerts when an event 
appears sufficiently suspicious. However, a well-known limitation is the high volume of alerts that do not correspond 
to malicious threats, often labeled “false positives” or “benign positives” [2]. 

Benign positives arise from legitimate but unusual activities—for instance, an employee copying large amounts of data 
to an internal repository for analytics or a staged environment script transferring logs in bulk. Although these anomalies 
might mimic attacker tactics on the surface, thorough investigation reveals no security breach [3]. The volume of benign 
positives can dwarf true positives, imposing substantial operational costs on security teams. Alert fatigue, where 
analysts face thousands of trivial cases daily, increases the risk that real threats are overlooked [4]. Studies show that 
over 50% of alerts in some large enterprises are ultimately deemed benign [5]. As organizations scale, this ratio can 
climb even higher. 

Common mitigation strategies include static whitelists (e.g., ignoring alerts from known scanners) or machine learning 
(ML) to classify alerts as malicious or benign. However, whitelists can become unwieldy and lead to blind spots if not
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meticulously maintained [6]. Meanwhile, ML-based systems demand substantial labeled data and can be fragile in 
dynamic business environments. Attackers can even craft adversarial examples to evade detection, exploiting an 
algorithm’s learned biases [7]. 

This paper posits that a graph-based contextualization of alerts offers a more robust solution for handling benign 
positives. In this approach, each alert becomes a node in a knowledge graph that also captures nodes for user roles, cost 
centers, environment types (e.g., production vs. staging), known benign-case dispositions, and more. By analyzing 
relationships and subgraphs, analysts can pinpoint patterns behind repeated harmless alerts. Rather than unilaterally 
ignoring specific IP addresses or traffic signatures, security teams can define precise, context-aware suppression rules. 
This method outperforms simpler approaches by maintaining detection fidelity for scenarios outside the recognized 
benign patterns. 

The rest of this paper is organized as follows: Section 2 defines benign positives, highlighting their operational impact. 
Section 3 critiques conventional rule-based or ML-driven solutions. Section 4 introduces the proposed graph-based 
approach, elaborating on the model’s structure and data ingestion pipeline. Section 5 presents experimental findings 
illustrating how contextual subgraphs identify repeated innocuous behaviors. Section 6 outlines future directions, 
including multi-cloud adaptation, advanced graph analytics, privacy safeguards, and user interface design. Section 7 
concludes by summarizing how graph-based contextualization can mitigate the high cost of benign positives without 
weakening threat detection capabilities. 

2. Benign Positives: Definition and Operational Cost 

2.1. Defining Benign Positives 

A “benign positive” is a security alert triggered by rules, heuristics, or ML models that ultimately does not point to 
malicious activity. The event or behavior may deviate from typical usage patterns, but subsequent investigation 
confirms it as legitimate. For instance, an anomaly-based system might flag a data transfer from an internal server to a 
newly deployed instance in a staging environment. On closer inspection, the data transfer is part of normal DevOps tasks 
[8]. A purely signature-based approach might similarly raise alarms for processes mimicking port scanning, even if they 
are part of an authorized IT vulnerability assessment. 

2.2. Impact on Security Teams 

Because benign positives occupy large portions of the alert pipeline, security analysts often suffer from alert fatigue, 
struggling to concentrate on genuine threats [9]. Studies have shown that up to 64% of SOC teams’ time is spent 
investigating alerts that turn out benign or false [2]. This overhead reduces overall efficacy; truly malicious incidents 
can hide amid the noise. 

Furthermore, high benign-positive ratios inflate operational costs by requiring expanded staffing. Analysts spend 
significant time identifying repeated harmless triggers, leading to morale issues and reduced detection quality [10]. 
Over time, the repeated monotony can prompt staff attrition, as skilled personnel seek roles with more strategic 
responsibilities. If security teams do not adapt their approach, benign positives remain a chronic drain on resources. 

2.3. Leading Causes of Benign Positives 

• Unusual But Valid Business Processes: Large internal data transfers, ephemeral container setups, 
overnight batch jobs. 

• Evolving User Behaviors: Employees may log in from new regions or time zones, raising geo-based alerts 
[8]. 

• Overly Sensitive Rules: Tightly configured thresholds to reduce missed detections can catch non-
threatening behaviors. 

• Incomplete Context: A detection system might only observe raw traffic patterns without referencing the 
environment’s legitimate tasks (e.g., staging vs. production)  
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3. Shortcomings of Traditional Approaches 

3.1.  Rule-Based Suppression and Whitelists 

One standard way to curb benign positives is through static filters that ignore events matching known benign patterns. 
Although effective for recurring triggers (e.g., the same IP address or daily scanning script), this method is notoriously 
inflexible. As the environment changes or new legitimate patterns emerge, administrators must constantly update or 
remove rules. Additionally, broad filters risk silencing real attacks if threat actors deliberately mimic the “benign” 
pattern [11]. 

In large organizations with dozens of teams, rule-based filtering can balloon into a labyrinth of partial exceptions, some 
of which become obsolete or contradictory over time. Maintaining these rules is a labor-intensive process that can 
surpass the cost saved by reducing benign alerts. Analysts also lose immediate visibility into newly discovered sub-
patterns if they rely too heavily on whitelists, possibly missing genuine threats [12]. 

3.2. Machine Learning-Only Approaches 

Advances in machine learning have enabled more nuanced anomaly detection. By training on historical data, ML-based 
systems attempt to classify new alerts as malicious or benign with minimal human oversight [13]. While these 
techniques can adapt to changing patterns better than static rules, they face several pitfalls: 

• High-Quality Training Data: Effective models require extensive labeled examples of both malicious and benign 
events. Many enterprises lack this depth of labeled data, especially for benign positives, which are often not 
rigorously documented after triage [14]. 

• Concept Drift: Cloud-native environments evolve rapidly, altering normal activity baselines. A model trained 
on last quarter’s data may misclassify new tasks or ephemeral architectures [15]. 

• Adversarial Evasion: Attackers can craft traffic that fools anomaly detection by imitating recognized “safe” 
patterns [16]. 

• Limited Explainability: Deep learning methods may produce a “black box” verdict without detailing why an 
alert was flagged, complicating suppression rule creation. 

Thus, although ML-based detection can reduce some benign positives, it remains incomplete without a richer 
organizational context that clarifies why certain anomalies are harmless. 

3.3. Context Deficits 

Many SOC tools primarily focus on technical telemetry—logs, flows, packet captures—without referencing the higher-
level structure of an enterprise. For instance, they might see traffic from “10.0.5.12” to “10.0.4.44,” but not know which 
cost center these IPs belong to or whether the user is an experienced DevOps engineer authorized to manage these 
resources. In such a vacuum, innocuous behaviors can appear malicious [5]. A purely IP- or signature-centric approach 
is ill-suited for large organizations with dynamic teams, ephemeral cloud environments, and microservices. 

4. A Graph-Based Solution 

4.1. Conceptual Overview 

Graph-based approaches have surfaced in cyber threat intelligence and attack path analysis to capture the 
relationships among hosts, vulnerabilities, and attacker tactics [17]. This paper extends such methods to tackle benign 
positives by modeling each alert within a broader knowledge graph that also holds user roles, environment data, and 
triage dispositions. 

When an alert is raised, it becomes a “node” linked to additional nodes representing the associated user, environment, 
cost center, or known benign reasons. Over time, repeated benign patterns emerge as subgraphs containing multiple 
alerts with the same contextual structure. Analysts can then define precise suppression rules referencing the subgraph, 
rather than enumerating static IP or signature exclusions [18]. 
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4.2. Graph Entities and Edges 

Typical node categories in the knowledge graph may include: 

• Alert Node: Holds attributes like timestamp, severity, detection rule ID, or ML confidence score. 
• Benign Case Node: Generated if an alert is confirmed benign. Stores triage notes (e.g., “routine staging sync”). 
• User Node: Represents an employee account or role (e.g., “ResearchAnalyst,” “DevOpsEngineer”). 
• Environment Node: Distinguishes staging, dev, production, or specialized cost centers. 
• Infrastructure Node: Reflects cloud instances, containers, or on-prem servers. 
• Detector Node: Identifies which detection engine or signature triggered the alert. 

Edges capture relationships such as TriggeredBy, ResolvedAsBenign, BelongsToTeam, or RunsOnEnvironment. By 
linking these nodes, the system preserves the full context behind each alert, which is otherwise scattered across logs or 
spreadsheets [19]. 

4.3.  Querying and Visualization 

Once the graph is built, security analysts use query languages (for example, Neo4j’s Cypher or Apache TinkerPop’s 
Gremlin) to filter or group related alerts. They might ask, “Show me all benign cases in the last 60 days that originated 
from environment node stagingA with user role JenkinsRunner.” If that subgraph reveals repeated data-transfer alerts 
deemed harmless, the analyst can specify a suppression rule for the (stagingA, JenkinsRunner) context [20]. A well-
designed user interface can depict these relationships visually, making it straightforward to spot repeated patterns. 

4.4.  Comparing Graph-Based Contextualization 

Graph-based suppression differs from static whitelists by referencing the organizational structure behind repeated 
benign alerts. Instead of ignoring all traffic from a single IP, the approach localizes the rule to “alert type = data-exfil, 
environment = stagingA, user role = JenkinsRunner,” ensuring that similar activity in a different environment remains 
visible if it might be malicious [9]. Likewise, compared to a purely ML-based solution, the knowledge graph fosters 
human interpretability and easily accommodates incremental environment changes. If new staging environments 
appear, simply creating a new environment node ensures the system can handle the updated context. The next section 
demonstrates how these concepts perform in a test setting. 

5. Experimental Findings 

5.1.  Setup and Methodology 

We constructed a simulated enterprise environment with: 

• 600,000 alerts spanning a six-month period, including a mixture of known malicious, known benign, and unlabeled 
events. 

• Multiple environment labels (production, staging, dev) representing ephemeral or persistent cloud resources. 
• Ten distinct user roles, including DevOpsEngineer, DatabaseAdmin, SecurityAnalyst, and so on. 
• Historic triage notes from the organization’s incident management system, designating 18% of the alerts as 

confirmed benign positives. 

Using log data from the WUSTL-IO dataset [21] plus synthetic expansions for staging-related tasks, we built a knowledge 
graph in Neo4j. Each alert node was linked to nodes representing the environment, user (if known), and detection rule 
that triggered it. If the alert had been dispositioned as benign, a separate node (BenignCase) was added, storing remarks. 
Queries used the Cypher language to discover repeated subgraphs (e.g., “alerts of type data-transfer in environment 
stagingX associated with user role DevOpsEngineer that always ended in benign disposition”). 

5.2. Key Observations 

5.2.1.  Recurring Benign Patterns 

Queries revealed that over 50% of the known benign positives were concentrated in two staging environments labeled 
stagingX1 and stagingX2. For these environments, developers regularly ran large-scale data migrations that mirrored 
exfiltration or infiltration attempts. By grouping these events under a single subgraph, the system proposed a 
specialized suppression rule: “Ignore exfil-like alerts for stagingX1 and stagingX2 triggered by user role 
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DevOpsEngineer.” Analysts verified that no real threats had ever originated from that combination, drastically curbing 
repeated benign alerts. 

Similarly, a cost center named HPCResearch triggered ongoing port-scan alerts from an internal vulnerability tool. 
Aggregation in the graph showed HPCResearch had never produced a genuine incident in the logs. Security teams thus 
suppressed “port-scan anomalies” for HPCResearch’s internal subnets, removing hundreds of monthly benign alerts. 

5.2.2.  Comparisons to Other Methods 

We compared three approaches: 

• Static Whitelists: Administrators manually listed known safe IP addresses or user processes. 
• Unsupervised ML: A clustering-based anomaly detector flagged events outside typical usage. 
• Graph-Based Contextual: Users explored the knowledge graph to create selective suppressions for repeated 

harmless subgraphs. 

The graph-based method achieved a 55% reduction in benign positives, surpassing 28% for static whitelists and 34% 
for unsupervised ML. Additionally, interviews with participating security analysts indicated that the graph approach 
produced clearer rationale for each suppression (“It’s only suppressed in HPCResearch environment under user role 
HPCScan”), as opposed to the more opaque or blanket rules from the other methods. 

5.2.3.  Impact on Triage Efficiency 

An internal metric known as Mean Time to Triage (MTTT) dropped by 40% for repeated benign alerts once subgraph-
based suppressions were in place. Participants found it simpler to identify that a new alert belonged to an existing 
subgraph of known benign triggers. Instead of investigating every anomaly from scratch, they quickly recognized it 
matched an environment-user combo historically proven safe. 

6. Future Research and Challenges 

6.1. Multi-Cloud Unification 

As more enterprises adopt multi-cloud or hybrid models, normalizing resource identifiers across AWS, Azure, and on-
premises data centers becomes critical. Even simple tasks such as standardizing “production vs. staging” labels can be 
tricky if different teams use varied naming schemes [22]. A robust knowledge graph must incorporate cross-cloud 
references, reconciling ephemeral instance IDs into consistent environment nodes. 

6.2.  Advanced Graph Analytics 

While basic queries can group repeated benign patterns, deeper analytics—graph neural networks or path-based 
clustering—could automate detection of subgraphs that rarely lead to malicious outcomes [23]. Embeddings might 
enable the system to propose new potential benign clusters for analyst approval. However, more advanced AI 
techniques can also be susceptible to adversarial manipulation or concept drift, necessitating iterative retraining [7]. 

6.3.  Automated Suppression Proposals 

Partially automating the creation of suppression rules, subject to analyst verification, could further alleviate triage 
workloads. The system might watch for subgraphs with consistently benign dispositions, then propose suppression 
rules with finite expiration to reduce risk of indefinite blind spots. Such automation demands thorough fallback and 
oversight, ensuring that a newly introduced rule cannot inadvertently mask real threats [10][24]. 

6.4.  Privacy and Regulatory Compliance 

Knowledge graphs can contain sensitive details, especially if linking personal user data or highlighting privileged roles. 
Fine-grained access controls are crucial to ensure that only authorized parties can view certain nodes or edges. 
Encryption at the node or property level may also be required under regulations such as GDPR or HIPAA [25]. Designing 
privacy-preserving knowledge graph solutions—where partial data remains encrypted—poses an evolving research 
question. 
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6.5.  User Interface and Onboarding 

Although graph databases offer query languages like Cypher, less technical stakeholders may find them intimidating. 
Visual dashboards and guided “playbooks” can bridge this gap [20]. For instance, an “alert triage wizard” might 
automatically suggest relevant subgraphs or track newly discovered benign scenarios. Additional user testing is needed 
to refine these interfaces, ensuring that analysts can readily identify repeated patterns without advanced coding skills. 

7. Conclusion 

Benign positives plague threat detection systems, creating massive overhead for security teams and obscuring real 
intrusions amid the noise. Traditional solutions—static whitelists or purely ML-based detection—only partially resolve 
the issue. Whitelists demand constant updates, risk hiding genuine attacks, and rarely adapt to new organizational 
workflows. ML-driven approaches require extensive labeled data, are vulnerable to adversarial evasion, and often fail 
to embed the deeper context of how business units operate. 

This paper argues for a graph-based contextualization that gathers alerts, user roles, environment data, cost centers, 
and historical benign dispositions into a knowledge graph. By exploring subgraphs of repeated benign patterns, security 
teams can craft targeted suppression rules with minimal risk to detection fidelity. Our evaluation in a simulated 
environment with hundreds of thousands of alerts confirmed significant reductions in benign positives—over 50% in 
some cases—compared to baseline methods. Analysts praised the clarity of referencing environment or user subgraphs 
when deciding on suppressions, resulting in a more maintainable system that scales with organizational changes. 

Ongoing work will extend this concept to multi-cloud resource normalization, advanced graph-based analytics, partial 
automation of rule generation, privacy and compliance controls, and better user experience design. In an era of 
ephemeral infrastructure and complex, distributed development practices, benign positives may remain a challenge, 
but the graph-based approach provides a robust and adaptable framework for mitigating these false alarms. By fusing 
detection logs with organizational context, security teams gain the necessary insights to swiftly isolate harmless activity 
and retain focus where it matters—on the real threats that can jeopardize enterprise assets. 
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